/********************************************************************** hash.c - $Author: yugui $ created at: Mon Nov 22 18:51:18 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby/ruby.h" #include "ruby/st.h" #include "ruby/util.h" #ifdef __APPLE__ #include #endif static VALUE rb_hash_s_try_convert(VALUE, VALUE); #define HASH_DELETED FL_USER1 #define HASH_PROC_DEFAULT FL_USER2 VALUE rb_hash_freeze(VALUE hash) { return rb_obj_freeze(hash); } VALUE rb_cHash; static VALUE envtbl; static ID id_hash, id_yield, id_default; static int rb_any_cmp(VALUE a, VALUE b) { if (a == b) return 0; if (FIXNUM_P(a) && FIXNUM_P(b)) { return a != b; } if (TYPE(a) == T_STRING && RBASIC(a)->klass == rb_cString && TYPE(b) == T_STRING && RBASIC(b)->klass == rb_cString) { return rb_str_hash_cmp(a, b); } if (a == Qundef || b == Qundef) return -1; if (SYMBOL_P(a) && SYMBOL_P(b)) { return a != b; } return !rb_eql(a, b); } VALUE rb_hash(VALUE obj) { return rb_funcall(obj, id_hash, 0); } static int rb_any_hash(VALUE a) { VALUE hval; int hnum; switch (TYPE(a)) { case T_FIXNUM: case T_SYMBOL: hnum = (int)a; break; case T_STRING: hnum = rb_str_hash(a); break; default: hval = rb_funcall(a, id_hash, 0); if (!FIXNUM_P(hval)) { hval = rb_funcall(hval, '%', 1, INT2FIX(536870923)); } hnum = (int)FIX2LONG(hval); } hnum <<= 1; return RSHIFT(hnum, 1); } static const struct st_hash_type objhash = { rb_any_cmp, rb_any_hash, }; static const struct st_hash_type identhash = { st_numcmp, st_numhash, }; typedef int st_foreach_func(st_data_t, st_data_t, st_data_t); struct foreach_safe_arg { st_table *tbl; st_foreach_func *func; st_data_t arg; }; static int foreach_safe_i(st_data_t key, st_data_t value, struct foreach_safe_arg *arg) { int status; if (key == Qundef) return ST_CONTINUE; status = (*arg->func)(key, value, arg->arg); if (status == ST_CONTINUE) { return ST_CHECK; } return status; } void st_foreach_safe(st_table *table, int (*func)(ANYARGS), st_data_t a) { struct foreach_safe_arg arg; arg.tbl = table; arg.func = (st_foreach_func *)func; arg.arg = a; if (st_foreach(table, foreach_safe_i, (st_data_t)&arg)) { rb_raise(rb_eRuntimeError, "hash modified during iteration"); } } typedef int rb_foreach_func(VALUE, VALUE, VALUE); struct hash_foreach_arg { VALUE hash; rb_foreach_func *func; VALUE arg; }; static int hash_foreach_iter(VALUE key, VALUE value, struct hash_foreach_arg *arg) { int status; st_table *tbl; tbl = RHASH(arg->hash)->ntbl; if (key == Qundef) return ST_CONTINUE; status = (*arg->func)(key, value, arg->arg); if (RHASH(arg->hash)->ntbl != tbl) { rb_raise(rb_eRuntimeError, "rehash occurred during iteration"); } switch (status) { case ST_DELETE: st_delete_safe(tbl, (st_data_t*)&key, 0, Qundef); FL_SET(arg->hash, HASH_DELETED); case ST_CONTINUE: break; case ST_STOP: return ST_STOP; } return ST_CHECK; } static VALUE hash_foreach_ensure(VALUE hash) { RHASH(hash)->iter_lev--; if (RHASH(hash)->iter_lev == 0) { if (FL_TEST(hash, HASH_DELETED)) { st_cleanup_safe(RHASH(hash)->ntbl, Qundef); FL_UNSET(hash, HASH_DELETED); } } return 0; } static VALUE hash_foreach_call(struct hash_foreach_arg *arg) { if (st_foreach(RHASH(arg->hash)->ntbl, hash_foreach_iter, (st_data_t)arg)) { rb_raise(rb_eRuntimeError, "hash modified during iteration"); } return Qnil; } void rb_hash_foreach(VALUE hash, int (*func)(ANYARGS), VALUE farg) { struct hash_foreach_arg arg; if (!RHASH(hash)->ntbl) return; RHASH(hash)->iter_lev++; arg.hash = hash; arg.func = (rb_foreach_func *)func; arg.arg = farg; rb_ensure(hash_foreach_call, (VALUE)&arg, hash_foreach_ensure, hash); } static VALUE hash_alloc(VALUE klass) { NEWOBJ(hash, struct RHash); OBJSETUP(hash, klass, T_HASH); hash->ifnone = Qnil; return (VALUE)hash; } VALUE rb_hash_new(void) { return hash_alloc(rb_cHash); } VALUE rb_hash_dup(VALUE hash) { NEWOBJ(ret, struct RHash); DUPSETUP(ret, hash); if (!RHASH_EMPTY_P(hash)) ret->ntbl = st_copy(RHASH(hash)->ntbl); if (FL_TEST(hash, HASH_PROC_DEFAULT)) { FL_SET(ret, HASH_PROC_DEFAULT); } ret->ifnone = RHASH(hash)->ifnone; return (VALUE)ret; } static void rb_hash_modify_check(VALUE hash) { if (OBJ_FROZEN(hash)) rb_error_frozen("hash"); if (!OBJ_UNTRUSTED(hash) && rb_safe_level() >= 4) rb_raise(rb_eSecurityError, "Insecure: can't modify hash"); } struct st_table * rb_hash_tbl(VALUE hash) { if (!RHASH(hash)->ntbl) { RHASH(hash)->ntbl = st_init_table(&objhash); } return RHASH(hash)->ntbl; } static void rb_hash_modify(VALUE hash) { rb_hash_modify_check(hash); rb_hash_tbl(hash); } /* * call-seq: * Hash.new => hash * Hash.new(obj) => aHash * Hash.new {|hash, key| block } => aHash * * Returns a new, empty hash. If this hash is subsequently accessed by * a key that doesn't correspond to a hash entry, the value returned * depends on the style of new used to create the hash. In * the first form, the access returns nil. If * obj is specified, this single object will be used for * all default values. If a block is specified, it will be * called with the hash object and the key, and should return the * default value. It is the block's responsibility to store the value * in the hash if required. * * h = Hash.new("Go Fish") * h["a"] = 100 * h["b"] = 200 * h["a"] #=> 100 * h["c"] #=> "Go Fish" * # The following alters the single default object * h["c"].upcase! #=> "GO FISH" * h["d"] #=> "GO FISH" * h.keys #=> ["a", "b"] * * # While this creates a new default object each time * h = Hash.new { |hash, key| hash[key] = "Go Fish: #{key}" } * h["c"] #=> "Go Fish: c" * h["c"].upcase! #=> "GO FISH: C" * h["d"] #=> "Go Fish: d" * h.keys #=> ["c", "d"] * */ static VALUE rb_hash_initialize(int argc, VALUE *argv, VALUE hash) { VALUE ifnone; rb_hash_modify(hash); if (rb_block_given_p()) { if (argc > 0) { rb_raise(rb_eArgError, "wrong number of arguments"); } RHASH(hash)->ifnone = rb_block_proc(); FL_SET(hash, HASH_PROC_DEFAULT); } else { rb_scan_args(argc, argv, "01", &ifnone); RHASH(hash)->ifnone = ifnone; } return hash; } /* * call-seq: * Hash[ [key =>|, value]* ] => hash * * Creates a new hash populated with the given objects. Equivalent to * the literal { key, value, ... }. Keys and * values occur in pairs, so there must be an even number of arguments. * * Hash["a", 100, "b", 200] #=> {"a"=>100, "b"=>200} * Hash["a" => 