Sha256: d7388060a68b707bca91e01c40060feeaf280df2682031c4c16501f0b1a3df8d
Contents?: true
Size: 1.59 KB
Versions: 39
Compression:
Stored size: 1.59 KB
Contents
module Polars module Functions # Convert categorical variables into dummy/indicator variables. # # @param df [DataFrame] # DataFrame to convert. # @param columns [Array, nil] # A subset of columns to convert to dummy variables. `nil` means # "all columns". # # @return [DataFrame] def get_dummies(df, columns: nil) df.to_dummies(columns: columns) end # Aggregate to list. # # @return [Expr] def to_list(name) col(name).list end # Compute the spearman rank correlation between two columns. # # Missing data will be excluded from the computation. # # @param a [Object] # Column name or Expression. # @param b [Object] # Column name or Expression. # @param ddof [Integer] # Delta degrees of freedom # @param propagate_nans [Boolean] # If `True` any `NaN` encountered will lead to `NaN` in the output. # Defaults to `False` where `NaN` are regarded as larger than any finite number # and thus lead to the highest rank. # # @return [Expr] def spearman_rank_corr(a, b, ddof: 1, propagate_nans: false) corr(a, b, method: "spearman", ddof: ddof, propagate_nans: propagate_nans) end # Compute the pearson's correlation between two columns. # # @param a [Object] # Column name or Expression. # @param b [Object] # Column name or Expression. # @param ddof [Integer] # Delta degrees of freedom # # @return [Expr] def pearson_corr(a, b, ddof: 1) corr(a, b, method: "pearson", ddof: ddof) end end end
Version data entries
39 entries across 39 versions & 1 rubygems