{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import nbinteract as nbi\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "548dd8f32f5444c1b044f27eee98aca2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(interactive(children=(IntSlider(value=5, description='mean', max=10), FloatSlider(value=1.0, de…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def hist_function(mean, sd, size=1000):\n", " '''\n", " Returns 1000 values picked at random from the normal\n", " distribution with the Mean value and SD given.\n", " '''\n", " return np.random.normal(loc=mean, scale=sd, size=1000)\n", "\n", "\n", "options = {\n", " 'title': 'Histogram',\n", " 'xlabel': 'Mean value (mean)',\n", " 'ylabel': 'Standard Deviation (sd)',\n", " 'bins': 10\n", "}\n", "\n", "layouts = {\n", " 'plot_height': '480px',\n", " 'plot_width': '800px',\n", "}\n", "\n", "hist_chart = nbi.hist(\n", " hist_function,\n", " mean=(0, 10),\n", " sd=(0.2, 2.0, 0.2),\n", " options=options,\n", " layouts=layouts\n", ")\n", "\n", "hist_chart" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.9" } }, "nbformat": 4, "nbformat_minor": 4 }