100, "b" => 200] #=> {"a"=>100, "b"=>200} * { "a" => 100, "b" => 200 } #=> {"a"=>100, "b"=>200} */ static VALUE rb_hash_s_create(int argc, VALUE *argv, VALUE klass) { VALUE hash, tmp; int i; if (argc == 1) { tmp = rb_hash_s_try_convert(Qnil, argv[0]); if (!NIL_P(tmp)) { hash = hash_alloc(klass); if (RHASH(tmp)->ntbl) { RHASH(hash)->ntbl = st_copy(RHASH(tmp)->ntbl); } return hash; } tmp = rb_check_array_type(argv[0]); if (!NIL_P(tmp)) { long i; hash = hash_alloc(klass); for (i = 0; i < RARRAY_LEN(tmp); ++i) { VALUE v = rb_check_array_type(RARRAY_PTR(tmp)[i]); VALUE key, val = Qnil; if (NIL_P(v)) continue; switch (RARRAY_LEN(v)) { case 2: val = RARRAY_PTR(v)[1]; case 1: key = RARRAY_PTR(v)[0]; rb_hash_aset(hash, key, val); } } return hash; } } if (argc % 2 != 0) { rb_raise(rb_eArgError, "odd number of arguments for Hash"); } hash = hash_alloc(klass); for (i=0; i hash or nil * * Try to convert obj into a hash, using to_hash method. * Returns converted hash or nil if obj cannot be converted * for any reason. * * Hash.try_convert({1=>2}) # => {1=>2} * Hash.try_convert("1=>2") # => nil */ static VALUE rb_hash_s_try_convert(VALUE dummy, VALUE hash) { return rb_check_convert_type(hash, T_HASH, "Hash", "to_hash"); } static int rb_hash_rehash_i(VALUE key, VALUE value, st_table *tbl) { if (key != Qundef) st_insert(tbl, key, value); return ST_CONTINUE; } /* * call-seq: * hsh.rehash -> hsh * * Rebuilds the hash based on the current hash values for each key. If * values of key objects have changed since they were inserted, this * method will reindex hsh. If Hash#rehash is * called while an iterator is traversing the hash, an * RuntimeError will be raised in the iterator. * * a = [ "a", "b" ] * c = [ "c", "d" ] * h = { a => 100, c => 300 } * h[a] #=> 100 * a[0] = "z" * h[a] #=> nil * h.rehash #=> {["z", "b"]=>100, ["c", "d"]=>300} * h[a] #=> 100 */ static VALUE rb_hash_rehash(VALUE hash) { st_table *tbl; if (RHASH(hash)->iter_lev > 0) { rb_raise(rb_eRuntimeError, "rehash during iteration"); } rb_hash_modify_check(hash); if (!RHASH(hash)->ntbl) return hash; tbl = st_init_table_with_size(RHASH(hash)->ntbl->type, RHASH(hash)->ntbl->num_entries); rb_hash_foreach(hash, rb_hash_rehash_i, (st_data_t)tbl); st_free_table(RHASH(hash)->ntbl); RHASH(hash)->ntbl = tbl; return hash; } /* * call-seq: * hsh[key] => value * * Element Reference---Retrieves the value object corresponding * to the key object. If not found, returns the a default value (see * Hash::new for details). * * h = { "a" => 100, "b" => 200 } * h["a"] #=> 100 * h["c"] #=> nil * */ VALUE rb_hash_aref(VALUE hash, VALUE key) { VALUE val; if (!RHASH(hash)->ntbl || !st_lookup(RHASH(hash)->ntbl, key, &val)) { return rb_funcall(hash, id_default, 1, key); } return val; } VALUE rb_hash_lookup2(VALUE hash, VALUE key, VALUE def) { VALUE val; if (!RHASH(hash)->ntbl || !st_lookup(RHASH(hash)->ntbl, key, &val)) { return def; /* without Hash#default */ } return val; } VALUE rb_hash_lookup(VALUE hash, VALUE key) { return rb_hash_lookup2(hash, key, Qnil); } /* * call-seq: * hsh.fetch(key [, default] ) => obj * hsh.fetch(key) {| key | block } => obj * * Returns a value from the hash for the given key. If the key can't be * found, there are several options: With no other arguments, it will * raise an KeyError exception; if default is * given, then that will be returned; if the optional code block is * specified, then that will be run and its result returned. * * h = { "a" => 100, "b" => 200 } * h.fetch("a") #=> 100 * h.fetch("z", "go fish") #=> "go fish" * h.fetch("z") { |el| "go fish, #{el}"} #=> "go fish, z" * * The following example shows that an exception is raised if the key * is not found and a default value is not supplied. * * h = { "a" => 100, "b" => 200 } * h.fetch("z") * * produces: * * prog.rb:2:in `fetch': key not found (KeyError) * from prog.rb:2 * */ static VALUE rb_hash_fetch_m(int argc, VALUE *argv, VALUE hash) { VALUE key, if_none; VALUE val; long block_given; rb_scan_args(argc, argv, "11", &key, &if_none); block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } if (!RHASH(hash)->ntbl || !st_lookup(RHASH(hash)->ntbl, key, &val)) { if (block_given) return rb_yield(key); if (argc == 1) { rb_raise(rb_eKeyError, "key not found"); } return if_none; } return val; } VALUE rb_hash_fetch(VALUE hash, VALUE key) { return rb_hash_fetch_m(1, &key, hash); } /* * call-seq: * hsh.default(key=nil) => obj * * Returns the default value, the value that would be returned by * hsh[key] if key did not exist in hsh. * See also Hash::new and Hash#default=. * * h = Hash.new #=> {} * h.default #=> nil * h.default(2) #=> nil * * h = Hash.new("cat") #=> {} * h.default #=> "cat" * h.default(2) #=> "cat" * * h = Hash.new {|h,k| h[k] = k.to_i*10} #=> {} * h.default #=> nil * h.default(2) #=> 20 */ static VALUE rb_hash_default(int argc, VALUE *argv, VALUE hash) { VALUE key; rb_scan_args(argc, argv, "01", &key); if (FL_TEST(hash, HASH_PROC_DEFAULT)) { if (argc == 0) return Qnil; return rb_funcall(RHASH(hash)->ifnone, id_yield, 2, hash, key); } return RHASH(hash)->ifnone; } /* * call-seq: * hsh.default = obj => obj * * Sets the default value, the value returned for a key that does not * exist in the hash. It is not possible to set the a default to a * Proc that will be executed on each key lookup. * * h = { "a" => 100, "b" => 200 } * h.default = "Go fish" * h["a"] #=> 100 * h["z"] #=> "Go fish" * # This doesn't do what you might hope... * h.default = proc do |hash, key| * hash[key] = key + key * end * h[2] #=> # * h["cat"] #=> # */ static VALUE rb_hash_set_default(VALUE hash, VALUE ifnone) { rb_hash_modify(hash); RHASH(hash)->ifnone = ifnone; FL_UNSET(hash, HASH_PROC_DEFAULT); return ifnone; } /* * call-seq: * hsh.default_proc -> anObject * * If Hash::new was invoked with a block, return that * block, otherwise return nil. * * h = Hash.new {|h,k| h[k] = k*k } #=> {} * p = h.default_proc #=> # * a = [] #=> [] * p.call(a, 2) * a #=> [nil, nil, 4] */ static VALUE rb_hash_default_proc(VALUE hash) { if (FL_TEST(hash, HASH_PROC_DEFAULT)) { return RHASH(hash)->ifnone; } return Qnil; } VALUE rb_obj_is_proc(VALUE proc); /* * call-seq: * hsh.default_proc = proc_obj => proc_obj * * Sets the default