//! Data flow graph tracking Instructions, Values, and blocks. use crate::entity::{self, PrimaryMap, SecondaryMap}; use crate::ir; use crate::ir::builder::ReplaceBuilder; use crate::ir::dynamic_type::{DynamicTypeData, DynamicTypes}; use crate::ir::instructions::{CallInfo, InstructionData}; use crate::ir::pcc::Fact; use crate::ir::{ types, Block, BlockCall, ConstantData, ConstantPool, DynamicType, ExtFuncData, FuncRef, Immediate, Inst, JumpTables, RelSourceLoc, SigRef, Signature, Type, Value, ValueLabelAssignments, ValueList, ValueListPool, }; use crate::packed_option::ReservedValue; use crate::write::write_operands; use core::fmt; use core::iter; use core::mem; use core::ops::{Index, IndexMut}; use core::u16; use alloc::collections::BTreeMap; #[cfg(feature = "enable-serde")] use serde_derive::{Deserialize, Serialize}; use smallvec::SmallVec; /// Storage for instructions within the DFG. #[derive(Clone, PartialEq, Hash)] #[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))] pub struct Insts(PrimaryMap); /// Allow immutable access to instructions via indexing. impl Index for Insts { type Output = InstructionData; fn index(&self, inst: Inst) -> &InstructionData { self.0.index(inst) } } /// Allow mutable access to instructions via indexing. impl IndexMut for Insts { fn index_mut(&mut self, inst: Inst) -> &mut InstructionData { self.0.index_mut(inst) } } /// Storage for basic blocks within the DFG. #[derive(Clone, PartialEq, Hash)] #[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))] pub struct Blocks(PrimaryMap); impl Blocks { /// Create a new basic block. pub fn add(&mut self) -> Block { self.0.push(BlockData::new()) } /// Get the total number of basic blocks created in this function, whether they are /// currently inserted in the layout or not. /// /// This is intended for use with `SecondaryMap::with_capacity`. pub fn len(&self) -> usize { self.0.len() } /// Returns `true` if the given block reference is valid. pub fn is_valid(&self, block: Block) -> bool { self.0.is_valid(block) } } impl Index for Blocks { type Output = BlockData; fn index(&self, block: Block) -> &BlockData { &self.0[block] } } impl IndexMut for Blocks { fn index_mut(&mut self, block: Block) -> &mut BlockData { &mut self.0[block] } } /// A data flow graph defines all instructions and basic blocks in a function as well as /// the data flow dependencies between them. The DFG also tracks values which can be either /// instruction results or block parameters. /// /// The layout of blocks in the function and of instructions in each block is recorded by the /// `Layout` data structure which forms the other half of the function representation. /// #[derive(Clone, PartialEq, Hash)] #[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))] pub struct DataFlowGraph { /// Data about all of the instructions in the function, including opcodes and operands. /// The instructions in this map are not in program order. That is tracked by `Layout`, along /// with the block containing each instruction. pub insts: Insts, /// List of result values for each instruction. /// /// This map gets resized automatically by `make_inst()` so it is always in sync with the /// primary `insts` map. results: SecondaryMap, /// basic blocks in the function and their parameters. /// /// This map is not in program order. That is handled by `Layout`, and so is the sequence of /// instructions contained in each block. pub blocks: Blocks, /// Dynamic types created. pub dynamic_types: DynamicTypes, /// Memory pool of value lists. /// /// The `ValueList` references into this pool appear in many places: /// /// - Instructions in `insts` that don't have room for their entire argument list inline. /// - Instruction result values in `results`. /// - block parameters in `blocks`. pub value_lists: ValueListPool, /// Primary value table with entries for all values. values: PrimaryMap, /// Facts: proof-carrying-code assertions about values. pub facts: SecondaryMap>, /// Function signature table. These signatures are referenced by indirect call instructions as /// well as the external function references. pub signatures: PrimaryMap, /// The pre-legalization signature for each entry in `signatures`, if any. pub old_signatures: SecondaryMap>, /// External function references. These are functions that can be called directly. pub ext_funcs: PrimaryMap, /// Saves Value labels. pub values_labels: Option>, /// Constants used within the function. pub constants: ConstantPool, /// Stores large immediates that otherwise will not fit on InstructionData. pub immediates: PrimaryMap, /// Jump tables used in this function. pub jump_tables: JumpTables, } impl DataFlowGraph { /// Create a new empty `DataFlowGraph`. pub fn new() -> Self { Self { insts: Insts(PrimaryMap::new()), results: SecondaryMap::new(), blocks: Blocks(PrimaryMap::new()), dynamic_types: DynamicTypes::new(), value_lists: ValueListPool::new(), values: PrimaryMap::new(), facts: SecondaryMap::new(), signatures: PrimaryMap::new(), old_signatures: SecondaryMap::new(), ext_funcs: PrimaryMap::new(), values_labels: None, constants: ConstantPool::new(), immediates: PrimaryMap::new(), jump_tables: JumpTables::new(), } } /// Clear everything. pub fn clear(&mut self) { self.insts.0.clear(); self.results.clear(); self.blocks.0.clear(); self.dynamic_types.clear(); self.value_lists.clear(); self.values.clear(); self.signatures.clear(); self.old_signatures.clear(); self.ext_funcs.clear(); self.values_labels = None; self.constants.clear(); self.immediates.clear(); self.jump_tables.clear(); self.facts.clear(); } /// Get the total number of instructions created in this function, whether they are currently /// inserted in the layout or not. /// /// This is intended for use with `SecondaryMap::with_capacity`. pub fn num_insts(&self) -> usize { self.insts.0.len() } /// Returns `true` if the given instruction reference is valid. pub fn inst_is_valid(&self, inst: Inst) -> bool { self.insts.0.is_valid(inst) } /// Get the total number of basic blocks created in this function, whether they are /// currently inserted in the layout or not. /// /// This is intended for use with `SecondaryMap::with_capacity`. pub fn num_blocks(&self) -> usize { self.blocks.len() } /// Returns `true` if the given block reference is valid. pub fn block_is_valid(&self, block: