%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% Style Setting %%%%%%%% \documentclass[a4j,12pt,openbib]{jarticle} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% Package Include %%%%%%%% \usepackage{ascmac} \usepackage{tabularx} \usepackage{graphicx} \usepackage{amssymb} \usepackage{amsmath} \usepackage{Dennou6} %%%%%%%% PageStyle Setting %%%%%%%% \pagestyle{Dmyheadings} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% Title Setting %%%%%%%% \Dtitle{NumRu::Derivative} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% Set Counter (chapter, section etc. ) %%%%%%%% %\setcounter{chapter}{1} \setcounter{section}{0} \setcounter{equation}{0} \setcounter{page}{1} \setcounter{figure}{0} \setcounter{footnote}{0} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% Counter Output Format %%%%%%%% %\def\thesection{\arabic{chapter}.\arabic{section}} %\def\theequation{\arabic{chapter}.\arabic{section}.\arabic{equation}} %\def\thepage{\arabic{page}} %\def\thefigure{\arabic{section}.\arabic{figure}} %\def\thetable{\arabic{section}.\arabic{table}} %\def\thefootnote{\arabic{footnote}} \def\thesection{\arabic{section}} \def\theequation{\arabic{section}.\arabic{equation}} \def\thepage{\arabic{page}} \def\thefigure{\arabic{section}.\arabic{figure}} \def\thetable{\arabic{section}.\arabic{table}} \def\thefootnote{\arabic{footnote}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% Dennou-Style Definition %%%%%%%% \Dparskip %\Dnoparskip \Dparindent %\Dnoparindent %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% Local Definition %%%%%%%% \def\dfrac#1#2{{\displaystyle\frac{#1}{#2}}} \def\minicaption#1#2{\begin{quote} \caption{\footnotesize #1} \Dfiglab{#2} \end{quote}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% Text Start %%%%%%%% \begin{document} \section{不等間隔格子の二次精度差分} 本ドキュメントでは, NumRu::Derivative で定義される threepoints\_O2nd\_deriv で用いる 不等間隔格子の二次精度差分についてまとめる. この差分は極端に不等間隔ではないデータに 対して二次精度の差分を与えるものである. 今, 関数$f(x)$を, 数列 $x_n (x_0, x_1, ..., x_{i}, ..., x_{n})$ 上に離散化する. % \begin{align} f_i &\equiv f(x_i)\\ t &\equiv (x_{i+1} - x_{i})\\ s &\equiv (x_{i} - x_{i-1}) \end{align} % ここで, $s$と$t$はほぼ同じオーダーの値である場合を想定して議論を進める. ここで, $f(x)$を各格子点近傍にてテイラー展開する. % \begin{align} f(x_{i+1}) - f(x_{i}) &= tf'(x_i) + \frac{t^2}{2}f''(x_i) + O(t^3)\\ f(x_{i-1}) - f(x_{i}) &= -sf'(x_i) + \frac{s^2}{2}f''(x_i) + O(s^3) \end{align} % ここで, $f'(x_i), f''(x_i)$はそれぞれ$x_i$における$f$の$x$に関する一階および二階の微分項, $O(t^3)$は$t^3$のオーダーの値を表す. 両式から$f''$の項を消去するために, $s^2\times$(1.4) - $t^2\times$(1.5) を計算すると, % \begin{align} s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1} &= (s^2 + st^2)f'(x_i) + s^2O(t^3) + t^2O(s^3) \end{align} % となる. 上式を変形して % \begin{align} \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)} &= f'(x_i) + \frac{O(s^2t^3) + O(t^2s^3)}{st(s + t)}\\ &= O(t^2). \end{align} % これより, 2次精度差分の公式は \begin{align} f'(x_i) &= \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)} \end{align} % と書くことができる. \end{document} %%%%%%%% Text End %%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% Sample %%%%%%%% %%%%%%%% 数式 (ラベル付き) %%%%%%%% % %\begin{eqnarray} % \Deqlab{1.1} % 教科書での式番号を入れる. % \DP{\rho}{t} + \Ddiv (\rho \Dvect{V}) = 0. %\end{eqnarray} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% 数式 (式番号を独立して書きたい場合) %%%%%%%% % %$$ % \DP{p}{z} = \rho g. % \eqno \textrm{(1.11)} %$$ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% 参考文献 (本文に書く場合) %%%%%%%% % %{\bfseries 参考文献} %\vspace{-7mm} %\begin{description} % \item 著者名, 2000: % 書籍名, (章, 節). % 出版社, 319pp. %\end{description} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% 図の貼込み %%%%%%%% % %\begin{figure}[hbtp] % \begin{center} % \Depsf[][]{./SEC01/images/fig0101.eps} % \end{center} % \caption{ % 見出し % } % \Dfiglab{fig0101} % 教科書の図の番号を入れる, % % table の図の場合は tab0101 %\end{figure} %