proc to be executed on each key lookup. * * h.default_proc = proc do |hash, key| * hash[key] = key + key * end * h[2] #=> 4 * h["cat"] #=> "catcat" */ static VALUE rb_hash_set_default_proc(VALUE hash, VALUE proc) { VALUE b; rb_hash_modify(hash); b = rb_check_convert_type(proc, T_DATA, "Proc", "to_proc"); if (NIL_P(b) || !rb_obj_is_proc(b)) { rb_raise(rb_eTypeError, "wrong default_proc type %s (expected Proc)", rb_obj_classname(proc)); } proc = b; RHASH(hash)->ifnone = proc; FL_SET(hash, HASH_PROC_DEFAULT); return proc; } static int key_i(VALUE key, VALUE value, VALUE *args) { if (rb_equal(value, args[0])) { args[1] = key; return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hsh.key(value) => key * * Returns the key for a given value. If not found, returns nil. * * h = { "a" => 100, "b" => 200 } * h.key(200) #=> "b" * h.key(999) #=> nil * */ static VALUE rb_hash_key(VALUE hash, VALUE value) { VALUE args[2]; args[0] = value; args[1] = Qnil; rb_hash_foreach(hash, key_i, (st_data_t)args); return args[1]; } /* :nodoc: */ static VALUE rb_hash_index(VALUE hash, VALUE value) { rb_warn("Hash#index is deprecated; use Hash#key"); return rb_hash_key(hash, value); } static VALUE rb_hash_delete_key(VALUE hash, VALUE key) { st_data_t ktmp = (st_data_t)key, val; if (!RHASH(hash)->ntbl) return Qundef; if (RHASH(hash)->iter_lev > 0) { if (st_delete_safe(RHASH(hash)->ntbl, &ktmp, &val, Qundef)) { FL_SET(hash, HASH_DELETED); return (VALUE)val; } } else if (st_delete(RHASH(hash)->ntbl, &ktmp, &val)) return (VALUE)val; return Qundef; } /* * call-seq: * hsh.delete(key) => value * hsh.delete(key) {| key | block } => value * * Deletes and returns a key-value pair from hsh whose key is * equal to key. If the key is not found, returns the * default value. If the optional code block is given and the * key is not found, pass in the key and return the result of * block. * * h = { "a" => 100, "b" => 200 } * h.delete("a") #=> 100 * h.delete("z") #=> nil * h.delete("z") { |el| "#{el} not found" } #=> "z not found" * */ VALUE rb_hash_delete(VALUE hash, VALUE key) { VALUE val; rb_hash_modify(hash); val = rb_hash_delete_key(hash, key); if (val != Qundef) return val; if (rb_block_given_p()) { return rb_yield(key); } return Qnil; } struct shift_var { VALUE key; VALUE val; }; static int shift_i(VALUE key, VALUE value, struct shift_var *var) { if (key == Qundef) return ST_CONTINUE; if (var->key != Qundef) return ST_STOP; var->key = key; var->val = value; return ST_DELETE; } static int shift_i_safe(VALUE key, VALUE value, struct shift_var *var) { if (key == Qundef) return ST_CONTINUE; var->key = key; var->val = value; return ST_STOP; } /* * call-seq: * hsh.shift -> anArray or obj * * Removes a key-value pair from hsh and returns it as the * two-item array [ key, value ], or * the hash's default value if the hash is empty. * * h = { 1 => "a", 2 => "b", 3 => "c" } * h.shift #=> [1, "a"] * h #=> {2=>"b", 3=>"c"} */ static VALUE rb_hash_shift(VALUE hash) { struct shift_var var; rb_hash_modify(hash); var.key = Qundef; rb_hash_foreach(hash, RHASH(hash)->iter_lev > 0 ? shift_i_safe : shift_i, (st_data_t)&var); if (var.key != Qundef) { if (RHASH(hash)->iter_lev > 0) { rb_hash_delete_key(hash, var.key); } return rb_assoc_new(var.key, var.val); } else if (FL_TEST(hash, HASH_PROC_DEFAULT)) { return rb_funcall(RHASH(hash)->ifnone, id_yield, 2, hash, Qnil); } else { return RHASH(hash)->ifnone; } } static int delete_if_i(VALUE key, VALUE value, VALUE hash) { if (key == Qundef) return ST_CONTINUE; if (RTEST(rb_yield_values(2, key, value))) { rb_hash_delete_key(hash, key); } return ST_CONTINUE; } /* * call-seq: * hsh.delete_if {| key, value | block } -> hsh * * Deletes every key-value pair from hsh for which block * evaluates to true. * * h = { "a" => 100, "b" => 200, "c" => 300 } * h.delete_if {|key, value| key >= "b" } #=> {"a"=>100} * */ VALUE rb_hash_delete_if(VALUE hash) { RETURN_ENUMERATOR(hash, 0, 0); rb_hash_modify(hash); rb_hash_foreach(hash, delete_if_i, hash); return hash; } /* * call-seq: * hsh.reject! {| key, value | block } -> hsh or nil * * Equivalent to Hash#delete_if, but returns * nil if no changes were made. */ VALUE rb_hash_reject_bang(VALUE hash) { int n; RETURN_ENUMERATOR(hash, 0, 0); if (!RHASH(hash)->ntbl) return Qnil; n = RHASH(hash)->ntbl->num_entries; rb_hash_delete_if(hash); if (n == RHASH(hash)->ntbl->num_entries) return Qnil; return hash; } /* * call-seq: * hsh.reject {| key, value | block } -> a_hash * * Same as Hash#delete_if, but works on (and returns) a * copy of the hsh. Equivalent to * hsh.dup.delete_if. * */ static VALUE rb_hash_reject(VALUE hash) { return rb_hash_delete_if(rb_obj_dup(hash)); } /* * call-seq: * hsh.values_at(key, ...) => array * * Return an array containing the values associated with the given keys. * Also see Hash.select. * * h = { "cat" => "feline", "dog" => "canine", "cow" => "bovine" } * h.values_at("cow", "cat") #=> ["bovine", "feline"] */ VALUE rb_hash_values_at(int argc, VALUE *argv, VALUE hash) { VALUE result = rb_ary_new2(argc); long i; for (i=0; i a_hash * * Returns a new hash consisting of entries which the block returns true. * * h = { "a" => 100, "b" => 200, "c" => 300 } * h.select {|k,v| k > "a"} #=> {"b" => 200, "c" => 300} * h.select {|k,v| v < 200} #=> {"a" => 100} */ VALUE rb_hash_select(VALUE hash) { VALUE result; RETURN_ENUMERATOR(hash, 0, 0); result = rb_hash_new(); rb_hash_foreach(hash, select_i, result); return result; } static int clear_i(VALUE key, VALUE value, VALUE dummy) { return ST_DELETE; } /* * call-seq: * hsh.clear -> hsh * * Removes all key-value pairs from hsh. * * h = { "a" => 100, "b" => 200 } #=> {"a"=>100, "b"=>200} * h.clear #=> {} * */ static VALUE rb_hash_clear(VALUE hash) { rb_hash_modify_check(hash); if (!RHASH(hash)->ntbl) return hash; if (RHASH(hash)->ntbl->num_entries > 0) { if (RHASH(hash)->iter_lev > 0) rb_hash_foreach(hash, clear_i, 0); else st_clear(RHASH(hash)->ntbl); } return hash; } /* * call-seq: * hsh[key] = value => value * hsh.store(key, value) => value * * Element Assignment---Associates the value given by * value with the key given by key. * key should not have its value changed while it is in * use as a key (a String passed as a key will