Block) -> bool { self.blocks.is_valid(block) } /// Make a BlockCall, bundling together the block and its arguments. pub fn block_call(&mut self, block: Block, args: &[Value]) -> BlockCall { BlockCall::new(block, args, &mut self.value_lists) } /// Get the total number of values. pub fn num_values(&self) -> usize { self.values.len() } /// Get an iterator over all values and their definitions. pub fn values_and_defs(&self) -> impl Iterator + '_ { self.values().map(|value| (value, self.value_def(value))) } /// Starts collection of debug information. pub fn collect_debug_info(&mut self) { if self.values_labels.is_none() { self.values_labels = Some(Default::default()); } } /// Inserts a `ValueLabelAssignments::Alias` for `to_alias` if debug info /// collection is enabled. pub fn add_value_label_alias(&mut self, to_alias: Value, from: RelSourceLoc, value: Value) { if let Some(values_labels) = self.values_labels.as_mut() { values_labels.insert(to_alias, ir::ValueLabelAssignments::Alias { from, value }); } } } /// Resolve value aliases. /// /// Find the original SSA value that `value` aliases, or None if an /// alias cycle is detected. fn maybe_resolve_aliases( values: &PrimaryMap, value: Value, ) -> Option { let mut v = value; // Note that values may be empty here. for _ in 0..=values.len() { if let ValueData::Alias { original, .. } = ValueData::from(values[v]) { v = original; } else { return Some(v); } } None } /// Resolve value aliases. /// /// Find the original SSA value that `value` aliases. fn resolve_aliases(values: &PrimaryMap, value: Value) -> Value { if let Some(v) = maybe_resolve_aliases(values, value) { v } else { panic!("Value alias loop detected for {}", value); } } /// Iterator over all Values in a DFG. pub struct Values<'a> { inner: entity::Iter<'a, Value, ValueDataPacked>, } /// Check for non-values. fn valid_valuedata(data: ValueDataPacked) -> bool { let data = ValueData::from(data); if let ValueData::Alias { ty: types::INVALID, original, } = ValueData::from(data) { if original == Value::reserved_value() { return false; } } true } impl<'a> Iterator for Values<'a> { type Item = Value; fn next(&mut self) -> Option { self.inner .by_ref() .find(|kv| valid_valuedata(*kv.1)) .map(|kv| kv.0) } } /// Handling values. /// /// Values are either block parameters or instruction results. impl DataFlowGraph { /// Allocate an extended value entry. fn make_value(&mut self, data: ValueData) -> Value { self.values.push(data.into()) } /// Get an iterator over all values. pub fn values<'a>(&'a self) -> Values { Values { inner: self.values.iter(), } } /// Check if a value reference is valid. pub fn value_is_valid(&self, v: Value) -> bool { self.values.is_valid(v) } /// Get the type of a value. pub fn value_type(&self, v: Value) -> Type { self.values[v].ty() } /// Get the definition of a value. /// /// This is either the instruction that defined it or the Block that has the value as an /// parameter. pub fn value_def(&self, v: Value) -> ValueDef { match ValueData::from(self.values[v]) { ValueData::Inst { inst, num, .. } => ValueDef::Result(inst, num as usize), ValueData::Param { block, num, .. } => ValueDef::Param(block, num as usize), ValueData::Alias { original, .. } => { // Make sure we only recurse one level. `resolve_aliases` has safeguards to // detect alias loops without overrunning the stack. self.value_def(self.resolve_aliases(original)) } ValueData::Union { x, y, .. } => ValueDef::Union(x, y), } } /// Determine if `v` is an attached instruction result / block parameter. /// /// An attached value can't be attached to something else without first being detached. /// /// Value aliases are not considered to be attached to anything. Use `resolve_aliases()` to /// determine if the original aliased value is attached. pub fn value_is_attached(&self, v: Value) -> bool { use self::ValueData::*; match ValueData::from(self.values[v]) { Inst { inst, num, .. } => Some(&v) == self.inst_results(inst).get(num as usize), Param { block, num, .. } => Some(&v) == self.block_params(block).get(num as usize), Alias { .. } => false, Union { .. } => false, } } /// Resolve value aliases. /// /// Find the original SSA value that `value` aliases. pub fn resolve_aliases(&self, value: Value) -> Value { resolve_aliases(&self.values, value) } /// Resolve all aliases among inst's arguments. /// /// For each argument of inst which is defined by an alias, replace the /// alias with the aliased value. pub fn resolve_aliases_in_arguments(&mut self, inst: Inst) { self.map_inst_values(inst, |dfg, arg| resolve_aliases(&dfg.values, arg)); } /// Turn a value into an alias of another. /// /// Change the `dest` value to behave as an alias of `src`. This means that all uses of `dest` /// will behave as if they used that value `src`. /// /// The `dest` value can't be attached to an instruction or block. pub fn change_to_alias(&mut self, dest: Value, src: Value) { debug_assert!(!self.value_is_attached(dest)); // Try to create short alias chains by finding the original source value. // This also avoids the creation of loops. let original = self.resolve_aliases(src); debug_assert_ne!( dest, original, "Aliasing {} to {} would create a loop", dest, src ); let ty = self.value_type(original); debug_assert_eq!( self.value_type(dest), ty, "Aliasing {} to {} would change its type {} to {}", dest, src, self.value_type(dest), ty ); debug_assert_ne!(ty, types::INVALID); self.values[dest] = ValueData::Alias { ty, original }.into(); } /// Replace the results of one instruction with aliases to the results of another. /// /// Change all the results of `dest_inst` to behave as aliases of /// corresponding results of `src_inst`, as if calling change_to_alias for /// each. /// /// After calling this instruction, `dest_inst` will have had its results /// cleared, so it likely needs to be removed from the graph. /// pub fn replace_with_aliases(&mut self, dest_inst: Inst, src_inst: Inst) { debug_assert_ne!( dest_inst, src_inst, "Replacing {} with itself would create a loop", dest_inst ); debug_assert_eq!( self.results[dest_inst].len(&self.value_lists), self.results[src_inst].len(&self.value_lists), "Replacing {} with {} would produce a different number of results.", dest_inst, src_inst ); for (&dest, &src) in self.results[dest_inst] .as_slice(&self.value_lists) .iter() .zip(self.results[src_inst].as_slice(&self.value_lists)) { let original = src; let ty = self.value_type(original); debug_assert_eq!