{ "cells": [ { "cell_type": "markdown", "metadata": { "toc": "true" }, "source": [ "

Table of Contents

\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![nol](~/grad_research_2017/yuri/midterm_presentation/スライド6.jpg)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 英語学習ソフトの開発\n", "\n", "# introduction\n", "\n", "## なぜ英語\n", "本社では英語使用が当たり前なんで...\n", "\n", "## どこまで\n", "TOEIC 700点以上\n", "\n", "## どうする\n", "\n", "はじめ考えた欠点は,reading speedが遅いということであった.\n", "そこで,領域実習において学生全員でreading speedの実測を行った.\n", "\n", "\n", "その結果,私の順位はそれほど低くなかった.\n", "その後,検討の結果,単語数が圧倒的に少ないということを自覚した.\n", "では,「TOEIC 700点をclearするために必要な単語数は?」\n", "ということでGoogleと\n", "[TOEICで必要な語彙数](http://www.99institute.com/blog/2017/04/toeicで必要な語彙数は?あなたの今の語彙数はどれ.html)\n", "にあるとおり,8000語が必要ということがわかった.\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAEwxJREFUeJzt3Xu0pXVdx/H3R0ayFLnIgYUQjtZk\n3gc5koa4AqTULowpoblsKGq6WdplJVYLybygUWTlyjUBOq0sQRAZ0UyawEuZcmBGuTuKoATNjBcu\nYV6Qb388z8Se4czsfc7Ze87Mz/drrVnPZf+e/XyfvZ/z2b/92/vZk6pCkrTne8hiFyBJGg8DXZIa\nYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktSIJbtyZwceeGAtXbp0V+5SkvZ4V1111Zer\nampYu10a6EuXLmVmZmZX7lKS9nhJbh2lnUMuktQIA12SGmGgS1IjDHRJaoSBLkmNGBroSR6fZMPA\nv7uTvCrJAUkuS7Kxn+6/KwqWJM1uaKBX1U1VtbyqlgNHAl8HLgZOA9ZV1TJgXb8sSVokcx1yOR74\nfFXdCpwIrOnXrwFWjLMwSdLczDXQXwL8Uz9/cFXdAdBPDxpnYZKkuRn5StEkewM/A7xmLjtIsgpY\nBXD44YfPqbjmnbHvYlcwmjPuWuwKJI1gLj305wNXV9WmfnlTkkMA+unm2TaqqtVVNV1V01NTQ3+K\nQJI0T3MJ9JfywHALwFpgZT+/ErhkXEVJkuZupEBP8n3ACcB7B1afCZyQZGN/25njL0+SNKqRxtCr\n6uvAo7Zb9xW6b71IknYDXikqSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmN\nMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1IiR\nAj3JfkkuTHJjkhuSPCvJAUkuS7Kxn+4/6WIlSTs2ag/9rcCHquqHgacBNwCnAeuqahmwrl+WJC2S\noYGe5JHAc4BzAarqW1V1J3AisKZvtgZYMakiJUnDjdJDfxywBXhHkvVJzknycODgqroDoJ8eNNvG\nSVYlmUkys2XLlrEVLkna1iiBvgR4OvC3VXUEcC9zGF6pqtVVNV1V01NTU/MsU5I0zCiBfhtwW1V9\nsl++kC7gNyU5BKCfbp5MiZKkUQwN9Kr6b+BLSR7frzoeuB5YC6zs160ELplIhZKkkSwZsd1vAe9K\nsjdwM/CLdC8GFyQ5FfgicNJkSpQkjWKkQK+qDcD0LDcdP95yJEnz5ZWiktQIA12SGmGgS1IjDHRJ\naoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RG\nGOiS1AgDXZIaYaBLUiMMdElqxEj/SXSSW4B7gO8A91XVdJIDgPOBpcAtwM9V1dcmU6YkaZi59NCP\nrarlVTXdL58GrKuqZcC6flmStEgWMuRyIrCmn18DrFh4OZKk+Ro10Av4cJKrkqzq1x1cVXcA9NOD\nJlGgJGk0I42hA0dX1e1JDgIuS3LjqDvoXwBWARx++OHzKFGSNIqReuhVdXs/3QxcDBwFbEpyCEA/\n3byDbVdX1XRVTU9NTY2naknSgwwN9CQPT7LP1nngx4FrgbXAyr7ZSuCSSRUpSRpulCGXg4GLk2xt\n/49V9aEkVwIXJDkV+CJw0uTK1B7hjH0Xu4LRnHHXYlcgTcTQQK+qm4GnzbL+K8DxkyhKkjR3Xikq\nSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqRGj/nzu4vN3QiRtz1zY\nhj10SWqEgS5JjdhzhlwkLZxDFE2zhy5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiNGDvQk\neyVZn+TSfvmxST6ZZGOS85PsPbkyJUnDzKWH/krghoHlNwNnV9Uy4GvAqeMsTJI0NyMFepLDgJ8E\nzumXAxwHXNg3WQOsmESBkqTRjNpD/0vgD4D7++VHAXdW1X398m3AobNtmGRVkpkkM1u2bFlQsZKk\nHRsa6El+CthcVVcNrp6lac22fVWtrqrpqpqempqaZ5mSpGFG+XGuo4GfSfIC4GHAI+l67PslWdL3\n0g8Dbp9cmZKkYYb20KvqNVV1WFUtBV4C/FtVvQy4HHhx32wlcMnEqpQkDbWQ76G/GvjdJJ+jG1M/\ndzwlSZLmY06/h15VVwBX9PM3A0eNvyRJ0nx4pagkNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEu\nSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLU\nCANdkhoxNNCTPCzJp5J8Osl1Sf6kX//YJJ9MsjHJ+Un2nny5kqQdGaWH/k3guKp6GrAceF6SZwJv\nBs6uqmXA14BTJ1emJGmYoYFenf/pFx/a/yvgOODCfv0aYMVEKpQkjWSkMfQkeyXZAGwGLgM+D9xZ\nVff1TW4DDp1MiZKkUYwU6FX1napaDhwGHAU8YbZms22bZFWSmSQzW7ZsmX+lkqSdmtO3XKrqTuAK\n4JnAfkmW9DcdBty+g21WV9V0VU1PTU0tpFZJ0k6M8i2XqST79fPfCzwXuAG4HHhx32wlcMmkipQk\nDbdkeBMOAdYk2YvuBeCCqro0yfXAu5O8HlgPnDvBOiVJQwwN9Kr6DHDELOtvphtPlyTtBrxSVJIa\nYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREG\nuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWrEKP9JtPTd6Yx9F7uC0Zxx12JXoN2EPXRJasTQQE/y\n/UkuT3JDkuuSvLJff0CSy5Js7Kf7T75cSdKOjNJDvw/4vap6AvBM4DeTPBE4DVhXVcuAdf2yJGmR\nDA30qrqjqq7u5+8BbgAOBU4E1vTN1gArJlWkJGm4OY2hJ1kKHAF8Eji4qu6ALvSBg8ZdnCRpdCMH\nepJHABcBr6qqu+ew3aokM0lmtmzZMp8aJUkjGCnQkzyULszfVVXv7VdvSnJIf/shwObZtq2q1VU1\nXVXTU1NT46hZkjSLUb7lEuBc4Iaq+ouBm9YCK/v5lcAl4y9PkjSqUS4sOhp4OXBNkg39uj8EzgQu\nSHIq8EXgpMmUKEkaxdBAr6qPA9nBzcePtxxJ0nx5pagkNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElq\nhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY\n6JLUCANdkhphoEtSI4YGepLzkmxOcu3AugOSXJZkYz/df7JlSpKGGaWH/k7gedutOw1YV1XLgHX9\nsiRpEQ0N9Kr6KPDV7VafCKzp59cAK8ZclyRpjuY7hn5wVd0B0E8P2lHDJKuSzCSZ2bJlyzx3J0ka\nZuIfilbV6qqarqrpqampSe9Okr5rzTfQNyU5BKCfbh5fSZKk+ZhvoK8FVvbzK4FLxlOOJGm+Rvna\n4j8BnwAen+S2JKcCZwInJNkInNAvS5IW0ZJhDarqpTu46fgx1yJJWgCvFJWkRhjoktQIA12SGmGg\nS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrok\nNcJAl6RGGOiS1AgDXZIaYaBLUiMWFOhJnpfkpiSfS3LauIqSJM3dvAM9yV7A24DnA08EXprkieMq\nTJI0NwvpoR8FfK6qbq6qbwHvBk4cT1mSpLlaSKAfCnxpYPm2fp0kaRGkqua3YXIS8BNV9cv98suB\no6rqt7ZrtwpY1S8+Hrhp/uWO3YHAlxe7iDFr7Zg8nt1fa8e0Ox7PY6pqalijJQvYwW3A9w8sHwbc\nvn2jqloNrF7AfiYmyUxVTS92HePU2jF5PLu/1o5pTz6ehQy5XAksS/LYJHsDLwHWjqcsSdJczbuH\nXlX3JXkF8C/AXsB5VXXd2CqTJM3JQoZcqKoPAh8cUy2LYbccClqg1o7J49n9tXZMe+zxzPtDUUnS\n7sVL/yWpEU0EepIzkvz+PLY7JcnfTKKmOdTw20luSPKunbT5j3766CQX7rrqFi7J0iTXLsY+kkwn\n+asJ7fN1SZ67k9vfmeTFs6z//+cwyfIkL1hgHR9Mst9C7mPcdvT3OOwx2xPs7sewoDF0jcVvAM+v\nqi/sqEFV/Wg/vR14UEgsVJIlVXXfuO93sVXVDDAzofs+fZ7bDT6Hy4FpFvA5VFUt6AVhV5rvY7a7\nSLLX7n4Me2wPPckf9T8M9q90Fyxt7fH8Z5LPJLk4yf79+iuSvDnJp5J8Nskxs9zfTyb5RJIDk0wl\nuSjJlf2/o5M8JMnGJFN9+4f0P0p24AKO4e3A44C1Se4a7NUkuTbJ0n7+f/rp//dE+3cX70vy/iRf\nSPKKJL+bZH3/GBwwcOzT/fyBSW4Z2P49Sd4PfDjJI5KsS3J1kmuSjP1nHJI8rq/vmCTv6PezPsmx\n/e0fTPLUfn59ktP7+T9N8suj1Diwj2ck+bEkly6w5qX9O6i/S3Jdkg8n+d7BHniSM5Nc3593Zw1s\n/pwk/5Hk5oG2S/vndm/gdcDJSTYkOTnJUX379f1063l9SpL3JvlQfw6+ZaC+WxZyDs5yvA9P8oEk\nn+7rPDnJ8X1N1yQ5L8n3bL/vdO+Grpjl/n4lyT9v/5gtlv5ceuXA8hvSvUu+dGDd3yQ5pZ+/Jcnp\nST4OnLQ7HMPO7JGBnuRIuu+9HwH8LPCM/qa/B15dVU8FrgFeO7DZkqo6CnjVdutJ8kLgNOAFVfVl\n4K3A2VX1DOBFwDlVdT/wD8DL+s2eC3y6bz8vVfVrdBdjHQucPY+7eDLw83S/q/MG4OtVdQTwCeAX\nRtj+WcDKqjoO+Abwwqp6el/PnyfJPGqaVR9OFwG/2NdLVT0FeCmwJsnDgI8CxyR5JHAfcHS/+bOB\njw2rcXAfVXXluGoHlgFvq6onAXfSnRNb93kA8ELgSf159/qB7Q7pa/8p4MzBO+x//+h04PyqWl5V\n5wM3As/pn8PTgTcObLIcOBl4Ct2LwOBFfeP0POD2qnpaVT0Z+BDwTuDk/vlaAvz6KHeU7mvNPw2s\nqKr/nVC9c3UusBK6ThldjvzXkG2+UVXPrqp3T7q4hdpTh1yOAS6uqq8DJFkLPBzYr6o+0rdZA7xn\nYJv39tOrgKUD64+le9v741V1d7/uucATB7LikUn2Ac4DLgH+Evgl4B1jPKb5uLyq7gHuSXIX8P5+\n/TXAU0fY/rKq+mo/H+CNSZ4D3E/3uzwHA/89hjqn6B63F1XVdUleC/w1QFXdmORW4IfoQvu3gS8A\nHwBOSPJ9wNKquinJQ3dQ44P2MYaaB32hqjb089ufP3fTvdCck+QDwOA7gvf1HYHrkxzMcPvSvbgt\nAwp46MBt66rqLoAk1wOPYdvfUhqXa4CzkryZ7ljupjv+z/a3rwF+k+5vYGdeTnc1+Yqq+vYE6pyX\nqrolyVeSHEF37qwHvjJks/MnX9l47JE99N5cv2/5zX76HbZ9IbsZ2IcuULZ6CPCsvue0vKoOrap7\nqupLwKYkxwE/AvzzPGufzX1s+3w8bIRtvjkwf//A8v08cIyD97v9fd47MP8yulA8sqqWA5tGrGEU\nd9GFz9Ye9456/lfSvbgeQ9dbXw/8Cl2IDqtx+32M0+DjvM3503/2cBTdO4MVdD3a2bYb5d3On9K9\nSD+Zrmc7+PjvsIZx6oP7SLpgfxM7/wXVnZ1b19K98B025hLH4RzgFLp3i+cx/G/vXvYQe2qgfxR4\nYT8utw/dyX8v8LU8MD7+cuAjO7qDAbfSDdv8fZIn9es+DLxia4Mkywfan0M39HJBVX1nYYexjVuA\np/f7ezrw2DHe75H9/M7G/vYFNlfVt/sx7ceMaf8A36ILu19I8vN0z9/LAJL8EHA4cFM/DPEl4OeA\n/6Trsf9+Px1W4/b72CWSPALYt7/I7lV0QyOjuoeuM7HVvjzw9v+UsRQ4R0keTTd09w/AWcCPAkuT\n/GDfZPDv6hYeOLdexLbWA79K9/nQoyda9NxdTDe09Ay6K91vpXtH/j1J9gWOX8ziFmKPDPSqupru\nbdAGup7R1j/4lcCfJfkM3R/W60a8v5voAuY9SX6A7m3/dP8h1/XArw00Xws8gvEPt1wEHJBkA90Y\n5WcHblvI1V9nAb+e7quPO/vw7F10xzxD91jcuIB9PkhV3Us3lvw7wOeBvZJcQ/c8nlJVW3ugHwM2\n9cNpH6Pr4W19fnda4+A+MoEPdXdgH+DS/pz7CN3xjepyuiDZkORk4C3Am5L8O93PaSyGpwCf6s/D\nPwL+mK4n+57++bofeHvf9k+Atyb5GN27hm1U1cfpXpA/MM4Pbheq7zhcTt8p6995XwB8hu4cW7+Y\n9S2EV4rOUbpvjJxdVQ/6psyE9vco4OqqGmePWfqu1X8YejVwUlVtXOx6xmmP7KEvlnT/b+pFwGt2\n0f4eTfeNlbOGtZU0XLr/JvNzdB8yNxXmYA9dkpphD12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1\n4v8AzpIJKdpuOsgAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "member = np.array([\"yuri\", \"donkey\", \"nishitani\", \"kowaki\", \"souki\", \"fujimura\"])\n", "data1 = np.array([45, 45, 22, 49, 44, 70])\n", "plt.bar(member, data1)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "matplotlibを参照して,適切なplotを作成してください." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false }, "toc": { "nav_menu": { "height": "12px", "width": "252px" }, "number_sections": true, "sideBar": true, "skip_h1_title": false, "toc_cell": true, "toc_position": {}, "toc_section_display": "block", "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }