Sha256: d1f180ff5cda211ef3b0d0ca4d7b225b9c27806b88b1c1569d112d05a7dc3c80
Contents?: true
Size: 1.42 KB
Versions: 5
Compression:
Stored size: 1.42 KB
Contents
% c_dtype = dtype_to_c_type(dtype) // same dimension add floating point op __kernel void apply_adam_<%= dtype %>(const int M, const int N, __global const <%= c_dtype %> *grad, __global const <%= c_dtype %> *learning_rate, __global const <%= c_dtype %> *beta1_power, __global const <%= c_dtype %> *beta2_power, __global const <%= c_dtype %> *beta1, __global const <%= c_dtype %> *beta2, __global const <%= c_dtype %> *epsilon, __global <%= c_dtype %> *momentum, __global <%= c_dtype %> *output, __global <%= c_dtype %> *v) { // Get the index of the current element to be processed const int globalRow = get_global_id(0); // Row ID of C (0..M) const int globalCol = get_global_id(1); // Col ID of C (0..N) const int index = globalRow * N + globalCol; <%= c_dtype %> alpha = learning_rate[0] * sqrt(1.0 - beta2_power[0]) / (1.0 - beta1_power[0]); momentum[index] += (grad[index] - momentum[index]) * (1.0 - beta1[0]); v[index] += (grad[index] * grad[index] - v[index]) * (1.0 - beta2[0]); output[index] -= (momentum[index] * alpha) / ( sqrt(v[index]) + epsilon[0] ); }
Version data entries
5 entries across 5 versions & 2 rubygems