be * duplicated and frozen). * * h = { "a" => 100, "b" => 200 } * h["a"] = 9 * h["c"] = 4 * h #=> {"a"=>9, "b"=>200, "c"=>4} * */ VALUE rb_hash_aset(VALUE hash, VALUE key, VALUE val) { rb_hash_modify(hash); if (RHASH(hash)->ntbl->type == &identhash || TYPE(key) != T_STRING || st_lookup(RHASH(hash)->ntbl, key, 0)) { st_insert(RHASH(hash)->ntbl, key, val); } else { st_add_direct(RHASH(hash)->ntbl, rb_str_new4(key), val); } return val; } static int replace_i(VALUE key, VALUE val, VALUE hash) { if (key != Qundef) { rb_hash_aset(hash, key, val); } return ST_CONTINUE; } /* * call-seq: * hsh.replace(other_hash) -> hsh * * Replaces the contents of hsh with the contents of * other_hash. * * h = { "a" => 100, "b" => 200 } * h.replace({ "c" => 300, "d" => 400 }) #=> {"c"=>300, "d"=>400} * */ static VALUE rb_hash_replace(VALUE hash, VALUE hash2) { hash2 = to_hash(hash2); if (hash == hash2) return hash; rb_hash_clear(hash); rb_hash_foreach(hash2, replace_i, hash); RHASH(hash)->ifnone = RHASH(hash2)->ifnone; if (FL_TEST(hash2, HASH_PROC_DEFAULT)) { FL_SET(hash, HASH_PROC_DEFAULT); } else { FL_UNSET(hash, HASH_PROC_DEFAULT); } return hash; } /* * call-seq: * hsh.length => fixnum * hsh.size => fixnum * * Returns the number of key-value pairs in the hash. * * h = { "d" => 100, "a" => 200, "v" => 300, "e" => 400 } * h.length #=> 4 * h.delete("a") #=> 200 * h.length #=> 3 */ static VALUE rb_hash_size(VALUE hash) { if (!RHASH(hash)->ntbl) return INT2FIX(0); return INT2FIX(RHASH(hash)->ntbl->num_entries); } /* * call-seq: * hsh.empty? => true or false * * Returns true if hsh contains no key-value pairs. * * {}.empty? #=> true * */ static VALUE rb_hash_empty_p(VALUE hash) { return RHASH_EMPTY_P(hash) ? Qtrue : Qfalse; } static int each_value_i(VALUE key, VALUE value) { if (key == Qundef) return ST_CONTINUE; rb_yield(value); return ST_CONTINUE; } /* * call-seq: * hsh.each_value {| value | block } -> hsh * * Calls block once for each key in hsh, passing the * value as a parameter. * * h = { "a" => 100, "b" => 200 } * h.each_value {|value| puts value } * * produces: * * 100 * 200 */ static VALUE rb_hash_each_value(VALUE hash) { RETURN_ENUMERATOR(hash, 0, 0); rb_hash_foreach(hash, each_value_i, 0); return hash; } static int each_key_i(VALUE key, VALUE value) { if (key == Qundef) return ST_CONTINUE; rb_yield(key); return ST_CONTINUE; } /* * call-seq: * hsh.each_key {| key | block } -> hsh * * Calls block once for each key in hsh, passing the key * as a parameter. * * h = { "a" => 100, "b" => 200 } * h.each_key {|key| puts key } * * produces: * * a * b */ static VALUE rb_hash_each_key(VALUE hash) { RETURN_ENUMERATOR(hash, 0, 0); rb_hash_foreach(hash, each_key_i, 0); return hash; } static int each_pair_i(VALUE key, VALUE value) { if (key == Qundef) return ST_CONTINUE; rb_yield(rb_assoc_new(key, value)); return ST_CONTINUE; } /* * call-seq: * hsh.each {| key, value | block } -> hsh * hsh.each_pair {| key, value | block } -> hsh * * Calls block once for each key in hsh, passing the key-value * pair as parameters. * * h = { "a" => 100, "b" => 200 } * h.each {|key, value| puts "#{key} is #{value}" } * * produces: * * a is 100 * b is 200 * */ static VALUE rb_hash_each_pair(VALUE hash) { RETURN_ENUMERATOR(hash, 0, 0); rb_hash_foreach(hash, each_pair_i, 0); return hash; } static int to_a_i(VALUE key, VALUE value, VALUE ary) { if (key == Qundef) return ST_CONTINUE; rb_ary_push(ary, rb_assoc_new(key, value)); return ST_CONTINUE; } /* * call-seq: * hsh.to_a -> array * * Converts hsh to a nested array of [ key, * value ] arrays. * * h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 } * h.to_a #=> [["c", 300], ["a", 100], ["d", 400]] */ static VALUE rb_hash_to_a(VALUE hash) { VALUE ary; ary = rb_ary_new(); rb_hash_foreach(hash, to_a_i, ary); OBJ_INFECT(ary, hash); return ary; } static int inspect_i(VALUE key, VALUE value, VALUE str) { VALUE str2; if (key == Qundef) return ST_CONTINUE; if (RSTRING_LEN(str) > 1) { rb_str_cat2(str, ", "); } str2 = rb_inspect(key); rb_str_buf_append(str, str2); OBJ_INFECT(str, str2); rb_str_buf_cat2(str, "=>"); str2 = rb_inspect(value); rb_str_buf_append(str, str2); OBJ_INFECT(str, str2); return ST_CONTINUE; } static VALUE inspect_hash(VALUE hash, VALUE dummy, int recur) { VALUE str; if (recur) return rb_usascii_str_new2("{...}"); str = rb_str_buf_new2("{"); rb_hash_foreach(hash, inspect_i, str); rb_str_buf_cat2(str, "}"); OBJ_INFECT(str, hash); return str; } /* * call-seq: * hsh.to_s => string * hsh.inspect => string * * Return the contents of this hash as a string. * * h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 } * h.to_s #=> "{\"c\"=>300, \"a\"=>100, \"d\"=>400}" */ static VALUE rb_hash_inspect(VALUE hash) { if (RHASH_EMPTY_P(hash)) return rb_usascii_str_new2("{}"); return rb_exec_recursive(inspect_hash, hash, 0); } /* * call-seq: * hsh.to_hash => hsh * * Returns self. */ static VALUE rb_hash_to_hash(VALUE hash) { return hash; } static int keys_i(VALUE key, VALUE value, VALUE ary) { if (key == Qundef) return ST_CONTINUE; rb_ary_push(ary, key); return ST_CONTINUE; } /* * call-seq: * hsh.keys => array * * Returns a new array populated with the keys from this hash. See also * Hash#values. * * h = { "a" => 100, "b" => 200, "c" => 300, "d" => 400 } * h.keys #=> ["a", "b", "c", "d"] * */ static VALUE rb_hash_keys(VALUE hash) { VALUE ary; ary = rb_ary_new(); rb_hash_foreach(hash, keys_i, ary); return ary; } static int values_i(VALUE key, VALUE value, VALUE ary) { if (key == Qundef) return ST_CONTINUE; rb_ary_push(ary, value); return ST_CONTINUE; } /* * call-seq: * hsh.values => array * * Returns a new array populated with the values from hsh. See * also Hash#keys. * * h = { "a" => 100, "b" => 200, "c" => 300 } * h.values #=> [100, 200, 300] * */ static VALUE rb_hash_values(VALUE hash) { VALUE ary; ary = rb_ary_new(); rb_hash_foreach(hash, values_i, ary); return ary; } /* * call-seq: * hsh.has_key?(key) => true or false * hsh.include?(key) => true or false * hsh.key?(key) => true or false * hsh.member?(key) => true or false * * Returns true if the given key is present in hsh. * * h = { "a" => 100, "b" => 200 } * h.has_key?("a") #=> true * h.has_key?