/* Copyright (c) 2015, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../crypto/internal.h" BSSL_NAMESPACE_BEGIN namespace { class ECKeyShare : public SSLKeyShare { public: ECKeyShare(int nid, uint16_t group_id) : group_(EC_GROUP_new_by_curve_name(nid)), group_id_(group_id) {} uint16_t GroupID() const override { return group_id_; } bool Generate(CBB *out) override { assert(!private_key_); // Generate a private key. private_key_.reset(BN_new()); if (!group_ || !private_key_ || !BN_rand_range_ex(private_key_.get(), 1, EC_GROUP_get0_order(group_))) { return false; } // Compute the corresponding public key and serialize it. UniquePtr public_key(EC_POINT_new(group_)); if (!public_key || !EC_POINT_mul(group_, public_key.get(), private_key_.get(), nullptr, nullptr, /*ctx=*/nullptr) || !EC_POINT_point2cbb(out, group_, public_key.get(), POINT_CONVERSION_UNCOMPRESSED, /*ctx=*/nullptr)) { return false; } return true; } bool Encap(CBB *out_ciphertext, Array *out_secret, uint8_t *out_alert, Span peer_key) override { // ECDH may be fit into a KEM-like abstraction by using a second keypair's // public key as the ciphertext. *out_alert = SSL_AD_INTERNAL_ERROR; return Generate(out_ciphertext) && Decap(out_secret, out_alert, peer_key); } bool Decap(Array *out_secret, uint8_t *out_alert, Span ciphertext) override { assert(group_); assert(private_key_); *out_alert = SSL_AD_INTERNAL_ERROR; UniquePtr peer_point(EC_POINT_new(group_)); UniquePtr result(EC_POINT_new(group_)); UniquePtr x(BN_new()); if (!peer_point || !result || !x) { return false; } if (ciphertext.empty() || ciphertext[0] != POINT_CONVERSION_UNCOMPRESSED || !EC_POINT_oct2point(group_, peer_point.get(), ciphertext.data(), ciphertext.size(), /*ctx=*/nullptr)) { OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECPOINT); *out_alert = SSL_AD_DECODE_ERROR; return false; } // Compute the x-coordinate of |peer_key| * |private_key_|. if (!EC_POINT_mul(group_, result.get(), NULL, peer_point.get(), private_key_.get(), /*ctx=*/nullptr) || !EC_POINT_get_affine_coordinates_GFp(group_, result.get(), x.get(), NULL, /*ctx=*/nullptr)) { return false; } // Encode the x-coordinate left-padded with zeros. Array secret; if (!secret.Init((EC_GROUP_get_degree(group_) + 7) / 8) || !BN_bn2bin_padded(secret.data(), secret.size(), x.get())) { return false; } *out_secret = std::move(secret); return true; } bool SerializePrivateKey(CBB *out) override { assert(group_); assert(private_key_); // Padding is added to avoid leaking the length. size_t len = BN_num_bytes(EC_GROUP_get0_order(group_)); return BN_bn2cbb_padded(out, len, private_key_.get()); } bool DeserializePrivateKey(CBS *in) override { assert(!private_key_); private_key_.reset(BN_bin2bn(CBS_data(in), CBS_len(in), nullptr)); return private_key_ != nullptr; } private: UniquePtr private_key_; const EC_GROUP *const group_ = nullptr; uint16_t group_id_; }; class X25519KeyShare : public SSLKeyShare { public: X25519KeyShare() {} uint16_t GroupID() const override { return SSL_CURVE_X25519; } bool Generate(CBB *out) override { uint8_t public_key[32]; X25519_keypair(public_key, private_key_); return !!CBB_add_bytes(out, public_key, sizeof(public_key)); } bool Encap(CBB *out_ciphertext, Array *out_secret, uint8_t *out_alert, Span peer_key) override { // X25519 may be fit into a KEM-like abstraction by using a second keypair's // public key as the ciphertext. *out_alert = SSL_AD_INTERNAL_ERROR; return Generate(out_ciphertext) && Decap(out_secret, out_alert, peer_key); } bool Decap(Array *out_secret, uint8_t *out_alert, Span ciphertext) override { *out_alert = SSL_AD_INTERNAL_ERROR; Array secret; if (!secret.Init(32)) { return false; } if (ciphertext.size() != 32 || // !X25519(secret.data(), private_key_, ciphertext.data())) { *out_alert = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECPOINT); return false; } *out_secret = std::move(secret); return true; } bool SerializePrivateKey(CBB *out) override { return CBB_add_bytes(out, private_key_, sizeof(private_key_)); } bool DeserializePrivateKey(CBS *in) override { if (CBS_len(in) != sizeof(private_key_) || !CBS_copy_bytes(in, private_key_, sizeof(private_key_))) { return false; } return true; } private: uint8_t private_key_[32]; }; class X25519Kyber768KeyShare : public SSLKeyShare { public: