#
# = Statistics
# 1. {Mean, Standard Deviation and Variance}[link:rdoc/stats_rdoc.html#1]
# 1. {Absolute deviation}[link:rdoc/stats_rdoc.html#2]
# 1. {Higher moments (skewness and kurtosis)}[link:rdoc/stats_rdoc.html#3]
# 1. {Autocorrelation}[link:rdoc/stats_rdoc.html#4]
# 1. {Covariance}[link:rdoc/stats_rdoc.html#5]
# 1. {Correlation}[link:rdoc/stats_rdoc.html#6]
# 1. {Weighted samples}[link:rdoc/stats_rdoc.html#7]
# 1. {Maximum and minimum values}[link:rdoc/stats_rdoc.html#8]
# 1. {Median and percentiles}[link:rdoc/stats_rdoc.html#9]
# 1. {Examples}[link:rdoc/stats_rdoc.html#10]
#
# == {}[link:index.html"name="1] Mean, Standard Deviation and Variance
#
# ---
# * GSL::Stats::mean(v)
# * GSL::Vector#mean
#
#   Arithmetic mean.
#
#   * Ex:
#        >> require("gsl")
#        => true
#        >> v = Vector[1..7]
#        => GSL::Vector: 
#        [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 6.000e+00 7.000e+00 ]
#        >> v.mean
#        => 4.0
#        >> Stats::mean(v)
#        => 4.0
#
# ---
# * GSL::Vector#tss
#
#   Returns the total sum of squares about <tt>self.mean</tt>.
#   (Requires GSL 1.11)
# ---
# * GSL::Vector#tss_m(mean)
#
#   Returns the total sum of squares about <tt>mean</tt>.
#   (Requires GSL 1.11)
#
# ---
# * GSL::Stats::variance_m(v[, mean])
# * GSL::Vector#variance_m([mean])
#
#   Variance of <tt>v</tt> relative to the given value of <tt>mean</tt>.
#
# ---
# * GSL::Stats::sd(v[, mean])
# * GSL::Vector#sd([mean])
#
#   Standard deviation.
#
# ---
# * GSL::Stats::tss(v[, mean])
# * GSL::Vector#tss([mean])
#
#   (GSL-1.11 or later) These methods return the total sum of squares (TSS) of data about the mean.	
#
# ---
# * GSL::Stats::variance_with_fixed_mean(v, mean)
# * GSL::Vector#variance_with_fixed_mean(mean)
#
#   Unbiased estimate of the variance of <tt>v</tt> when the population mean 
#   <tt>mean</tt> of the underlying distribution is known <tt>a priori</tt>.
#
# ---
# * GSL::Stats::variance_with_fixed_mean(v, mean)
# * GSL::Vector#variance_with_fixed_mean(mean)
# * GSL::Stats::sd_with_fixed_mean(v, mean)
# * GSL::Vector#sd_with_fixed_mean(mean)
#
#   Unbiased estimate of the variance of <tt>v</tt> when the population mean 
#   <tt>mean</tt> of the underlying distribution is known <tt>a priori</tt>.
#
# == {}[link:index.html"name="2] Absolute deviation 
# ---
# * GSL::Stats::absdev(v[, mean])
# * GSL::Vector#absdev([mean])
#
#   Compute the absolute deviation (from the mean <tt>mean</tt> if given).
#
# == {}[link:index.html"name="3] Higher moments (skewness and kurtosis) 
#
# ---
# * GSL::Stats::skew(v[, mean, sd])
# * GSL::Vector#skew([mean, sd])
#
#   Skewness
#
# ---
# * GSL::Stats::kurtosis(v[, mean, sd])
# * GSL::Vector#kurtosis([mean, sd])
#
#   Kurtosis
#
# == {}[link:index.html"name="4] Autocorrelation
# ---
# * GSL::Stats::lag1_autocorrelation(v[, mean])
# * GSL::Vector#lag1_autocorrelation([mean])
#
#   The lag-1 autocorrelation
#
# == {}[link:index.html"name="5] Covariance
# ---
# * GSL::Stats::covariance(v1, v2)
# * GSL::Stats::covariance_m(v1, v2, mean1, mean2)
#
#   Covariance of vectors <tt>v1, v2</tt>.
