// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/disassembler.h" #include #include "src/assembler-inl.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/disasm.h" #include "src/ic/ic.h" #include "src/macro-assembler.h" #include "src/objects-inl.h" #include "src/snapshot/serializer-common.h" #include "src/string-stream.h" namespace v8 { namespace internal { #ifdef ENABLE_DISASSEMBLER class V8NameConverter: public disasm::NameConverter { public: explicit V8NameConverter(Code* code) : code_(code) {} virtual const char* NameOfAddress(byte* pc) const; virtual const char* NameInCode(byte* addr) const; Code* code() const { return code_; } private: Code* code_; EmbeddedVector v8_buffer_; }; const char* V8NameConverter::NameOfAddress(byte* pc) const { const char* name = code_ == NULL ? NULL : code_->GetIsolate()->builtins()->Lookup(pc); if (name != NULL) { SNPrintF(v8_buffer_, "%p (%s)", static_cast(pc), name); return v8_buffer_.start(); } if (code_ != NULL) { int offs = static_cast(pc - code_->instruction_start()); // print as code offset, if it seems reasonable if (0 <= offs && offs < code_->instruction_size()) { SNPrintF(v8_buffer_, "%p <+0x%x>", static_cast(pc), offs); return v8_buffer_.start(); } } return disasm::NameConverter::NameOfAddress(pc); } const char* V8NameConverter::NameInCode(byte* addr) const { // The V8NameConverter is used for well known code, so we can "safely" // dereference pointers in generated code. return (code_ != NULL) ? reinterpret_cast(addr) : ""; } static void DumpBuffer(std::ostream* os, StringBuilder* out) { (*os) << out->Finalize() << std::endl; out->Reset(); } static const int kOutBufferSize = 2048 + String::kMaxShortPrintLength; static const int kRelocInfoPosition = 57; static int DecodeIt(Isolate* isolate, std::ostream* os, const V8NameConverter& converter, byte* begin, byte* end) { SealHandleScope shs(isolate); DisallowHeapAllocation no_alloc; ExternalReferenceEncoder ref_encoder(isolate); v8::internal::EmbeddedVector decode_buffer; v8::internal::EmbeddedVector out_buffer; StringBuilder out(out_buffer.start(), out_buffer.length()); byte* pc = begin; disasm::Disassembler d(converter); RelocIterator* it = NULL; if (converter.code() != NULL) { it = new RelocIterator(converter.code()); } else { // No relocation information when printing code stubs. } int constants = -1; // no constants being decoded at the start while (pc < end) { // First decode instruction so that we know its length. byte* prev_pc = pc; if (constants > 0) { SNPrintF(decode_buffer, "%08x constant", *reinterpret_cast(pc)); constants--; pc += 4; } else { int num_const = d.ConstantPoolSizeAt(pc); if (num_const >= 0) { SNPrintF(decode_buffer, "%08x constant pool begin (num_const = %d)", *reinterpret_cast(pc), num_const); constants = num_const; pc += 4; } else if (it != NULL && !it->done() && it->rinfo()->pc() == pc && it->rinfo()->rmode() == RelocInfo::INTERNAL_REFERENCE) { // raw pointer embedded in code stream, e.g., jump table byte* ptr = *reinterpret_cast(pc); SNPrintF( decode_buffer, "%08" V8PRIxPTR " jump table entry %4" PRIuS, reinterpret_cast(ptr), static_cast(ptr - begin)); pc += sizeof(ptr); } else { decode_buffer[0] = '\0'; pc += d.InstructionDecode(decode_buffer, pc); } } // Collect RelocInfo for this instruction (prev_pc .. pc-1) List comments(4); List pcs(1); List rmodes(1); List datas(1); if (it != NULL) { while (!it->done() && it->rinfo()->pc() < pc) { if (RelocInfo::IsComment(it->rinfo()->rmode())) { // For comments just collect the text. comments.Add(reinterpret_cast(it->rinfo()->data())); } else { // For other reloc info collect all data. pcs.Add(it->rinfo()->pc()); rmodes.Add(it->rinfo()->rmode()); datas.Add(it->rinfo()->data()); } it->next(); } } // Comments. for (int i = 0; i < comments.length(); i++) { out.AddFormatted(" %s", comments[i]); DumpBuffer(os, &out); } // Instruction address and instruction offset. out.AddFormatted("%p %4" V8PRIxPTRDIFF " ", static_cast(prev_pc), prev_pc - begin); // Instruction. out.AddFormatted("%s", decode_buffer.start()); // Print all the reloc info for this instruction which are not comments. for (int i = 0; i < pcs.length(); i++) { // Put together the reloc info RelocInfo