("z") #=> false * */ static VALUE rb_hash_has_key(VALUE hash, VALUE key) { if (!RHASH(hash)->ntbl) return Qfalse; if (st_lookup(RHASH(hash)->ntbl, key, 0)) { return Qtrue; } return Qfalse; } static int rb_hash_search_value(VALUE key, VALUE value, VALUE *data) { if (key == Qundef) return ST_CONTINUE; if (rb_equal(value, data[1])) { data[0] = Qtrue; return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hsh.has_value?(value) => true or false * hsh.value?(value) => true or false * * Returns true if the given value is present for some key * in hsh. * * h = { "a" => 100, "b" => 200 } * h.has_value?(100) #=> true * h.has_value?(999) #=> false */ static VALUE rb_hash_has_value(VALUE hash, VALUE val) { VALUE data[2]; data[0] = Qfalse; data[1] = val; rb_hash_foreach(hash, rb_hash_search_value, (st_data_t)data); return data[0]; } struct equal_data { VALUE result; st_table *tbl; int eql; }; static int eql_i(VALUE key, VALUE val1, struct equal_data *data) { VALUE val2; if (key == Qundef) return ST_CONTINUE; if (!st_lookup(data->tbl, key, &val2)) { data->result = Qfalse; return ST_STOP; } if (!(data->eql ? rb_eql(val1, val2) : rb_equal(val1, val2))) { data->result = Qfalse; return ST_STOP; } return ST_CONTINUE; } static VALUE recursive_eql(VALUE hash, VALUE dt, int recur) { struct equal_data *data; if (recur) return Qfalse; data = (struct equal_data*)dt; data->result = Qtrue; rb_hash_foreach(hash, eql_i, (st_data_t)data); return data->result; } static VALUE hash_equal(VALUE hash1, VALUE hash2, int eql) { struct equal_data data; if (hash1 == hash2) return Qtrue; if (TYPE(hash2) != T_HASH) { if (!rb_respond_to(hash2, rb_intern("to_hash"))) { return Qfalse; } if (eql) return rb_eql(hash2, hash1); else return rb_equal(hash2, hash1); } if (RHASH_SIZE(hash1) != RHASH_SIZE(hash2)) return Qfalse; if (!RHASH(hash1)->ntbl || !RHASH(hash2)->ntbl) return Qtrue; if (RHASH(hash1)->ntbl->type != RHASH(hash2)->ntbl->type) return Qfalse; #if 0 if (!(rb_equal(RHASH(hash1)->ifnone, RHASH(hash2)->ifnone) && FL_TEST(hash1, HASH_PROC_DEFAULT) == FL_TEST(hash2, HASH_PROC_DEFAULT))) return Qfalse; #endif data.tbl = RHASH(hash2)->ntbl; data.eql = eql; return rb_exec_recursive(recursive_eql, hash1, (VALUE)&data); } /* * call-seq: * hsh == other_hash => true or false * * Equality---Two hashes are equal if they each contain the same number * of keys and if each key-value pair is equal to (according to * Object#==) the corresponding elements in the other * hash. * * h1 = { "a" => 1, "c" => 2 } * h2 = { 7 => 35, "c" => 2, "a" => 1 } * h3 = { "a" => 1, "c" => 2, 7 => 35 } * h4 = { "a" => 1, "d" => 2, "f" => 35 } * h1 == h2 #=> false * h2 == h3 #=> true * h3 == h4 #=> false * */ static VALUE rb_hash_equal(VALUE hash1, VALUE hash2) { return hash_equal(hash1, hash2, Qfalse); } /* * call-seq: * hash.eql?(other) -> true or false * * Returns true if hash and other are * both hashes with the same content. */ static VALUE rb_hash_eql(VALUE hash1, VALUE hash2) { return hash_equal(hash1, hash2, Qtrue); } static int hash_i(VALUE key, VALUE val, int *hval) { if (key == Qundef) return ST_CONTINUE; *hval ^= rb_hash(key); *hval ^= rb_hash(val); return ST_CONTINUE; } static VALUE recursive_hash(VALUE hash, VALUE dummy, int recur) { int hval; if (recur) { return LONG2FIX(0); } if (!RHASH(hash)->ntbl) return LONG2FIX(0); hval = RHASH(hash)->ntbl->num_entries; rb_hash_foreach(hash, hash_i, (st_data_t)&hval); return INT2FIX(hval); } /* * call-seq: * array.hash -> fixnum * * Compute a hash-code for this array. Two arrays with the same content * will have the same hash code (and will compare using eql?). */ static VALUE rb_hash_hash(VALUE hash) { return rb_exec_recursive(recursive_hash, hash, 0); } static int rb_hash_invert_i(VALUE key, VALUE value, VALUE hash) { if (key == Qundef) return ST_CONTINUE; rb_hash_aset(hash, value, key); return ST_CONTINUE; } /* * call-seq: * hsh.invert -> aHash * * Returns a new hash created by using hsh's values as keys, and * the keys as values. * * h = { "n" => 100, "m" => 100, "y" => 300, "d" => 200, "a" => 0 } * h.invert #=> {0=>"a", 100=>"m", 200=>"d", 300=>"y"} * */ static VALUE rb_hash_invert(VALUE hash) { VALUE h = rb_hash_new(); rb_hash_foreach(hash, rb_hash_invert_i, h); return h; } static int rb_hash_update_i(VALUE key, VALUE value, VALUE hash) { if (key == Qundef) return ST_CONTINUE; rb_hash_aset(hash, key, value); return ST_CONTINUE; } static int rb_hash_update_block_i(VALUE key, VALUE value, VALUE hash) { if (key == Qundef) return ST_CONTINUE; if (rb_hash_has_key(hash, key)) { value = rb_yield_values(3, key, rb_hash_aref(hash, key), value); } rb_hash_aset(hash, key, value); return ST_CONTINUE; } /* * call-seq: * hsh.merge!(other_hash) => hsh * hsh.update(other_hash) => hsh * hsh.merge!(other_hash){|key, oldval, newval| block} => hsh * hsh.update(other_hash){|key, oldval, newval| block} => hsh * * Adds the contents of other_hash to hsh. If no * block is specified entries with duplicate keys are overwritten * with the values from other_hash, otherwise the value * of each duplicate key is determined by calling the block with * the key, its value in hsh and its value in other_hash. * * h1 = { "a" => 100, "b" => 200 } * h2 = { "b" => 254, "c" => 300 } * h1.merge!(h2) #=> {"a"=>100, "b"=>254, "c"=>300} * * h1 = { "a" => 100, "b" => 200 } * h2 = { "b" => 254, "c" => 300 } * h1.merge!