#
# == {}[link:index.html"name="6] Correlation
# ---
# * GSL::Stats::correlation(v1, v2)
#
#   This efficiently computes the Pearson correlation coefficient between the vectors <tt>v1, v2</tt>. (>= GSL-1.10)
#
# == {}[link:index.html"name="7] Weighted samples
# ---
# * GSL::Vector#wmean(w)
# * GSL::Vector#wvariance(w)
# * GSL::Vector#wsd(w)
# * GSL::Vector#wabsdev(w)
# * GSL::Vector#wskew(w)
# * GSL::Vector#wkurtosis(w)
#
#
# == {}[link:index.html"name="8] Maximum and Minimum values 
# ---
# * GSL::Stats::max(data)
# * GSL::Vector#max
#
#   Return the maximum value in data.
#
# ---
# * GSL::Stats::min(data)
# * GSL::Vector#min
#
#   Return the minimum value in data.
#
# ---
# * GSL::Stats::minmax(data)
# * GSL::Vectorminmax
#
#   Find both the minimum and maximum values in <tt>data</tt> and returns them.
#
# ---
# * GSL::Stats::max_index(data)
# * GSL::Vector#max_index
#
#   Return the index of the maximum value in <tt>data</tt>. 
#   The maximum value is defined as the value of the element x_i 
#   which satisfies x_i >= x_j for all j. 
#   When there are several equal maximum elements then the first one is chosen. 
# ---
# * GSL::Stats::min_index(data)
# * GSL::Vector#min_index
#
#   Returns the index of the minimum value in <tt>data</tt>. 
#   The minimum value is defined as the value of the element x_i 
#   which satisfies x_i >= x_j for all j. 
#   When there are several equal minimum elements then the first one is 
#   chosen. 
#
# ---
# * GSL::Stats::minmax_index(data)
# * GSL::Vector#minmax_index
#
#   Return the indexes of the minimum and maximum values in <tt>data</tt> 
#   in a single pass. 
#
#
# == {}[link:index.html"name="9] Median and Percentiles 
#
# ---
# * GSL::Stats::median_from_sorted_data(v)
# * GSL::Vector#median_from_sorted_data
#
#   Return the median value. The elements of the data must be 
#   in ascending numerical order. There are no checks to see whether 
#   the data are sorted, so the method <tt>GSL::Vector#sort</tt> 
#   should always be used first.
#
# ---
# * GSL::Stats::quantile_from_sorted_data(v)
# * GSL::Vector#quantile_from_sorted_data
#
#   Return the quantile value. The elements of the data must be 
#   in ascending numerical order. There are no checks to see whether 
#   the data are sorted, so the method <tt>GSL::Vector#sort</tt> 
#   should always be used first.
#
# == {}[link:index.html"name="10] Example
#
#      #!/usr/bin/env ruby
#      require 'gsl'
#
#      ary =  [17.2, 18.1, 16.5, 18.3, 12.6]
#      data = Vector.alloc(ary)
#      mean     = data.mean()
#      variance = data.stats_variance()
#      largest  = data.stats_max()
#      smallest = data.stats_min()
#
#      printf("The dataset is %g, %g, %g, %g, %g\n",
#             data[0], data[1], data[2], data[3], data[4]);
#
#      printf("The sample mean is %g\n", mean);
#      printf("The estimated variance is %g\n", variance);
#      printf("The largest value is %g\n", largest);
#      printf("The smallest value is %g\n", smallest);
#
# {prev}[link:rdoc/randist_rdoc.html]
# {next}[link:rdoc/hist_rdoc.html]
#
# {Reference index}[link:rdoc/ref_rdoc.html]
# {top}[link:index.html]
#