( self.value_type(dest), ty, "Aliasing {} to {} would change its type {} to {}", dest, src, self.value_type(dest), ty ); debug_assert_ne!(ty, types::INVALID); self.values[dest] = ValueData::Alias { ty, original }.into(); } self.clear_results(dest_inst); } } /// Where did a value come from? #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum ValueDef { /// Value is the n'th result of an instruction. Result(Inst, usize), /// Value is the n'th parameter to a block. Param(Block, usize), /// Value is a union of two other values. Union(Value, Value), } impl ValueDef { /// Unwrap the instruction where the value was defined, or panic. pub fn unwrap_inst(&self) -> Inst { self.inst().expect("Value is not an instruction result") } /// Get the instruction where the value was defined, if any. pub fn inst(&self) -> Option { match *self { Self::Result(inst, _) => Some(inst), _ => None, } } /// Unwrap the block there the parameter is defined, or panic. pub fn unwrap_block(&self) -> Block { match *self { Self::Param(block, _) => block, _ => panic!("Value is not a block parameter"), } } /// Get the number component of this definition. /// /// When multiple values are defined at the same program point, this indicates the index of /// this value. pub fn num(self) -> usize { match self { Self::Result(_, n) | Self::Param(_, n) => n, Self::Union(_, _) => 0, } } } /// Internal table storage for extended values. #[derive(Clone, Debug, PartialEq, Hash)] #[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))] enum ValueData { /// Value is defined by an instruction. Inst { ty: Type, num: u16, inst: Inst }, /// Value is a block parameter. Param { ty: Type, num: u16, block: Block }, /// Value is an alias of another value. /// An alias value can't be linked as an instruction result or block parameter. It is used as a /// placeholder when the original instruction or block has been rewritten or modified. Alias { ty: Type, original: Value }, /// Union is a "fork" in representation: the value can be /// represented as either of the values named here. This is used /// for aegraph (acyclic egraph) representation in the DFG. Union { ty: Type, x: Value, y: Value }, } /// Bit-packed version of ValueData, for efficiency. /// /// Layout: /// /// ```plain /// | tag:2 | type:14 | x:24 | y:24 | /// /// Inst 00 ty inst output inst index /// Param 01 ty blockparam num block index /// Alias 10 ty 0 value index /// Union 11 ty first value second value /// ``` #[derive(Clone, Copy, Debug, PartialEq, Hash)] #[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))] struct ValueDataPacked(u64); /// Encodes a value in 0..2^32 into 0..2^n, where n is less than 32 /// (and is implied by `mask`), by translating 2^32-1 (0xffffffff) /// into 2^n-1 and panic'ing on 2^n..2^32-1. fn encode_narrow_field(x: u32, bits: u8) -> u32 { if x == 0xffff_ffff { (1 << bits) - 1 } else { debug_assert!(x < (1 << bits)); x } } /// The inverse of the above `encode_narrow_field`: unpacks 2^n-1 into /// 2^32-1. fn decode_narrow_field(x: u32, bits: u8) -> u32 { if x == (1 << bits) - 1 { 0xffff_ffff } else { x } } impl ValueDataPacked { const Y_SHIFT: u8 = 0; const Y_BITS: u8 = 24; const X_SHIFT: u8 = Self::Y_SHIFT + Self::Y_BITS; const X_BITS: u8 = 24; const TYPE_SHIFT: u8 = Self::X_SHIFT + Self::X_BITS; const TYPE_BITS: u8 = 14; const TAG_SHIFT: u8 = Self::TYPE_SHIFT + Self::TYPE_BITS; const TAG_BITS: u8 = 2; const TAG_INST: u64 = 0; const TAG_PARAM: u64 = 1; const TAG_ALIAS: u64 = 2; const TAG_UNION: u64 = 3; fn make(tag: u64, ty: Type, x: u32, y: u32) -> ValueDataPacked { debug_assert!(tag < (1 << Self::TAG_BITS)); debug_assert!(ty.repr() < (1 << Self::TYPE_BITS)); let x = encode_narrow_field(x, Self::X_BITS); let y = encode_narrow_field(y, Self::Y_BITS); ValueDataPacked( (tag << Self::TAG_SHIFT) | ((ty.repr() as u64) << Self::TYPE_SHIFT) | ((x as u64) << Self::X_SHIFT) | ((y as u64) << Self::Y_SHIFT), ) } #[inline(always)] fn field(self, shift: u8, bits: u8) -> u64 { (self.0 >> shift) & ((1 << bits) - 1) } #[inline(always)] fn ty(self) -> Type { let ty = self.field(ValueDataPacked::TYPE_SHIFT, ValueDataPacked::TYPE_BITS) as u16; Type::from_repr(ty) } #[inline(always)] fn set_type(&mut self, ty: Type) { self.0 &= !(((1 << Self::TYPE_BITS) - 1) << Self::TYPE_SHIFT); self.0 |= (ty.repr() as u64) << Self::TYPE_SHIFT; } } impl From for ValueDataPacked { fn from(data: ValueData) -> Self { match data { ValueData::Inst { ty, num, inst } => { Self::make(Self::TAG_INST, ty, num.into(), inst.as_bits()) } ValueData::Param { ty, num, block } => { Self::make(Self::TAG_PARAM, ty, num.into(), block.as_bits()) } ValueData::Alias { ty, original } => { Self::make(Self::TAG_ALIAS, ty, 0, original.as_bits()) } ValueData::Union { ty, x, y } => { Self::make(Self::TAG_ALIAS, ty, x.as_bits(), y.as_bits()) } } } } impl From for ValueData { fn from(data: ValueDataPacked) -> Self { let tag = data.field(ValueDataPacked::TAG_SHIFT, ValueDataPacked::TAG_BITS); let ty = u16::try_from(data.field(ValueDataPacked::TYPE_SHIFT, ValueDataPacked::TYPE_BITS)) .expect("Mask should ensure result fits in a u16"); let x = u32::try_from(data.field(ValueDataPacked::X_SHIFT, ValueDataPacked::X_BITS)) .expect("Mask should ensure result fits in a u32"); let y = u32::try_from(data.field(ValueDataPacked::Y_SHIFT, ValueDataPacked::Y_BITS)) .expect("Mask should ensure result fits in a u32"); let ty = Type::from_repr(ty); match tag { ValueDataPacked::TAG_INST => ValueData::Inst { ty, num: u16::try_from(x).expect("Inst result num should fit in u16"), inst: Inst::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)), }, ValueDataPacked::TAG_PARAM => ValueData::Param { ty, num: u16::try_from(x).expect("Blockparam index should fit in u16"), block: Block::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)), }, ValueDataPacked::TAG_ALIAS => ValueData::Alias { ty, original: Value::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)), }, ValueDataPacked::TAG_UNION => ValueData::Union { ty, x: Value::from_bits(decode_narrow_field(x, ValueDataPacked::X_BITS)), y: Value::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)), }, _ => panic!