relocinfo(pcs[i], rmodes[i], datas[i], converter.code()); // Indent the printing of the reloc info. if (i == 0) { // The first reloc info is printed after the disassembled instruction. out.AddPadding(' ', kRelocInfoPosition - out.position()); } else { // Additional reloc infos are printed on separate lines. DumpBuffer(os, &out); out.AddPadding(' ', kRelocInfoPosition); } RelocInfo::Mode rmode = relocinfo.rmode(); if (rmode == RelocInfo::DEOPT_SCRIPT_OFFSET) { out.AddFormatted(" ;; debug: deopt position, script offset '%d'", static_cast(relocinfo.data())); } else if (rmode == RelocInfo::DEOPT_INLINING_ID) { out.AddFormatted(" ;; debug: deopt position, inlining id '%d'", static_cast(relocinfo.data())); } else if (rmode == RelocInfo::DEOPT_REASON) { DeoptimizeReason reason = static_cast(relocinfo.data()); out.AddFormatted(" ;; debug: deopt reason '%s'", DeoptimizeReasonToString(reason)); } else if (rmode == RelocInfo::DEOPT_ID) { out.AddFormatted(" ;; debug: deopt index %d", static_cast(relocinfo.data())); } else if (rmode == RelocInfo::EMBEDDED_OBJECT) { HeapStringAllocator allocator; StringStream accumulator(&allocator); relocinfo.target_object()->ShortPrint(&accumulator); std::unique_ptr obj_name = accumulator.ToCString(); out.AddFormatted(" ;; object: %s", obj_name.get()); } else if (rmode == RelocInfo::EXTERNAL_REFERENCE) { const char* reference_name = ref_encoder.NameOfAddress( isolate, relocinfo.target_external_reference()); out.AddFormatted(" ;; external reference (%s)", reference_name); } else if (RelocInfo::IsCodeTarget(rmode)) { out.AddFormatted(" ;; code:"); Code* code = Code::GetCodeFromTargetAddress(relocinfo.target_address()); Code::Kind kind = code->kind(); if (code->is_inline_cache_stub()) { out.AddFormatted(" %s", Code::Kind2String(kind)); if (kind == Code::BINARY_OP_IC || kind == Code::TO_BOOLEAN_IC || kind == Code::COMPARE_IC) { InlineCacheState ic_state = IC::StateFromCode(code); out.AddFormatted(" %s", Code::ICState2String(ic_state)); } } else if (kind == Code::STUB || kind == Code::HANDLER) { // Get the STUB key and extract major and minor key. uint32_t key = code->stub_key(); uint32_t minor_key = CodeStub::MinorKeyFromKey(key); CodeStub::Major major_key = CodeStub::GetMajorKey(code); DCHECK(major_key == CodeStub::MajorKeyFromKey(key)); out.AddFormatted(" %s, %s, ", Code::Kind2String(kind), CodeStub::MajorName(major_key)); out.AddFormatted("minor: %d", minor_key); } else { out.AddFormatted(" %s", Code::Kind2String(kind)); } if (rmode == RelocInfo::CODE_TARGET_WITH_ID) { out.AddFormatted(" (id = %d)", static_cast(relocinfo.data())); } } else if (RelocInfo::IsRuntimeEntry(rmode) && isolate->deoptimizer_data() != NULL) { // A runtime entry reloinfo might be a deoptimization bailout. Address addr = relocinfo.target_address(); int id = Deoptimizer::GetDeoptimizationId(isolate, addr, Deoptimizer::EAGER); if (id == Deoptimizer::kNotDeoptimizationEntry) { id = Deoptimizer::GetDeoptimizationId(isolate, addr, Deoptimizer::LAZY); if (id == Deoptimizer::kNotDeoptimizationEntry) { id = Deoptimizer::GetDeoptimizationId(isolate, addr, Deoptimizer::SOFT); if (id == Deoptimizer::kNotDeoptimizationEntry) { out.AddFormatted(" ;; %s", RelocInfo::RelocModeName(rmode)); } else { out.AddFormatted(" ;; soft deoptimization bailout %d", id); } } else { out.AddFormatted(" ;; lazy deoptimization bailout %d", id); } } else { out.AddFormatted(" ;; deoptimization bailout %d", id); } } else { out.AddFormatted(" ;; %s", RelocInfo::RelocModeName(rmode)); } } DumpBuffer(os, &out); } // Emit comments following the last instruction (if any). if (it != NULL) { for ( ; !it->done(); it->next()) { if (RelocInfo::IsComment(it->rinfo()->rmode())) { out.AddFormatted(" %s", reinterpret_cast(it->rinfo()->data())); DumpBuffer(os, &out); } } } delete it; return static_cast(pc - begin); } int Disassembler::Decode(Isolate* isolate, std::ostream* os, byte* begin, byte* end, Code* code) { V8NameConverter v8NameConverter(code); return DecodeIt(isolate, os, v8NameConverter, begin, end); } #else // ENABLE_DISASSEMBLER int Disassembler::Decode(Isolate* isolate, std::ostream* os, byte* begin, byte* end, Code* code) { return 0; } #endif // ENABLE_DISASSEMBLER } // namespace internal } // namespace v8