X25519Kyber768KeyShare() {} uint16_t GroupID() const override { return SSL_CURVE_X25519_KYBER768_DRAFT00; } bool Generate(CBB *out) override { uint8_t x25519_public_key[32]; X25519_keypair(x25519_public_key, x25519_private_key_); uint8_t kyber_public_key[KYBER_PUBLIC_KEY_BYTES]; KYBER_generate_key(kyber_public_key, &kyber_private_key_); if (!CBB_add_bytes(out, x25519_public_key, sizeof(x25519_public_key)) || !CBB_add_bytes(out, kyber_public_key, sizeof(kyber_public_key))) { return false; } return true; } bool Encap(CBB *out_ciphertext, Array *out_secret, uint8_t *out_alert, Span peer_key) override { Array secret; if (!secret.Init(32 + 32)) { return false; } uint8_t x25519_public_key[32]; X25519_keypair(x25519_public_key, x25519_private_key_); KYBER_public_key peer_kyber_pub; CBS peer_key_cbs; CBS peer_x25519_cbs; CBS peer_kyber_cbs; CBS_init(&peer_key_cbs, peer_key.data(), peer_key.size()); if (!CBS_get_bytes(&peer_key_cbs, &peer_x25519_cbs, 32) || !CBS_get_bytes(&peer_key_cbs, &peer_kyber_cbs, KYBER_PUBLIC_KEY_BYTES) || CBS_len(&peer_key_cbs) != 0 || !X25519(secret.data(), x25519_private_key_, CBS_data(&peer_x25519_cbs)) || !KYBER_parse_public_key(&peer_kyber_pub, &peer_kyber_cbs)) { *out_alert = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECPOINT); return false; } uint8_t kyber_ciphertext[KYBER_CIPHERTEXT_BYTES]; KYBER_encap(kyber_ciphertext, secret.data() + 32, secret.size() - 32, &peer_kyber_pub); if (!CBB_add_bytes(out_ciphertext, x25519_public_key, sizeof(x25519_public_key)) || !CBB_add_bytes(out_ciphertext, kyber_ciphertext, sizeof(kyber_ciphertext))) { return false; } *out_secret = std::move(secret); return true; } bool Decap(Array *out_secret, uint8_t *out_alert, Span ciphertext) override { *out_alert = SSL_AD_INTERNAL_ERROR; Array secret; if (!secret.Init(32 + 32)) { return false; } if (ciphertext.size() != 32 + KYBER_CIPHERTEXT_BYTES || !X25519(secret.data(), x25519_private_key_, ciphertext.data())) { *out_alert = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECPOINT); return false; } KYBER_decap(secret.data() + 32, secret.size() - 32, ciphertext.data() + 32, &kyber_private_key_); *out_secret = std::move(secret); return true; } private: uint8_t x25519_private_key_[32]; KYBER_private_key kyber_private_key_; }; constexpr NamedGroup kNamedGroups[] = { {NID_secp224r1, SSL_CURVE_SECP224R1, "P-224", "secp224r1"}, {NID_X9_62_prime256v1, SSL_CURVE_SECP256R1, "P-256", "prime256v1"}, {NID_secp384r1, SSL_CURVE_SECP384R1, "P-384", "secp384r1"}, {NID_secp521r1, SSL_CURVE_SECP521R1, "P-521", "secp521r1"}, {NID_X25519, SSL_CURVE_X25519, "X25519", "x25519"}, {NID_X25519Kyber768Draft00, SSL_CURVE_X25519_KYBER768_DRAFT00, "X25519Kyber768Draft00", ""}, }; } // namespace Span NamedGroups() { return MakeConstSpan(kNamedGroups, OPENSSL_ARRAY_SIZE(kNamedGroups)); } UniquePtr SSLKeyShare::Create(uint16_t group_id) { switch (group_id) { case SSL_CURVE_SECP224R1: return MakeUnique(NID_secp224r1, SSL_CURVE_SECP224R1); case SSL_CURVE_SECP256R1: return MakeUnique(NID_X9_62_prime256v1, SSL_CURVE_SECP256R1); case SSL_CURVE_SECP384R1: return MakeUnique(NID_secp384r1, SSL_CURVE_SECP384R1); case SSL_CURVE_SECP521R1: return MakeUnique(NID_secp521r1, SSL_CURVE_SECP521R1); case SSL_CURVE_X25519: return MakeUnique(); case SSL_CURVE_X25519_KYBER768_DRAFT00: return MakeUnique(); default: return nullptr; } } bool ssl_nid_to_group_id(uint16_t *out_group_id, int nid) { for (const auto &group : kNamedGroups) { if (group.nid == nid) { *out_group_id = group.group_id; return true; } } return false; } bool ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len) { for (const auto &group : kNamedGroups) { if (len == strlen(group.name) && !strncmp(group.name, name, len)) { *out_group_id = group.group_id; return true; } if (strlen(group.alias) > 0 && len == strlen(group.alias) && !strncmp(group.alias, name, len)) { *out_group_id = group.group_id; return true; } } return false; } BSSL_NAMESPACE_END using namespace bssl; const char* SSL_get_curve_name(uint16_t group_id) { for (const auto &group : kNamedGroups) { if (group.group_id == group_id) { return group.name; } } return nullptr; } size_t SSL_get_all_curve_names(const char **out, size_t max_out) { return GetAllNames(out, max_out, Span(), &NamedGroup::name, MakeConstSpan(kNamedGroups)); }