# coding: utf-8 module RDF::Reasoner ## # Rules for generating RDFS entailment triples # # Extends `RDF::URI` and `RDF::Statement` with specific entailment capabilities module RDFS ## # @return [RDF::Util::Cache] # @private def subClassOf_cache @@subClassOf_cache ||= RDF::Util::Cache.new(-1) end ## # @return [RDF::Util::Cache] # @private def subClass_cache @@subClass_cache_cache ||= RDF::Util::Cache.new(-1) end ## # @return [RDF::Util::Cache] # @private def descendant_cache @@descendant_cache ||= RDF::Util::Cache.new(-1) end ## # @return [RDF::Util::Cache] # @private def subPropertyOf_cache @@subPropertyOf_cache ||= RDF::Util::Cache.new(-1) end ## # For a Term: yield or return inferred subClassOf relationships by recursively applying to named super classes to get a complete set of classes in the ancestor chain of this class # For a Statement: if predicate is `rdf:types`, yield or return inferred statements having a subClassOf relationship to the type of this statement # @todo Should be able to entail owl:Restriction, which is a BNode. This should be allowed, and also add BNode values of that node, recursively, similar to SPARQL concise_bounded_description.uu # @private def _entail_subClassOf case self when RDF::URI, RDF::Node unless class? yield self if block_given? return Array(self) end terms = subClassOf_cache[self] ||= ( Array(self.subClassOf). map {|c| c._entail_subClassOf rescue c}. flatten + Array(self) ).compact terms.each {|t| yield t} if block_given? terms when RDF::Statement statements = [] if self.predicate == RDF.type if term = (RDF::Vocabulary.find_term(self.object) rescue nil) term._entail_subClassOf do |t| next if t.node? # Don't entail BNodes statements << RDF::Statement(self.to_h.merge(object: t, inferred: true)) end end #$stderr.puts("subClassf(#{self.predicate.pname}): #{statements.map(&:object).map {|r| r.respond_to?(:pname) ? r.pname : r.to_ntriples}}}") end statements.each {|s| yield s} if block_given? statements else [] end end ## # For a Term: yield or return inferred subClass relationships by recursively applying to named sub classes to get a complete set of classes in the descendant chain of this class # For a Statement: this is a no-op, as it's not useful in this context # @private def _entail_subClass case self when RDF::URI, RDF::Node unless class? yield self if block_given? return Array(self) end terms = descendant_cache[self] ||= ( Array(self.subClass). map {|c| c._entail_subClass rescue c}. flatten + Array(self) ).compact terms.each {|t| yield t} if block_given? terms else [] end end ## # Get the immediate subclasses of this class. # # This iterates over terms defined in the vocabulary of this term, as well as the vocabularies imported by this vocabulary. # @return [Array] def subClass raise RDF::Reasoner::Error, "#{self} Can't entail subClass" unless class? subClass_cache[self] ||= ([self.vocab] + self.vocab.imported_from).map do |v| Array(v.properties).select {|p| p.class? && Array(p.subClassOf).include?(self)} end.flatten.compact end ## # For a Term: yield or return inferred subPropertyOf relationships by recursively applying to named super classes to get a complete set of classes in the ancestor chain of this class # For a Statement: yield or return inferred statements having a subPropertyOf relationship to predicate of this statement # @private def _entail_subPropertyOf case self when RDF::URI, RDF::Node unless property? yield self if block_given? return Array(self) end terms = subPropertyOf_cache[self] ||= ( Array(self.subPropertyOf). map {|c| c._entail_subPropertyOf rescue c}. flatten + Array(self) ).compact terms.each {|t| yield t} if block_given? terms when RDF::Statement statements = [] if term = (RDF::Vocabulary.find_term(self.predicate) rescue nil) term._entail_subPropertyOf do |t| statements << RDF::Statement(self.to_h.merge(predicate: t, inferred: true)) end #$stderr.puts("subPropertyOf(#{self.predicate.pname}): #{statements.map(&:object).map {|r| r.respond_to?(:pname) ? r.pname : r.to_ntriples}}}") end statements.each {|s| yield s} if block_given? statements else [] end end ## # For a Statement: yield or return inferred statements having an rdf:type of the domain of the statement predicate # @todo Should be able to entail owl:unionOf, which is a BNode. This should be allowed, and also add BNode values of that node, recursively, similar to SPARQL concise_bounded_description.uu # @private def _entail_domain case self when RDF::Statement statements = [] if term = (RDF::Vocabulary.find_term(self.predicate) rescue nil) term.domain.each do |t| next if t.node? # Don't entail BNodes statements << RDF::Statement(self.to_h.merge(predicate: RDF.type, object: t, inferred: true)) end end #$stderr.puts("domain(#{self.predicate.pname}): #{statements.map(&:object).map {|r| r.respond_to?(:pname) ? r.pname : r.to_ntriples}}}") statements.each {|s| yield s} if block_given? statements else [] end end ## # For a Statement: if object is a resource, yield or return inferred statements having an rdf:type of the range of the statement predicate # @todo Should be able to entail owl:unionOf, which is a BNode. This should be allowed, and also add BNode values of that node, recursively, similar to SPARQL concise_bounded_description.uu # @private def _entail_range case self when RDF::Statement statements = [] if object.resource? && term = (RDF::Vocabulary.find_term(self.predicate) rescue nil) term.range.each do |t| next if t.node? # Don't entail BNodes statements << RDF::Statement(self.to_h.merge(subject: self.object, predicate: RDF.type, object: t, inferred: true)) end end #$stderr.puts("range(#{self.predicate.pname}): #{statements.map(&:object).map {|r| r.respond_to?