(h2) { |key, v1, v2| v1 } * #=> {"a"=>100, "b"=>200, "c"=>300} */ static VALUE rb_hash_update(VALUE hash1, VALUE hash2) { hash2 = to_hash(hash2); if (rb_block_given_p()) { rb_hash_foreach(hash2, rb_hash_update_block_i, hash1); } else { rb_hash_foreach(hash2, rb_hash_update_i, hash1); } return hash1; } /* * call-seq: * hsh.merge(other_hash) -> a_hash * hsh.merge(other_hash){|key, oldval, newval| block} -> a_hash * * Returns a new hash containing the contents of other_hash and * the contents of hsh, overwriting entries in hsh with * duplicate keys with those from other_hash. * * h1 = { "a" => 100, "b" => 200 } * h2 = { "b" => 254, "c" => 300 } * h1.merge(h2) #=> {"a"=>100, "b"=>254, "c"=>300} * h1 #=> {"a"=>100, "b"=>200} * */ static VALUE rb_hash_merge(VALUE hash1, VALUE hash2) { return rb_hash_update(rb_obj_dup(hash1), hash2); } static int assoc_i(VALUE key, VALUE val, VALUE *args) { if (key == Qundef) return ST_CONTINUE; if (RTEST(rb_equal(args[0], key))) { args[1] = rb_assoc_new(key, val); return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hash.assoc(obj) -> an_array or nil * * Searches through the hash comparing _obj_ with the key using ==. * Returns the key-value pair (two elements array) or +nil+ * if no match is found. See Array#assoc. * * h = {"colors" => ["red", "blue", "green"], * "letters" => ["a", "b", "c" ]} * h.assoc("letters") #=> ["letters", ["a", "b", "c"]] * h.assoc("foo") #=> nil */ VALUE rb_hash_assoc(VALUE hash, VALUE obj) { VALUE args[2]; args[0] = obj; args[1] = Qnil; rb_hash_foreach(hash, assoc_i, (st_data_t)args); return args[1]; } static int rassoc_i(VALUE key, VALUE val, VALUE *args) { if (key == Qundef) return ST_CONTINUE; if (RTEST(rb_equal(args[0], val))) { args[1] = rb_assoc_new(key, val); return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hash.rassoc(key) -> an_array or nil * * Searches through the hash comparing _obj_ with the value using ==. * Returns the first key-value pair (two elements array) that matches. See * also Array#rassoc. * * a = {1=> "one", 2 => "two", 3 => "three", "ii" => "two"} * a.rassoc("two") #=> [2, "two"] * a.rassoc("four") #=> nil */ VALUE rb_hash_rassoc(VALUE hash, VALUE obj) { VALUE args[2]; args[0] = obj; args[1] = Qnil; rb_hash_foreach(hash, rassoc_i, (st_data_t)args); return args[1]; } /* * call-seq: * hash.flatten -> an_array * hash.flatten(level) -> an_array * * Returns a new array that is a one-dimensional flattening of this * hash. That is, for every key or value that is an array, extract * its elements into the new array. Unlike Array#flatten, this * method does not flatten recursively by default. If the optional * level argument determines the level of recursion to flatten. * * a = {1=> "one", 2 => [2,"two"], 3 => "three"} * a.flatten # => [1, "one", 2, [2, "two"], 3, "three"] * a.flatten(2) # => [1, "one", 2, 2, "two", 3, "three"] */ static VALUE rb_hash_flatten(int argc, VALUE *argv, VALUE hash) { VALUE ary, tmp; ary = rb_hash_to_a(hash); if (argc == 0) { argc = 1; tmp = INT2FIX(1); argv = &tmp; } rb_funcall2(ary, rb_intern("flatten!"), argc, argv); return ary; } /* * call-seq: * hsh.compare_by_identity => hsh * * Makes hsh to compare its keys by their identity, i.e. it * will consider exact same objects as same keys. * * h1 = { "a" => 100, "b" => 200, :c => "c" } * h1["a"] #=> 100 * h1.compare_by_identity * h1.compare_by_identity? #=> true * h1["a"] #=> nil # different objects. * h1[:c] #=> "c" # same symbols are all same. * */ static VALUE rb_hash_compare_by_id(VALUE hash) { rb_hash_modify(hash); RHASH(hash)->ntbl->type = &identhash; rb_hash_rehash(hash); return hash; } /* * call-seq: * hsh.compare_by_identity? => true or false * * Returns true if hsh will compare its keys by * their identity. Also see Hash#compare_by_identity. * */ static VALUE rb_hash_compare_by_id_p(VALUE hash) { if (!RHASH(hash)->ntbl) return Qfalse; if (RHASH(hash)->ntbl->type == &identhash) { return Qtrue; } return Qfalse; } static int path_tainted = -1; //RHO //static char **origenviron; static char * __environ = ""; static char ** environ = &__environ; #ifdef _WIN32 #define GET_ENVIRON(e) ""//(e = rb_w32_get_environ()) #define FREE_ENVIRON(e) //rb_w32_free_environ(e) //static char **my_environ; //#undef environ //#define environ my_environ #elif defined(__APPLE__) //#undef environ //#define environ (*_NSGetEnviron()) #define GET_ENVIRON(e) (e) #define FREE_ENVIRON(e) #else //extern char **environ; #define GET_ENVIRON(e) (e) #define FREE_ENVIRON(e) #endif //RHO #ifdef ENV_IGNORECASE #define ENVMATCH(s1, s2) (STRCASECMP(s1, s2) == 0) #define ENVNMATCH(s1, s2, n) (STRNCASECMP(s1, s2, n) == 0) #else #define ENVMATCH(n1, n2) (strcmp(n1, n2) == 0) #define ENVNMATCH(s1, s2, n) (memcmp(s1, s2, n) == 0) #endif static VALUE env_str_new(const char *ptr, long len) { VALUE str = rb_tainted_str_new(ptr, len); rb_obj_freeze(str); return str; } static VALUE env_str_new2(const char *ptr) { if (!ptr) return Qnil; return env_str_new(ptr, strlen(ptr)); } static VALUE env_delete(VALUE obj, VALUE name) { char *nam, *val; rb_secure(4); SafeStringValue(name); nam = RSTRING_PTR(name); if (strlen(nam) != RSTRING_LEN(name)) { rb_raise(rb_eArgError, "bad environment variable name"); } val = getenv(nam); if (val) { VALUE value = env_str_new2(val); ruby_setenv(nam, 0); if (ENVMATCH(nam, PATH_ENV)) { path_tainted = 0; } return value; } return Qnil; } static VALUE env_delete_m(VALUE obj, VALUE name) { VALUE val; val = env_delete(obj, name); if (NIL_P(val) && rb_block_given_p()) rb_yield(name); return val; } static VALUE rb_f_getenv(VALUE obj, VALUE name) { char *nam, *env; rb_secure(4); SafeStringValue(name); nam = RSTRING_PTR(name); if (strlen(nam) != RSTRING_LEN(name)) { rb_raise(rb_eArgError, "bad environment variable name"); } env = getenv(nam); if (env) { if (ENVMATCH(nam, PATH_ENV) && !rb_env_path_tainted()) { VALUE str = rb_str_new2(env); rb_obj_freeze(str); return str; } return env_str_new2(env); } return Qnil; } static VALUE env_fetch(int argc, VALUE *argv) { VALUE key, if_none; long block_given; char *nam, *env; rb_secure(4); rb_scan_args(argc, argv, "11", &key, &if_none); block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } SafeStringValue(key); nam = RSTRING_PTR(key); if (strlen(nam) != RSTRING_LEN(key)) { rb_raise(rb_eArgError, "bad environment variable name"); } env = getenv(nam); if (!env) { if (block_given) return rb_yield(key); if (argc == 1) { rb_raise(rb_eKeyError, "key not found"); } return if_none; } if (ENVMATCH(nam, PATH_ENV) && !rb_env_path_tainted()) return rb_str_new2(env); return env_str_new2(env); } static void path_tainted_p(char *path) { path_tainted = rb_path_check(path)?0:1; } int rb_env_path_tainted(void) { if (path_tainted < 0) { path_tainted_p(getenv(PATH_ENV)); } return path_tainted; } #if !defined(_WIN32) && !