("Invalid tag {} in ValueDataPacked 0x{:x}", tag, data.0), } } } /// Instructions. /// impl DataFlowGraph { /// Create a new instruction. /// /// The type of the first result is indicated by `data.ty`. If the /// instruction produces multiple results, also call /// `make_inst_results` to allocate value table entries. (It is /// always safe to call `make_inst_results`, regardless of how /// many results the instruction has.) pub fn make_inst(&mut self, data: InstructionData) -> Inst { let n = self.num_insts() + 1; self.results.resize(n); self.insts.0.push(data) } /// Declares a dynamic vector type pub fn make_dynamic_ty(&mut self, data: DynamicTypeData) -> DynamicType { self.dynamic_types.push(data) } /// Returns an object that displays `inst`. pub fn display_inst<'a>(&'a self, inst: Inst) -> DisplayInst<'a> { DisplayInst(self, inst) } /// Returns an object that displays the given `value`'s defining instruction. /// /// Panics if the value is not defined by an instruction (i.e. it is a basic /// block argument). pub fn display_value_inst(&self, value: Value) -> DisplayInst<'_> { match self.value_def(value) { ir::ValueDef::Result(inst, _) => self.display_inst(inst), ir::ValueDef::Param(_, _) => panic!("value is not defined by an instruction"), ir::ValueDef::Union(_, _) => panic!("value is a union of two other values"), } } /// Construct a read-only visitor context for the values of this instruction. pub fn inst_values<'dfg>( &'dfg self, inst: Inst, ) -> impl DoubleEndedIterator + 'dfg { self.inst_args(inst) .iter() .chain( self.insts[inst] .branch_destination(&self.jump_tables) .into_iter() .flat_map(|branch| branch.args_slice(&self.value_lists).iter()), ) .copied() } /// Map a function over the values of the instruction. pub fn map_inst_values(&mut self, inst: Inst, mut body: F) where F: FnMut(&mut DataFlowGraph, Value) -> Value, { for i in 0..self.inst_args(inst).len() { let arg = self.inst_args(inst)[i]; self.inst_args_mut(inst)[i] = body(self, arg); } for block_ix in 0..self.insts[inst].branch_destination(&self.jump_tables).len() { // We aren't changing the size of the args list, so we won't need to write the branch // back to the instruction. let mut block = self.insts[inst].branch_destination(&self.jump_tables)[block_ix]; for i in 0..block.args_slice(&self.value_lists).len() { let arg = block.args_slice(&self.value_lists)[i]; block.args_slice_mut(&mut self.value_lists)[i] = body(self, arg); } } } /// Overwrite the instruction's value references with values from the iterator. /// NOTE: the iterator provided is expected to yield at least as many values as the instruction /// currently has. pub fn overwrite_inst_values(&mut self, inst: Inst, mut values: I) where I: Iterator, { for arg in self.inst_args_mut(inst) { *arg = values.next().unwrap(); } for block_ix in 0..self.insts[inst].branch_destination(&self.jump_tables).len() { let mut block = self.insts[inst].branch_destination(&self.jump_tables)[block_ix]; for arg in block.args_slice_mut(&mut self.value_lists) { *arg = values.next().unwrap(); } } } /// Get all value arguments on `inst` as a slice. pub fn inst_args(&self, inst: Inst) -> &[Value] { self.insts[inst].arguments(&self.value_lists) } /// Get all value arguments on `inst` as a mutable slice. pub fn inst_args_mut(&mut self, inst: Inst) -> &mut [Value] { self.insts[inst].arguments_mut(&mut self.value_lists) } /// Get the fixed value arguments on `inst` as a slice. pub fn inst_fixed_args(&self, inst: Inst) -> &[Value] { let num_fixed_args = self.insts[inst] .opcode() .constraints() .num_fixed_value_arguments(); &self.inst_args(inst)[..num_fixed_args] } /// Get the fixed value arguments on `inst` as a mutable slice. pub fn inst_fixed_args_mut(&mut self, inst: Inst) -> &mut [Value] { let num_fixed_args = self.insts[inst] .opcode() .constraints() .num_fixed_value_arguments(); &mut self.inst_args_mut(inst)[..num_fixed_args] } /// Get the variable value arguments on `inst` as a slice. pub fn inst_variable_args(&self, inst: Inst) -> &[Value] { let num_fixed_args = self.insts[inst] .opcode() .constraints() .num_fixed_value_arguments(); &self.inst_args(inst)[num_fixed_args..] } /// Get the variable value arguments on `inst` as a mutable slice. pub fn inst_variable_args_mut(&mut self, inst: Inst) -> &mut [Value] { let num_fixed_args = self.insts[inst] .opcode() .constraints() .num_fixed_value_arguments(); &mut self.inst_args_mut(inst)[num_fixed_args..] } /// Create result values for an instruction that produces multiple results. /// /// Instructions that produce no result values only need to be created with `make_inst`, /// otherwise call `make_inst_results` to allocate value table entries for the results. /// /// The result value types are determined from the instruction's value type constraints and the /// provided `ctrl_typevar` type for polymorphic instructions. For non-polymorphic /// instructions, `ctrl_typevar` is ignored, and `INVALID` can be used. /// /// The type of the first result value is also set, even if it was already set in the /// `InstructionData` passed to `make_inst`. If this function is called with a single-result /// instruction, that is the only effect. pub fn make_inst_results(&mut self, inst: Inst, ctrl_typevar: Type) -> usize { self.make_inst_results_reusing(inst, ctrl_typevar, iter::empty()) } /// Create result values for `inst`, reusing the provided detached values. /// /// Create a new set of result values for `inst` using `ctrl_typevar` to determine the result /// types. Any values provided by `reuse` will be reused. When `reuse` is exhausted or when it /// produces `None`, a new value is created. pub fn make_inst_results_reusing( &mut self, inst: Inst, ctrl_typevar: Type, reuse: I, ) -> usize where I: Iterator>, { self.results[inst].clear(&mut self.value_lists); let mut reuse = reuse.fuse(); let result_tys: SmallVec<[_; 16]> = self.inst_result_types(inst, ctrl_typevar).collect(); let num_results = result_tys.len(); for ty in result_tys { if let Some(Some(v)) = reuse.next() { debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty); self.attach_result(inst, v); } else { self.append_result(inst, ty); } } num_results } /// Create a `ReplaceBuilder` that will replace `inst` with a new instruction in place. pub fn replace(&mut self, inst: Inst) -> ReplaceBuilder { ReplaceBuilder::new(self, inst) } /// Detach the list of result values from `inst` and return it. /// /// This leaves `inst` without any result values. New result values can be created by calling /// `make_inst_results` or by using a `replace(inst)` builder. pub fn detach_results(&mut self, inst: Inst) -> ValueList { self.results[inst].take() } /// Clear the list of result values from `inst`. /// /// This leaves `inst` without any result values. New result values can be created by calling /// `make_inst_results` or by using a `replace(inst)` builder. pub fn clear_results(&mut self, inst: Inst) { self.results[inst].clear(&mut self.value_lists) } /// Attach an existing value to the result value list for `inst`. /// /// The `res` value is appended to the end of the result list. /// /// This is a very low-level operation. Usually, instruction results with the correct types are /// created automatically. The `res` value must not be attached to anything else. pub fn attach_result(&mut self, inst: Inst, res: Value) { debug_assert!(!self.value_is_attached(res)); let num = self.results[inst].push(res, &mut self.value_lists); debug_assert!(num <= u16::MAX as usize, "Too many result values"); let ty = self.value_type(res); self.values[res] = ValueData::Inst { ty, num: num as u16, inst, } .into(); } /// Replace an instruction result with a new value of type `new_type`. /// /// The `old_value` must be an attached instruction result. /// /// The old value is left detached, so it should probably be changed into something else. /// /// Returns the new value. pub fn replace_result(&mut self, old_value: Value, new_type: Type) -> Value { let (num, inst) = match ValueData::from(self.values[old_value]) { ValueData::Inst { num, inst, .. } => (num, inst), _ => panic!("{} is not an instruction result value", old_value), }; let new_value = self.make_value(ValueData::Inst { ty: new_type, num, inst, }); let num = num as usize; let attached = mem::replace( self.results[inst] .get_mut(num, &mut self.value_lists) .expect("Replacing detached result"), new_value, ); debug_assert_eq!( attached, old_value, "{} wasn't detached from {}", old_value, self.display_inst(inst) ); new_value } /// Append a new instruction result value to `inst`. pub fn append_result(&mut self, inst: Inst, ty: Type) -> Value { let res = self.values.next_key(); let num = self.results[inst].push(res, &mut self.value_lists); debug_assert!(num <= u16::MAX as usize, "Too many result values"); self.make_value(ValueData::Inst { ty, inst, num: num as u16, }) } /// Clone an instruction, attaching new result `Value`s and /// returning them. pub fn clone_inst(&mut self, inst: Inst) -> Inst { // First, add a clone of the InstructionData. let inst_data = self.insts[inst].clone(); // If the `inst_data` has a reference to a ValueList, clone it // as well, because we can't share these (otherwise mutating // one would affect the other). let inst_data = inst_data.deep_clone(&mut self.value_lists); let new_inst = self.make_inst(inst_data); // Get the controlling type variable. let ctrl_typevar = self.ctrl_typevar(inst); // Create new result values. let num_results = self.make_inst_results(new_inst, ctrl_typevar); // Copy over PCC facts, if any. for i in 0..num_results { let old_result = self.inst_results(inst)[i]; let new_result = self.inst_results(new_inst)[i]; self.facts[new_result] = self.facts[old_result].clone(); } new_inst } /// Get the first result of an instruction. /// /// This function panics if the instruction doesn't have any result. pub fn first_result(&self, inst: Inst) -> Value { self.results[inst] .first(&self.value_lists) .expect("Instruction has no results") } /// Test if `inst` has any result values currently. pub fn has_results(&self, inst: Inst) -> bool { !self.results[inst].is_empty() } /// Return all the results of an instruction. pub fn inst_results(&self, inst: Inst) -> &[Value] { self.results[inst].as_slice(&self.value_lists) } /// Return all the results of an instruction as ValueList. pub fn inst_results_list(&self, inst: Inst) -> ValueList { self.results[inst] } /// Create a union of two values. pub fn union(&mut self, x: Value, y: Value) -> Value { // Get the type. let ty = self.value_type(x); debug_assert_eq!(ty, self.value_type(y)); self.make_value(ValueData::Union { ty, x, y }) } /// Get the call signature of a direct or indirect call instruction. /// Returns `None` if `inst` is not a call instruction. pub fn call_signature(&self, inst: Inst) -> Option { match self.insts[inst].analyze_call(&self.value_lists) { CallInfo::NotACall => None, CallInfo::Direct(f, _) => Some(self.ext_funcs[f].signature), CallInfo::Indirect(s, _) => Some(s), } } /// Like `call_signature` but returns none for tail call instructions. fn non_tail_call_signature(&self, inst: Inst) -> Option { let sig = self.call_signature(inst)?; match self.insts[inst].opcode() { ir::Opcode::ReturnCall | ir::Opcode::ReturnCallIndirect => None, _ => Some(sig), } } // Only for use by the verifier. Everyone else should just use // `dfg.inst_results(inst).len()`. pub(crate) fn num_expected_results_for_verifier(&self, inst: Inst) -> usize { match self.non_tail_call_signature(inst) { Some(sig) => self.signatures[sig].returns.len(), None => { let constraints = self.insts[inst].opcode().constraints(); constraints.num_fixed_results() } } } /// Get the result types of the given instruction. pub fn inst_result_types<'a>( &'a self, inst: Inst, ctrl_typevar: Type, ) -> impl iter::ExactSizeIterator + 'a { return match self.non_tail_call_signature(inst) { Some(sig) => InstResultTypes::Signature(self, sig, 0), None => { let constraints = self.insts[inst].opcode().constraints(); InstResultTypes::Constraints(constraints, ctrl_typevar, 0) } }; enum InstResultTypes<'a> { Signature(&'a DataFlowGraph, SigRef, usize), Constraints(ir::instructions::OpcodeConstraints, Type, usize), } impl Iterator for InstResultTypes<'_> { type Item = Type; fn next(&mut self) -> Option { match self { InstResultTypes::Signature(dfg, sig, i) => { let param = dfg.signatures[*sig].returns.get(*i)?; *i += 1; Some(param.value_type) } InstResultTypes::Constraints(constraints, ctrl_ty, i) => { if *i < constraints.num_fixed_results() { let ty = constraints.result_type(*i, *ctrl_ty); *i += 1; Some(ty) } else { None } } } } fn size_hint(&self) -> (usize, Option) { let len = match self { InstResultTypes::Signature(dfg, sig, i) => { dfg.signatures[*sig].returns.len() - *i } InstResultTypes::Constraints(constraints, _, i) => { constraints.num_fixed_results() - *i } }; (len, Some(len)) } } impl ExactSizeIterator for InstResultTypes<'_> {} } /// Compute the type of an instruction result from opcode constraints and call signatures. /// /// This computes the same sequence of result types that `make_inst_results()` above would /// assign to the created result values, but it does not depend on `make_inst_results()` being /// called first. /// /// Returns `None` if asked about a result index that is too large. pub fn compute_result_type( &self, inst: Inst, result_idx: usize, ctrl_typevar: Type, ) -> Option { self.inst_result_types(inst, ctrl_typevar).nth(result_idx) } /// Get the controlling type variable, or `INVALID` if `inst` isn't polymorphic. pub fn ctrl_typevar(&self, inst: Inst) -> Type { let constraints = self.insts[inst].opcode().constraints(); if !constraints.is_polymorphic() { types::INVALID } else if constraints.requires_typevar_operand() { // Not all instruction formats have a designated operand, but in that case // `requires_typevar_operand()` should never be true. self.value_type( self.insts[inst] .typevar_operand(&self.value_lists) .unwrap_or_else(|| { panic!( "Instruction format for {:?} doesn't have a designated operand", self.insts[inst] ) }), ) } else { self.value_type(self.first_result(inst)) } } } /// basic blocks. impl DataFlowGraph { /// Create a new basic block. pub fn make_block(&mut self) -> Block { self.blocks.add() } /// Get the number of parameters on `block`. pub fn num_block_params(&self, block: Block) -> usize { self.blocks[block].params(&self.value_lists).len() } /// Get the parameters on `block`. pub fn block_params(&self, block: Block) -> &[Value] { self.blocks[block].params(&self.value_lists) } /// Get the types of the parameters on `block`. pub fn block_param_types(&self, block: Block) -> impl Iterator + '_ { self.block_params(block).iter().map(|&v| self.value_type(v)) } /// Append a parameter with type `ty` to `block`. pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value { let param = self.values.next_key(); let num = self.blocks[block].params.push(param, &mut self.value_lists); debug_assert!(num <= u16::MAX as usize, "Too many parameters on block"); self.make_value(ValueData::Param { ty, num: num as u16, block, }) } /// Removes `val` from `block`'s parameters by swapping it with the last parameter on `block`. /// Returns the position of `val` before removal. /// /// *Important*: to ensure O(1) deletion, this method swaps the removed parameter with the /// last `block` parameter. This can disrupt all the branch instructions jumping to this /// `block` for which you have to change the branch argument order if necessary. /// /// Panics if `val` is not a block parameter. pub fn swap_remove_block_param(&mut self, val: Value) -> usize { let (block, num) = if let ValueData::Param { num, block, .. } = ValueData::from(self.values[val]) { (block, num) } else { panic!("{} must be a block parameter", val); }; self.blocks[block] .params .swap_remove(num as usize, &mut self.value_lists); if let Some(last_arg_val) = self.blocks[block] .params .get(num as usize, &self.value_lists) { // We update the position of the old last arg. let mut last_arg_data = ValueData::from(self.values[last_arg_val]); if let ValueData::Param { num: ref mut old_num, .. } = &mut last_arg_data { *old_num = num; self.values[last_arg_val] = last_arg_data.into(); } else { panic!("{} should be a Block parameter", last_arg_val); } } num as usize } /// Removes `val` from `block`'s parameters by a standard linear time list removal which /// preserves ordering. Also updates the values' data. pub fn remove_block_param(&mut self, val: Value) { let (block, num) = if let ValueData::Param { num, block, .. } = ValueData::from(self.values[val]) { (block, num) } else { panic!("{} must be a block parameter", val); }; self.blocks[block] .params .remove(num as usize, &mut self.value_lists); for index in num..(self.num_block_params(block) as u16) { let packed = &mut self.values[self.blocks[block] .params .get(index as usize, &self.value_lists) .unwrap()]; let mut data = ValueData::from(*packed); match &mut data { ValueData::Param { ref mut num, .. } => { *num -= 1; *packed = data.into(); } _ => panic!( "{} must be a block parameter", self.blocks[block] .params .get(index as usize, &self.value_lists) .unwrap() ), } } } /// Append an existing value to `block`'s parameters. /// /// The appended value can't already be attached to something else. /// /// In almost all cases, you should be using `append_block_param()` instead of this method. pub fn attach_block_param(&mut self, block: Block, param: Value) { debug_assert!(!self.value_is_attached(param)); let num = self.blocks[block].params.push(param, &mut self.value_lists); debug_assert!(num <= u16::MAX as usize, "Too many parameters on block"); let ty = self.value_type(param); self.values[param] = ValueData::Param { ty, num: num as u16, block, } .into(); } /// Replace a block parameter with a new value of type `ty`. /// /// The `old_value` must be an attached block parameter. It is removed from its place in the list /// of parameters and replaced by a new value of type `new_type`. The new value gets the same /// position in the list, and other parameters are not disturbed. /// /// The old value is left detached, so it should probably be changed into something else. /// /// Returns the new value. pub fn replace_block_param(&mut self, old_value: Value, new_type: Type) -> Value { // Create new value identical to the old one except for the type. let (block, num) = if let ValueData::Param { num, block, .. } = ValueData::from(self.values[old_value]) { (block, num) } else { panic!