module DNN module Layers #Super class of all optimizer classes. class Layer include Numo def initialize @builded = false end #Initialize layer when model is compiled. def build(model) @builded = true @model = model end def builded? @builded end #Forward propagation. def forward() end #Backward propagation. def backward() end #Get the shape of the layer. def shape prev_layer.shape end #Layer to a hash. def to_hash {name: self.class.name} end #Get the previous layer. def prev_layer @model.layers[@model.layers.index(self) - 1] end end class HasParamLayer < Layer attr_reader :params #The parameters of the layer. attr_reader :grads #Differential value of parameter of layer. def initialize @params = {} @grads = {} end def build(model) super init_params end #Update the parameters. def update @model.optimizer.update(self) end private #Initialize of the parameters. def init_params() end end class InputLayer < Layer attr_reader :shape def self.load_hash(hash) self.new(hash[:shape]) end def initialize(dim_or_shape) @shape = dim_or_shape.is_a?(Array) ? dim_or_shape : [dim_or_shape] end def forward(x) x end def backward(dout) dout end def to_hash {name: self.class.name, shape: @shape} end end class Dense < HasParamLayer include Initializers attr_reader :num_nodes attr_reader :weight_decay def initialize(num_nodes, weight_initializer: nil, bias_initializer: nil, weight_decay: 0) super() @num_nodes = num_nodes @weight_initializer = (weight_initializer || RandomNormal.new) @bias_initializer = (bias_initializer || Zeros.new) @weight_decay = weight_decay end def self.load_hash(hash) self.new(hash[:num_nodes], weight_initializer: Util.load_hash(hash[:weight_initializer]), bias_initializer: Util.load_hash(hash[:bias_initializer]), weight_decay: hash[:weight_decay]) end def forward(x) @x = x @x.dot(@params[:weight]) + @params[:bias] end def backward(dout) @grads[:weight] = @x.transpose.dot(dout) if @weight_decay > 0 dridge = @weight_decay * @params[:weight] @grads[:weight] += dridge end @grads[:bias] = dout.sum(0) dout.dot(@params[:weight].transpose) end def shape [@num_nodes] end def to_hash { name: self.class.name, num_nodes: @num_nodes, weight_initializer: @weight_initializer.to_hash, bias_initializer: @bias_initializer.to_hash, weight_decay: @weight_decay, } end private def init_params num_prev_nodes = prev_layer.shape[0] @params[:weight] = SFloat.new(num_prev_nodes, @num_nodes) @params[:bias] = SFloat.new(@num_nodes) @weight_initializer.init_param(self, :weight) @bias_initializer.init_param(self, :bias) end end #private module module Convert private def im2col(img, out_w, out_h, fil_w, fil_h, strides) bsize = img.shape[0] ch = img.shape[3] col = SFloat.zeros(bsize, ch, fil_w, fil_h, out_w, out_h) img = img.transpose(0, 3, 1, 2) (0...fil_h).each do |i| i_range = (i...(i + strides[1] * out_h)).step(strides[1]).to_a (0...fil_w).each do |j| j_range = (j...(j + strides[0] * out_w)).step(strides[0]).to_a col[true, true, j, i, true, true] = img[true, true, j_range, i_range] end end col.transpose(0, 4, 5, 2, 3, 1).reshape(bsize * out_w * out_h, fil_w * fil_h * ch) end def col2im(col, img_shape, out_w, out_h, fil_w, fil_h, strides) bsize, img_w, img_h, ch = img_shape col = col.reshape(bsize, out_w, out_h, fil_w, fil_h, ch).transpose(0, 5, 3, 4, 1, 2) img = SFloat.zeros(bsize, ch, img_w, img_h) (0...fil_h).each do |i| i_range = (i...(i + strides[1] * out_h)).step(strides[1]).to_a (0...fil_w).each do |j| j_range = (j...(j + strides[0] * out_w)).step(strides[0]).to_a img[true, true, j_range, i_range] += col[true, true, j, i, true, true] end end img.transpose(0, 2, 3, 1) end def padding(img, pad) bsize, img_w, img_h, ch = img.shape img2 = SFloat.zeros(bsize, img_w + pad[0], img_h + pad[1], ch) i_begin = pad[1] / 2 i_end = i_begin + img_h j_begin = pad[0] / 2 j_end = j_begin + img_w img2[true, j_begin...j_end, i_begin...i_end, true] = img img2 end def back_padding(img, pad) i_begin = pad[1] / 2 i_end = img.shape[2] - (pad[1] / 2.0).round j_begin = pad[0] / 2 j_end = img.shape[1] - (pad[0] / 2.0).round img[true, j_begin...j_end, i_begin...i_end, true] end def out_size(prev_w, prev_h, fil_w, fil_h, strides) out_w = (prev_w - fil_w) / strides[1] + 1 out_h = (prev_h - fil_h) / strides[0] + 1 [out_w, out_h] end end class Conv2D < HasParamLayer include Initializers include Convert def initialize(num_filters, filter_width, filter_height, weight_initializer: nil, bias_initializer: nil, strides: [1, 1], padding: false, weight_decay: 0) super() @num_filters = num_filters @filter_width = filter_width @filter_height = filter_height @weight_initializer = (weight_initializer || RandomNormal.new) @bias_initializer = (bias_initializer || Zeros.new) @strides = strides @padding = padding @weight_decay = weight_decay end def self.load_hash(hash) Conv2D.new(hash[:num_filters], hash[:filter_width], hash[:filter_height], weight_initializer: Util.load_hash(hash[:weight_initializer]), bias_initializer: Util.load_hash(hash[:bias_initializer]), strides: hash[:strides], padding: hash[:padding], weight_decay: hash[:weight_decay]) end def build(model) super prev_width, prev_height = prev_layer.shape[0..1] @out_width, @out_height = out_size(prev_width, prev_height, @filter_width, @filter_height, @strides) if @padding @pad = [prev_width - @out_width, prev_height - @out_height] @out_width = prev_width @out_height = prev_height end end def forward(x) x = padding(x, @pad) if @padding @x_shape = x.shape @col = im2col(x, @out_width, @out_height, @filter_width, @filter_height, @strides) out = @col.dot(@params[:weight]) out.reshape(x.shape[0], @out_width, @out_height, out.shape[3]) end def backward(dout) dout = dout.reshape(dout.shape[0..2].reduce(:*), dout.shape[3]) @grads[:weight] = @col.transpose.dot(dout) if @weight_decay > 0 dridge = @weight_decay * @params[:weight] @grads[:weight] += dridge end @grads[:bias] = dout.sum(0) dcol = dout.dot(@params[:weight].transpose) dx = col2im(dcol, @x_shape, @out_width, @out_height, @filter_width, @filter_height, @strides) @padding ? back_padding(dx, @pad) : dx end def shape [@out_width, @out_height, @num_filters] end def to_hash { name: self.class.name, num_filters: @num_filters, filter_width: @filter_width, filter_height: @filter_height, weight_initializer: @weight_initializer.to_hash, bias_initializer: @bias_initializer.to_hash, strides: @strides, padding: @padding, weight_decay: @weight_decay, } end private def init_params num_prev_filter = prev_layer.shape[2] @params[:weight] = SFloat.new(num_prev_filter * @filter_width * @filter_height, @num_filters) @params[:bias] = SFloat.new(@num_filters) @weight_initializer.init_param(self, :weight) @bias_initializer.init_param(self, :bias) end end class MaxPool2D < Layer include Convert def initialize(pool_width, pool_height, strides: nil, padding: false) @pool_width = pool_width @pool_height = pool_height @strides = strides ? strides : [@pool_width, @pool_height] @padding = padding end def build(model) super prev_width, prev_height = prev_layer.shape[0..1] @num_channel = prev_layer.shape[2] @out_width, @out_height = out_size(prev_width, prev_height, @pool_width, @pool_height, @strides) if @padding @pad = [prev_width - @out_width, prev_height - @out_height] @out_width = prev_width @out_height = prev_height end end def forward(x) x = padding(x, @pad) if @padding @x_shape = x.shape col = im2col(x, @out_width, @out_height, @pool_width, @pool_height, @strides) col = col.reshape(x.shape[0] * @out_width * @out_height * x.shape[3], @pool_width * @pool_height) @max_index = col.max_index(1) col.max(1).reshape(x.shape[0], @out_width, @out_height, x.shape[3])#.transpose(0, 3, 1, 2) end def backward(dout) pool_size = @pool_width * @pool_height dmax = SFloat.zeros(dout.size * pool_size) dmax[@max_index] = dout.flatten dcol = dmax.reshape(dout.shape[0..2].reduce(:*), dout.shape[3] * pool_size) dx = col2im(dcol, @x_shape, @out_width, @out_height, @pool_width, @pool_height, @strides) @padding ? back_padding(dx, @pad) : dx end def shape [@out_width, @out_height, @num_channel] end def to_hash { name: self.class.name, pool_width: @pool_width, pool_height: @pool_height, strides: @strides, padding: @padding, } end end class Flatten < Layer def forward(x) @shape = x.shape x.reshape(x.shape[0], x.shape[1..-1].reduce(:*)) end def backward(dout) dout.reshape(*@shape) end def shape [prev_layer.shape.reduce(:*)] end end class Reshape < Layer attr_reader :shape def initialize(shape) @shape = shape @x_shape = nil end def self.load_hash(hash) self.new(hash[:shape]) end def forward(x) @x_shape = x.shape x.reshape(*@shape) end def backward(dout) dout.reshape(@x_shape) end def to_hash {name: self.class.name, shape: @shape} end end class OutputLayer < Layer private def ridge @model.layers.select { |layer| layer.respond_to?(:weight_decay) } .reduce(0) { |sum, layer| layer.weight_decay * (layer.params[:weight]**2).sum } end end class Dropout < Layer def initialize(dropout_ratio) @dropout_ratio = dropout_ratio @mask = nil end def self.load(hash) self.new(hash[:dropout_ratio]) end def forward(x) if @model.training @mask = SFloat.ones(*x.shape).rand < @dropout_ratio x[@mask] = 0 else x *= (1 - @dropout_ratio) end x end def backward(dout) dout[@mask] = 0 if @model.training dout end end class BatchNormalization < HasParamLayer def forward(x) @mean = x.mean(0) @xc = x - @mean @var = (@xc**2).mean(0) @std = NMath.sqrt(@var + 1e-7) @xn = @xc / @std @params[:gamma] * @xn + @params[:beta] end def backward(dout) batch_size = dout.shape[0] @grads[:beta] = dout.sum(0) @grads[:gamma] = (@xn * dout).sum(0) dxn = @params[:gamma] * dout dxc = dxn / @std dstd = -((dxn * @xc) / (@std**2)).sum(0) dvar = 0.5 * dstd / @std dxc += (2.0 / batch_size) * @xc * dvar dmean = dxc.sum(0) dxc - dmean / batch_size end private def init_params @params[:gamma] = SFloat.ones(*shape) @params[:beta] = SFloat.zeros(*shape) end end end end