(defined(HAVE_SETENV) && defined(HAVE_UNSETENV)) static int envix(const char *nam) { register int i, len = strlen(nam); char **env; env = GET_ENVIRON(environ); for (i = 0; env[i]; i++) { if (ENVNMATCH(env[i],nam,len) && env[i][len] == '=') break; /* memcmp must come first to avoid */ } /* potential SEGV's */ FREE_ENVIRON(environ); return i; } #endif void ruby_setenv(const char *name, const char *value) { #if defined(_WIN32) /* The sane way to deal with the environment. * Has these advantages over putenv() & co.: * * enables us to store a truly empty value in the * environment (like in UNIX). * * we don't have to deal with RTL globals, bugs and leaks. * * Much faster. * Why you may want to enable USE_WIN32_RTL_ENV: * * environ[] and RTL functions will not reflect changes, * which might be an issue if extensions want to access * the env. via RTL. This cuts both ways, since RTL will * not see changes made by extensions that call the Win32 * functions directly, either. * GSAR 97-06-07 * * REMARK: USE_WIN32_RTL_ENV is already obsoleted since we don't use * RTL's environ global variable directly yet. */ SetEnvironmentVariable(name,value); #elif defined(HAVE_SETENV) && defined(HAVE_UNSETENV) #undef setenv #undef unsetenv if (value) setenv(name,value,1); else unsetenv(name); #else /* WIN32 */ size_t len; int i=envix(name); /* where does it go? */ if (environ == origenviron) { /* need we copy environment? */ int j; int max; char **tmpenv; for (max = i; environ[max]; max++) ; tmpenv = ALLOC_N(char*, max+2); for (j=0; j= 4) { rb_raise(rb_eSecurityError, "can't change environment variable"); } if (NIL_P(val)) { env_delete(obj, nm); return Qnil; } StringValue(nm); StringValue(val); name = RSTRING_PTR(nm); value = RSTRING_PTR(val); if (strlen(name) != RSTRING_LEN(nm)) rb_raise(rb_eArgError, "bad environment variable name"); if (strlen(value) != RSTRING_LEN(val)) rb_raise(rb_eArgError, "bad environment variable value"); ruby_setenv(name, value); if (ENVMATCH(name, PATH_ENV)) { if (OBJ_TAINTED(val)) { /* already tainted, no check */ path_tainted = 1; return val; } else { path_tainted_p(value); } } return val; } static VALUE env_keys(void) { char **env; VALUE ary; rb_secure(4); ary = rb_ary_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_ary_push(ary, env_str_new(*env, s-*env)); } env++; } FREE_ENVIRON(environ); return ary; } static VALUE env_each_key(VALUE ehash) { VALUE keys; long i; RETURN_ENUMERATOR(ehash, 0, 0); keys = env_keys(); /* rb_secure(4); */ for (i=0; i"); i = rb_inspect(rb_str_new2(s+1)); rb_str_buf_append(str, i); } env++; } FREE_ENVIRON(environ); rb_str_buf_cat2(str, "}"); OBJ_TAINT(str); return str; } static VALUE env_to_a(void) { char **env; VALUE ary; rb_secure(4); ary = rb_ary_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_ary_push(ary, rb_assoc_new(env_str_new(*env, s-*env), env_str_new2(s+1))); } env++; } FREE_ENVIRON(environ); return ary; } static VALUE env_none(void) { return Qnil; } static VALUE env_size(void) { int i; char **env; rb_secure(4); env = GET_ENVIRON(environ); for(i=0; env[i]; i++) ; FREE_ENVIRON(environ); return INT2FIX(i); } static VALUE env_empty_p(void) { char **env; rb_secure(4); env = GET_ENVIRON(environ); if (env[0] == 0) { FREE_ENVIRON(environ); return Qtrue; } FREE_ENVIRON(environ); return Qfalse; } static VALUE env_has_key(VALUE env, VALUE key) { char *s; rb_secure(4); s = StringValuePtr(key); if (strlen(s) != RSTRING_LEN(key)) rb_raise(rb_eArgError, "bad environment variable name"); if (getenv(s)) return Qtrue; return Qfalse; } static VALUE env_assoc(VALUE env, VALUE key) { char *s, *e; rb_secure(4); s = StringValuePtr(key); if (strlen(s) != RSTRING_LEN(key)) rb_raise(rb_eArgError, "bad environment variable name"); e = getenv(s); if (e) return rb_assoc_new(key, rb_tainted_str_new2(e)); return Qnil; } static VALUE env_has_value(VALUE dmy, VALUE obj) { char **env; rb_secure(4); obj = rb_check_string_type(obj); if (NIL_P(obj)) return Qnil; env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s++) { long len = strlen(s); if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) { FREE_ENVIRON(environ); return Qtrue; } } env++; } FREE_ENVIRON(environ); return Qfalse; } static VALUE env_rassoc(VALUE dmy, VALUE obj) { char **env; rb_secure(4); obj = rb_check_string_type(obj); if (NIL_P(obj)) return Qnil; env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s++) { long len = strlen(s); if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) { VALUE result = rb_assoc_new(rb_tainted_str_new(*env, s-*env-1), obj); FREE_ENVIRON(environ); return result; } } env++; } FREE_ENVIRON(environ); return Qnil; } static VALUE env_key(VALUE dmy, VALUE value) { char **env; VALUE str; rb_secure(4); StringValue(value); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s++) { long len = strlen(s); if (RSTRING_LEN(value) == len && strncmp(s, RSTRING_PTR(value), len) == 0) { str = env_str_new(*env, s-*env-1); FREE_ENVIRON(environ); return str; } } env++; } FREE_ENVIRON(environ); return Qnil; } static VALUE env_index(VALUE dmy, VALUE value) { rb_warn("ENV.index is deprecated; use ENV.key"); return env_key(dmy, value); } static VALUE env_to_hash(void) { char **env; VALUE hash; rb_secure(4); hash = rb_hash_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_hash_aset(hash, env_str_new(*env, s-*env), env_str_new2(s+1)); } env++; } FREE_ENVIRON(environ); return hash; } static VALUE env_reject(void) { return rb_hash_delete_if(env_to_hash()); } static VALUE env_shift(void) { char **env; rb_secure(4); env = GET_ENVIRON(environ); if (*env) { char *s = strchr(*env, '='); if (s) { VALUE key = env_str_new(*env, s-*env); VALUE val = env_str_new2(getenv(RSTRING_PTR(key))); env_delete(Qnil, key); return rb_assoc_new(key, val); } } FREE_ENVIRON(environ); return Qnil; } static VALUE env_invert(void) { return rb_hash_invert(env_to_hash()); } static int env_replace_i(VALUE key, VALUE val, VALUE keys) { if (key != Qundef) { env_aset(Qnil, key, val); if (rb_ary_includes(keys, key)) { rb_ary_delete(keys, key); } } return ST_CONTINUE; } static VALUE env_replace(VALUE env, VALUE hash) { volatile VALUE keys; long i; keys = env_keys(); /* rb_secure(4); */ if (env == hash) return env; hash = to_hash(hash); rb_hash_foreach(hash, env_replace_i, keys); for (i=0; iHash is a collection of key-value pairs. It is * similar to an Array, except that indexing is done via * arbitrary keys of any object type, not an integer index. The order * in which you traverse a hash by either key or value may seem * arbitrary, and will generally not