("{} must be a block parameter", old_value); }; let new_arg = self.make_value(ValueData::Param { ty: new_type, num, block, }); self.blocks[block] .params .as_mut_slice(&mut self.value_lists)[num as usize] = new_arg; new_arg } /// Detach all the parameters from `block` and return them as a `ValueList`. /// /// This is a quite low-level operation. Sensible things to do with the detached block parameters /// is to put them back on the same block with `attach_block_param()` or change them into aliases /// with `change_to_alias()`. pub fn detach_block_params(&mut self, block: Block) -> ValueList { self.blocks[block].params.take() } /// Merge the facts for two values. If both values have facts and /// they differ, both values get a special "conflict" fact that is /// never satisfied. pub fn merge_facts(&mut self, a: Value, b: Value) { let a = self.resolve_aliases(a); let b = self.resolve_aliases(b); match (&self.facts[a], &self.facts[b]) { (Some(a), Some(b)) if a == b => { /* nothing */ } (None, None) => { /* nothing */ } (Some(a), None) => { self.facts[b] = Some(a.clone()); } (None, Some(b)) => { self.facts[a] = Some(b.clone()); } (Some(a_fact), Some(b_fact)) => { assert_eq!(self.value_type(a), self.value_type(b)); let merged = Fact::intersect(a_fact, b_fact); crate::trace!( "facts merge on {} and {}: {:?}, {:?} -> {:?}", a, b, a_fact, b_fact, merged, ); self.facts[a] = Some(merged.clone()); self.facts[b] = Some(merged); } } } } /// Contents of a basic block. /// /// Parameters on a basic block are values that dominate everything in the block. All /// branches to this block must provide matching arguments, and the arguments to the entry block must /// match the function arguments. #[derive(Clone, PartialEq, Hash)] #[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))] pub struct BlockData { /// List of parameters to this block. params: ValueList, } impl BlockData { fn new() -> Self { Self { params: ValueList::new(), } } /// Get the parameters on `block`. pub fn params<'a>(&self, pool: &'a ValueListPool) -> &'a [Value] { self.params.as_slice(pool) } } /// Object that can display an instruction. pub struct DisplayInst<'a>(&'a DataFlowGraph, Inst); impl<'a> fmt::Display for DisplayInst<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let dfg = self.0; let inst = self.1; if let Some((first, rest)) = dfg.inst_results(inst).split_first() { write!(f, "{}", first)?; for v in rest { write!(f, ", {}", v)?; } write!(f, " = ")?; } let typevar = dfg.ctrl_typevar(inst); if typevar.is_invalid() { write!(f, "{}", dfg.insts[inst].opcode())?; } else { write!(f, "{}.{}", dfg.insts[inst].opcode(), typevar)?; } write_operands(f, dfg, inst) } } /// Parser routines. These routines should not be used outside the parser. impl DataFlowGraph { /// Set the type of a value. This is only for use in the parser, which needs /// to create invalid values for index padding which may be reassigned later. #[cold] fn set_value_type_for_parser(&mut self, v: Value, t: Type) { assert_eq!( self.value_type(v), types::INVALID, "this function is only for assigning types to previously invalid values" ); self.values[v].set_type(t); } /// Check that the given concrete `Type` has been defined in the function. pub fn check_dynamic_type(&mut self, ty: Type) -> Option { debug_assert!(ty.is_dynamic_vector()); if self .dynamic_types .values() .any(|dyn_ty_data| dyn_ty_data.concrete().unwrap() == ty) { Some(ty) } else { None } } /// Create result values for `inst`, reusing the provided detached values. /// This is similar to `make_inst_results_reusing` except it's only for use /// in the parser, which needs to reuse previously invalid values. #[cold] pub fn make_inst_results_for_parser( &mut self, inst: Inst, ctrl_typevar: Type, reuse: &[Value], ) -> usize { let mut reuse_iter = reuse.iter().copied(); let result_tys: SmallVec<[_; 16]> = self.inst_result_types(inst, ctrl_typevar).collect(); for ty in result_tys { if ty.is_dynamic_vector() { self.check_dynamic_type(ty) .unwrap_or_else(|| panic!("Use of undeclared dynamic type: {}", ty)); } if let Some(v) = reuse_iter.next() { self.set_value_type_for_parser(v, ty); } } self.make_inst_results_reusing(inst, ctrl_typevar, reuse.iter().map(|x| Some(*x))) } /// Similar to `append_block_param`, append a parameter with type `ty` to /// `block`, but using value `val`. This is only for use by the parser to /// create parameters with specific values. #[cold] pub fn append_block_param_for_parser(&mut self, block: Block, ty: Type, val: Value) { let num = self.blocks[block].params.push(val, &mut self.value_lists); assert!(num <= u16::MAX as usize, "Too many parameters on block"); self.values[val] = ValueData::Param { ty, num: num as u16, block, } .into(); } /// Create a new value alias. This is only for use by the parser to create /// aliases with specific values, and the printer for testing. #[cold] pub fn make_value_alias_for_serialization(&mut self, src: Value, dest: Value) { assert_ne!(src, Value::reserved_value()); assert_ne!(dest, Value::reserved_value()); let ty = if self.values.is_valid(src) { self.value_type(src) } else { // As a special case, if we can't resolve the aliasee yet, use INVALID // temporarily. It will be resolved later in parsing. types::INVALID }; let data = ValueData::Alias { ty, original: src }; self.values[dest] = data.into(); } /// If `v` is already defined as an alias, return its destination value. /// Otherwise return None. This allows the parser to coalesce identical /// alias definitions, and the printer to identify an alias's immediate target. #[cold] pub fn value_alias_dest_for_serialization(&self, v: Value) -> Option { if let ValueData::Alias { original, .. } = ValueData::from(self.values[v]) { Some(original) } else { None } } /// Compute the type of an alias. This is only for use in the parser. /// Returns false if an alias cycle was encountered. #[cold] pub fn set_alias_type_for_parser(&mut self, v: Value) -> bool { if let Some(resolved) = maybe_resolve_aliases(&self.values, v) { let old_ty = self.value_type(v); let new_ty = self.value_type(resolved); if old_ty == types::INVALID { self.set_value_type_for_parser(v, new_ty); } else { assert_eq!(old_ty, new_ty); } true } else { false } } /// Create an invalid value, to pad the index space. This is only for use by /// the parser to pad out the value index space. #[cold] pub fn make_invalid_value_for_parser(&mut self) { let data = ValueData::Alias { ty: types::INVALID, original: Value::reserved_value(), }; self.make_value(data); } /// Check if a value reference is valid, while being aware of aliases which /// may be unresolved while parsing. #[cold] pub fn value_is_valid_for_parser(&self, v: Value) -> bool { if !self.value_is_valid(v) { return false; } if let ValueData::Alias { ty, .. } = ValueData::from(self.values[v]) { ty != types::INVALID } else { true } } } #[cfg(test)] mod tests { use super::*; use crate::cursor::{Cursor, FuncCursor}; use crate::ir::types; use crate::ir::{Function, InstructionData, Opcode, TrapCode}; use alloc::string::ToString; #[test] fn make_inst() { let mut dfg = DataFlowGraph::new(); let idata = InstructionData::UnaryImm { opcode: Opcode::Iconst, imm: 0.into(), }; let inst = dfg.make_inst(idata); dfg.make_inst_results(inst, types::I32); assert_eq!