/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Christian Schulte * * Copyright: * Christian Schulte, 2011 * * Last modified: * $Date: 2011-07-08 20:09:31 +1000 (Fri, 08 Jul 2011) $ by $Author: schulte $ * $Revision: 12164 $ * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include using namespace Gecode; /** * \brief %Options for Schur's Lemma * */ class SchurOptions : public Options { public: int c, n; ///< Parameters to be given on command line /// Initialize options for example with name \a s SchurOptions(const char* s, int c0, int n0) : Options(s), c(c0), n(n0) {} /// Parse options from arguments \a argv (number is \a argc) void parse(int& argc, char* argv[]) { Options::parse(argc,argv); if (argc < 3) return; c = atoi(argv[1]); n = atoi(argv[2]); } /// Print help message virtual void help(void) { Options::help(); std::cerr << "\t(unsigned int) default: " << c << std::endl << "\t\tparameter c (number of boxes)" << std::endl << "\t(unsigned int) default: " << n << std::endl << "\t\tparameter n (number of balls)" << std::endl; } }; /** * \brief %Example: Schur's lemma * * Put \f$n\f$ balls labeled \f${1,\ldots,n}\f$ into \f$c\f$ boxes such * that for any triple of balls \f$\langle x, y, z\rangle\f$ with * \f$x+y = z\f$, not all are in the same box. * * This problem has a solution for \f$c=3\f$ if \f$n < 14\f$. * * See also problem 15 at http://www.csplib.org/. * * \ingroup Example * */ class Schur : public Script { protected: /// Array of box per ball IntVarArray box; public: /// Actual model Schur(const SchurOptions& opt) : box(*this,opt.n,1,opt.c) { int n = opt.n; IntVarArgs triple(3); // Iterate over balls and find triples for (int i=1; i<=n; i++) { triple[0] = box[i-1]; for (int j=1; i+j<=n; j++) { triple[1] = box[j-1]; triple[2] = box[i+j-1]; rel(*this, triple, IRT_NQ); } } // Break value symmetries precede(*this, box, IntArgs::create(opt.c, 1)); branch(*this, box, INT_VAR_SIZE_AFC_MIN, INT_VAL_MIN); } /// Print solution virtual void print(std::ostream& os) const { os << "\t" << box << std::endl; } /// Constructor for cloning \a s Schur(bool share, Schur& s) : Script(share,s) { box.update(*this, share, s.box); } /// Copy during cloning virtual Space* copy(bool share) { return new Schur(share,*this); } }; /** \brief Main-function * \relates Schur */ int main(int argc, char* argv[]) { SchurOptions opt("Schur's Lemma",3,13); opt.parse(argc,argv); Script::run(opt); return 0; } // STATISTICS: example-any