(:pname) ? r.pname : r.to_ntriples}}") statements.each {|s| yield s} if block_given? statements else [] end end ## # RDFS requires that if the property has a domain, and the resource has a type that some type matches every domain. # # Note that this is different than standard entailment, which simply asserts that the resource has every type in the domain, but this is more useful to check if published data is consistent with the vocabulary definition. # # @param [RDF::Resource] resource # @param [RDF::Queryable] queryable # @param [Hash{Symbol => Object}] options ({}) # @option options [Array] :types # Fully entailed types of resource, if not provided, they are queried def domain_compatible_rdfs?(resource, queryable, options = {}) raise RDF::Reasoner::Error, "#{self} can't get domains" unless property? domains = Array(self.domain).reject(&:node?) - [RDF::OWL.Thing, RDF::RDFS.Resource] # Fully entailed types of the resource types = options.fetch(:types) do queryable.query(subject: resource, predicate: RDF.type). map {|s| (t = (RDF::Vocabulary.find_term(s.object)) rescue nil) && t.entail(:subClassOf)}. flatten. uniq. compact end unless domains.empty? # Every domain must match some entailed type Array(types).empty? || domains.all? {|d| types.include?(d)} end ## # RDFS requires that if the property has a range, and the resource has a type that some type matches every range. If the resource is a datatyped Literal, and the range includes a datatype, the resource must be consistent with that. # # Note that this is different than standard entailment, which simply asserts that the resource has every type in the range, but this is more useful to check if published data is consistent with the vocabulary definition. # # @param [RDF::Resource] resource # @param [RDF::Queryable] queryable # @param [Hash{Symbol => Object}] options ({}) # @option options [Array] :types # Fully entailed types of resource, if not provided, they are queried def range_compatible_rdfs?(resource, queryable, options = {}) raise RDF::Reasoner::Error, "#{self} can't get ranges" unless property? if !(ranges = Array(self.range).reject(&:node?) - [RDF::OWL.Thing, RDF::RDFS.Resource]).empty? if resource.literal? ranges.all? do |range| if [RDF::RDFS.Literal, RDF.XMLLiteral, RDF.HTML].include?(range) true # Don't bother checking for validity elsif range == RDF.langString # Value must have a language resource.has_language? elsif range.start_with?(RDF::XSD) # XSD types are valid if the datatype matches, or they are plain and valid according to the grammar of the range resource.datatype == range || resource.plain? && RDF::Literal.new(resource.value, datatype: range).valid? elsif range.start_with?(RDF::Vocab::OGC) case range when RDF::Vocab::OGC.boolean_str [RDF::Vocab::OGC.boolean_str, RDF::XSD.boolean].include?(resource.datatype) || resource.plain? && RDF::Literal::Boolean.new(resource.value).valid? when RDF::Vocab::OGC.date_time_str # Schema.org date based on ISO 8601, mapped to appropriate XSD types for validation case resource when RDF::Literal::Date, RDF::Literal::Time, RDF::Literal::DateTime, RDF::Literal::Duration resource.valid? else ISO_8601.match(resource.value) end when RDF::Vocab::OGC.determiner_str # The lexical space: "", "the", "a", "an", and "auto". resource.plain? && (%w(the a an auto) + [""]).include?(resource.value) when RDF::Vocab::OGC.float_str # A string representation of a 64-bit signed floating point number. Example lexical values include "1.234", "-1.234", "1.2e3", "-1.2e3", and "7E-10". [RDF::Vocab::OGC.float_str, RDF::Literal::Double, RDF::Literal::Float].include?(resource.datatype) || resource.plain? && RDF::Literal::Double.new(resource.value).valid? when RDF::Vocab::OGC.integer_str resource.is_a?(RDF::Literal::Integer) || [RDF::Vocab::OGC.integer_str].include?(resource.datatype) || resource.plain? && RDF::Literal::Integer.new(resource.value).valid? when RDF::Vocab::OGC.mime_type_str # Valid mime type strings \(e.g., "application/mp3"\). [RDF::Vocab::OGC.mime_type_str].include?(resource.datatype) || resource.plain? && resource.value =~ %r(^[\w\-\+]+/[\w\-\+]+$) when RDF::Vocab::OGC.string resource.plain? when RDF::Vocab::OGC.url # A string of Unicode characters forming a valid URL having the http or https scheme. u = RDF::URI(resource.value) resource.datatype == RDF::Vocab::OGC.url || resource.datatype == RDF::XSD.anyURI || resource.simple? && u.valid? && u.scheme.to_s =~ /^https?$/ else # Unknown datatype false end else false end end else # Fully entailed types of the resource types = options.fetch(:types) do queryable.query(subject: resource, predicate: RDF.type). map {|s| (t = (RDF::Vocabulary.find_term(s.object) rescue nil)) && t.entail(:subClassOf)}. flatten. uniq. compact end # If any type is a class, add rdfs:Class if types.any? {|t| t.is_a?(RDF::Vocabulary::Term) && t.class?} && !types.include?(RDF::RDFS.Class) types << RDF::RDFS.Class end # Every range must match some entailed type Array(types).empty? || ranges.all? {|d| types.include?(d)} end else true end end def self.included(mod) mod.add_entailment :subClassOf, :_entail_subClassOf mod.add_entailment :subClass, :_entail_subClass mod.add_entailment :subPropertyOf, :_entail_subPropertyOf mod.add_entailment :domain, :_entail_domain mod.add_entailment :range, :_entail_range end end # Extend URI with these methods ::RDF::URI.send(:include, RDFS) # Extend Statement with these methods ::RDF::Statement.send(:include, RDFS) # Extend Enumerable with these methods ::RDF::Enumerable.send(:include, RDFS) # Extend Mutable with these methods ::RDF::Mutable.send(:include, RDFS) end