be in the insertion order. * * Hashes have a default value that is returned when accessing * keys that do not exist in the hash. By default, that value is * nil. * */ void Init_Hash(void) { #undef rb_intern #define rb_intern(str) rb_intern_const(str) id_hash = rb_intern("hash"); id_yield = rb_intern("yield"); id_default = rb_intern("default"); rb_cHash = rb_define_class("Hash", rb_cObject); rb_include_module(rb_cHash, rb_mEnumerable); rb_define_alloc_func(rb_cHash, hash_alloc); rb_define_singleton_method(rb_cHash, "[]", rb_hash_s_create, -1); rb_define_singleton_method(rb_cHash, "try_convert", rb_hash_s_try_convert, 1); rb_define_method(rb_cHash,"initialize", rb_hash_initialize, -1); rb_define_method(rb_cHash,"initialize_copy", rb_hash_replace, 1); rb_define_method(rb_cHash,"rehash", rb_hash_rehash, 0); rb_define_method(rb_cHash,"to_hash", rb_hash_to_hash, 0); rb_define_method(rb_cHash,"to_a", rb_hash_to_a, 0); rb_define_method(rb_cHash,"to_s", rb_hash_inspect, 0); rb_define_method(rb_cHash,"inspect", rb_hash_inspect, 0); rb_define_method(rb_cHash,"==", rb_hash_equal, 1); rb_define_method(rb_cHash,"[]", rb_hash_aref, 1); rb_define_method(rb_cHash,"hash", rb_hash_hash, 0); rb_define_method(rb_cHash,"eql?", rb_hash_eql, 1); rb_define_method(rb_cHash,"fetch", rb_hash_fetch_m, -1); rb_define_method(rb_cHash,"[]=", rb_hash_aset, 2); rb_define_method(rb_cHash,"store", rb_hash_aset, 2); rb_define_method(rb_cHash,"default", rb_hash_default, -1); rb_define_method(rb_cHash,"default=", rb_hash_set_default, 1); rb_define_method(rb_cHash,"default_proc", rb_hash_default_proc, 0); rb_define_method(rb_cHash,"default_proc=", rb_hash_set_default_proc, 1); rb_define_method(rb_cHash,"key", rb_hash_key, 1); rb_define_method(rb_cHash,"index", rb_hash_index, 1); rb_define_method(rb_cHash,"size", rb_hash_size, 0); rb_define_method(rb_cHash,"length", rb_hash_size, 0); rb_define_method(rb_cHash,"empty?", rb_hash_empty_p, 0); rb_define_method(rb_cHash,"each_value", rb_hash_each_value, 0); rb_define_method(rb_cHash,"each_key", rb_hash_each_key, 0); rb_define_method(rb_cHash,"each_pair", rb_hash_each_pair, 0); rb_define_method(rb_cHash,"each", rb_hash_each_pair, 0); rb_define_method(rb_cHash,"keys", rb_hash_keys, 0); rb_define_method(rb_cHash,"values", rb_hash_values, 0); rb_define_method(rb_cHash,"values_at", rb_hash_values_at, -1); rb_define_method(rb_cHash,"shift", rb_hash_shift, 0); rb_define_method(rb_cHash,"delete", rb_hash_delete, 1); rb_define_method(rb_cHash,"delete_if", rb_hash_delete_if, 0); rb_define_method(rb_cHash,"select", rb_hash_select, 0); rb_define_method(rb_cHash,"reject", rb_hash_reject, 0); rb_define_method(rb_cHash,"reject!", rb_hash_reject_bang, 0); rb_define_method(rb_cHash,"clear", rb_hash_clear, 0); rb_define_method(rb_cHash,"invert", rb_hash_invert, 0); rb_define_method(rb_cHash,"update", rb_hash_update, 1); rb_define_method(rb_cHash,"replace", rb_hash_replace, 1); rb_define_method(rb_cHash,"merge!", rb_hash_update, 1); rb_define_method(rb_cHash,"merge", rb_hash_merge, 1); rb_define_method(rb_cHash, "assoc", rb_hash_assoc, 1); rb_define_method(rb_cHash, "rassoc", rb_hash_rassoc, 1); rb_define_method(rb_cHash, "flatten", rb_hash_flatten, -1); rb_define_method(rb_cHash,"include?", rb_hash_has_key, 1); rb_define_method(rb_cHash,"member?", rb_hash_has_key, 1); rb_define_method(rb_cHash,"has_key?", rb_hash_has_key, 1); rb_define_method(rb_cHash,"has_value?", rb_hash_has_value, 1); rb_define_method(rb_cHash,"key?", rb_hash_has_key, 1); rb_define_method(rb_cHash,"value?", rb_hash_has_value, 1); rb_define_method(rb_cHash,"compare_by_identity", rb_hash_compare_by_id, 0); rb_define_method(rb_cHash,"compare_by_identity?", rb_hash_compare_by_id_p, 0); //RHO //origenviron = environ; //RHO envtbl = rb_obj_alloc(rb_cObject); rb_extend_object(envtbl, rb_mEnumerable); rb_define_singleton_method(envtbl,"[]", rb_f_getenv, 1); rb_define_singleton_method(envtbl,"fetch", env_fetch, -1); rb_define_singleton_method(envtbl,"[]=", env_aset, 2); rb_define_singleton_method(envtbl,"store", env_aset, 2); rb_define_singleton_method(envtbl,"each", env_each_pair, 0); rb_define_singleton_method(envtbl,"each_pair", env_each_pair, 0); rb_define_singleton_method(envtbl,"each_key", env_each_key, 0); rb_define_singleton_method(envtbl,"each_value", env_each_value, 0); rb_define_singleton_method(envtbl,"delete", env_delete_m, 1); rb_define_singleton_method(envtbl,"delete_if", env_delete_if, 0); rb_define_singleton_method(envtbl,"clear", rb_env_clear, 0); rb_define_singleton_method(envtbl,"reject", env_reject, 0); rb_define_singleton_method(envtbl,"reject!", env_reject_bang, 0); rb_define_singleton_method(envtbl,"select", env_select, 0); rb_define_singleton_method(envtbl,"shift", env_shift, 0); rb_define_singleton_method(envtbl,"invert", env_invert, 0); rb_define_singleton_method(envtbl,"replace", env_replace, 1); rb_define_singleton_method(envtbl,"update", env_update, 1); rb_define_singleton_method(envtbl,"inspect", env_inspect, 0); rb_define_singleton_method(envtbl,"rehash", env_none, 0); rb_define_singleton_method(envtbl,"to_a", env_to_a, 0); rb_define_singleton_method(envtbl,"to_s", env_to_s, 0); rb_define_singleton_method(envtbl,"key", env_key, 1); rb_define_singleton_method(envtbl,"index", env_index, 1); rb_define_singleton_method(envtbl,"size", env_size, 0); rb_define_singleton_method(envtbl,"length", env_size, 0); rb_define_singleton_method(envtbl,"empty?", env_empty_p, 0); rb_define_singleton_method(envtbl,"keys", env_keys, 0); rb_define_singleton_method(envtbl,"values", env_values, 0); rb_define_singleton_method(envtbl,"values_at", env_values_at, -1); rb_define_singleton_method(envtbl,"include?", env_has_key, 1); rb_define_singleton_method(envtbl,"member?", env_has_key, 1); rb_define_singleton_method(envtbl,"has_key?", env_has_key, 1); rb_define_singleton_method(envtbl,"has_value?", env_has_value, 1); rb_define_singleton_method(envtbl,"key?", env_has_key, 1); rb_define_singleton_method(envtbl,"value?", env_has_value, 1); rb_define_singleton_method(envtbl,"to_hash", env_to_hash, 0); rb_define_singleton_method(envtbl,"assoc", env_assoc, 1); rb_define_singleton_method(envtbl,"rassoc", env_rassoc, 1); rb_define_global_const("ENV", envtbl); }