(inst.to_string(), "inst0"); assert_eq!(dfg.display_inst(inst).to_string(), "v0 = iconst.i32 0"); // Immutable reference resolution. { let immdfg = &dfg; let ins = &immdfg.insts[inst]; assert_eq!(ins.opcode(), Opcode::Iconst); } // Results. let val = dfg.first_result(inst); assert_eq!(dfg.inst_results(inst), &[val]); assert_eq!(dfg.value_def(val), ValueDef::Result(inst, 0)); assert_eq!(dfg.value_type(val), types::I32); // Replacing results. assert!(dfg.value_is_attached(val)); let v2 = dfg.replace_result(val, types::F64); assert!(!dfg.value_is_attached(val)); assert!(dfg.value_is_attached(v2)); assert_eq!(dfg.inst_results(inst), &[v2]); assert_eq!(dfg.value_def(v2), ValueDef::Result(inst, 0)); assert_eq!(dfg.value_type(v2), types::F64); } #[test] fn no_results() { let mut dfg = DataFlowGraph::new(); let idata = InstructionData::Trap { opcode: Opcode::Trap, code: TrapCode::User(0), }; let inst = dfg.make_inst(idata); assert_eq!(dfg.display_inst(inst).to_string(), "trap user0"); // Result slice should be empty. assert_eq!(dfg.inst_results(inst), &[]); } #[test] fn block() { let mut dfg = DataFlowGraph::new(); let block = dfg.make_block(); assert_eq!(block.to_string(), "block0"); assert_eq!(dfg.num_block_params(block), 0); assert_eq!(dfg.block_params(block), &[]); assert!(dfg.detach_block_params(block).is_empty()); assert_eq!(dfg.num_block_params(block), 0); assert_eq!(dfg.block_params(block), &[]); let arg1 = dfg.append_block_param(block, types::F32); assert_eq!(arg1.to_string(), "v0"); assert_eq!(dfg.num_block_params(block), 1); assert_eq!(dfg.block_params(block), &[arg1]); let arg2 = dfg.append_block_param(block, types::I16); assert_eq!(arg2.to_string(), "v1"); assert_eq!(dfg.num_block_params(block), 2); assert_eq!(dfg.block_params(block), &[arg1, arg2]); assert_eq!(dfg.value_def(arg1), ValueDef::Param(block, 0)); assert_eq!(dfg.value_def(arg2), ValueDef::Param(block, 1)); assert_eq!(dfg.value_type(arg1), types::F32); assert_eq!(dfg.value_type(arg2), types::I16); // Swap the two block parameters. let vlist = dfg.detach_block_params(block); assert_eq!(dfg.num_block_params(block), 0); assert_eq!(dfg.block_params(block), &[]); assert_eq!(vlist.as_slice(&dfg.value_lists), &[arg1, arg2]); dfg.attach_block_param(block, arg2); let arg3 = dfg.append_block_param(block, types::I32); dfg.attach_block_param(block, arg1); assert_eq!(dfg.block_params(block), &[arg2, arg3, arg1]); } #[test] fn replace_block_params() { let mut dfg = DataFlowGraph::new(); let block = dfg.make_block(); let arg1 = dfg.append_block_param(block, types::F32); let new1 = dfg.replace_block_param(arg1, types::I64); assert_eq!(dfg.value_type(arg1), types::F32); assert_eq!(dfg.value_type(new1), types::I64); assert_eq!(dfg.block_params(block), &[new1]); dfg.attach_block_param(block, arg1); assert_eq!(dfg.block_params(block), &[new1, arg1]); let new2 = dfg.replace_block_param(arg1, types::I8); assert_eq!(dfg.value_type(arg1), types::F32); assert_eq!(dfg.value_type(new2), types::I8); assert_eq!(dfg.block_params(block), &[new1, new2]); dfg.attach_block_param(block, arg1); assert_eq!(dfg.block_params(block), &[new1, new2, arg1]); let new3 = dfg.replace_block_param(new2, types::I16); assert_eq!(dfg.value_type(new1), types::I64); assert_eq!(dfg.value_type(new2), types::I8); assert_eq!(dfg.value_type(new3), types::I16); assert_eq!(dfg.block_params(block), &[new1, new3, arg1]); } #[test] fn swap_remove_block_params() { let mut dfg = DataFlowGraph::new(); let block = dfg.make_block(); let arg1 = dfg.append_block_param(block, types::F32); let arg2 = dfg.append_block_param(block, types::F32); let arg3 = dfg.append_block_param(block, types::F32); assert_eq!(dfg.block_params(block), &[arg1, arg2, arg3]); dfg.swap_remove_block_param(arg1); assert_eq!(dfg.value_is_attached(arg1), false); assert_eq!(dfg.value_is_attached(arg2), true); assert_eq!(dfg.value_is_attached(arg3), true); assert_eq!(dfg.block_params(block), &[arg3, arg2]); dfg.swap_remove_block_param(arg2); assert_eq!(dfg.value_is_attached(arg2), false); assert_eq!(dfg.value_is_attached(arg3), true); assert_eq!(dfg.block_params(block), &[arg3]); dfg.swap_remove_block_param(arg3); assert_eq!(dfg.value_is_attached(arg3), false); assert_eq!(dfg.block_params(block), &[]); } #[test] fn aliases() { use crate::ir::condcodes::IntCC; use crate::ir::InstBuilder; let mut func = Function::new(); let block0 = func.dfg.make_block(); let mut pos = FuncCursor::new(&mut func); pos.insert_block(block0); // Build a little test program. let v1 = pos.ins().iconst(types::I32, 42); // Make sure we can resolve value aliases even when values is empty. assert_eq!(pos.func.dfg.resolve_aliases(v1), v1); let arg0 = pos.func.dfg.append_block_param(block0, types::I32); let (s, c) = pos.ins().uadd_overflow(v1, arg0); let iadd = match pos.func.dfg.value_def(s) { ValueDef::Result(i, 0) => i, _ => panic!(), }; // Remove `c` from the result list. pos.func.dfg.clear_results(iadd); pos.func.dfg.attach_result(iadd, s); // Replace `uadd_overflow` with a normal `iadd` and an `icmp`. pos.func.dfg.replace(iadd).iadd(v1, arg0); let c2 = pos.ins().icmp(IntCC::Equal, s, v1); pos.func.dfg.change_to_alias(c, c2); assert_eq!(pos.func.dfg.resolve_aliases(c2), c2); assert_eq!(pos.func.dfg.resolve_aliases(c), c2); } #[test] fn cloning() { use crate::ir::InstBuilder; let mut func = Function::new(); let mut sig = Signature::new(crate::isa::CallConv::SystemV); sig.params.push(ir::AbiParam::new(types::I32)); let sig = func.import_signature(sig); let block0 = func.dfg.make_block(); let mut pos = FuncCursor::new(&mut func); pos.insert_block(block0); let v1 = pos.ins().iconst(types::I32, 0); let v2 = pos.ins().iconst(types::I32, 1); let call_inst = pos.ins().call_indirect(sig, v1, &[v1]); let func = pos.func; let call_inst_dup = func.dfg.clone_inst(call_inst); func.dfg.inst_args_mut(call_inst)[0] = v2; assert_eq!(v1, func.dfg.inst_args(call_inst_dup)[0]); } }