# This class models probability distributions for dice systems. # # An object of this class represents a single distribution, which might be the result of a complex # combination of dice. # # @example Distribution for a six-sided die # probs = GamesDice::Probabilities.for_fair_die( 6 ) # probs.min # => 1 # probs.max # => 6 # probs.expected # => 3.5 # probs.p_ge( 4 ) # => 0.5 # # @example Adding two distributions # pd6 = GamesDice::Probabilities.for_fair_die( 6 ) # probs = GamesDice::Probabilities.add_distributions( pd6, pd6 ) # probs.min # => 2 # probs.max # => 12 # probs.expected # => 7.0 # probs.p_ge( 10 ) # => 0.16666666666666669 # class GamesDice::Probabilities # Creates new instance of GamesDice::Probabilities. # @param [Array] probs Each entry in the array is the probability of getting a result # @param [Integer] offset The result associated with index of 0 in the array # @return [GamesDice::Probabilities] def initialize( probs = [1.0], offset = 0 ) # This should *probably* be validated in future, but that would impact performance @probs = probs @offset = offset end # @!visibility private # the Array, Offset representation of probabilities. def to_ao [ @probs, @offset ] end # Iterates through value, probability pairs # @yieldparam [Integer] result A result that may be possible in the dice scheme # @yieldparam [Float] probability Probability of result, in range 0.0..1.0 # @return [GamesDice::Probabilities] this object def each @probs.each_with_index { |p,i| yield( i+@offset, p ) } return self end # A hash representation of the distribution. Each key is an integer result, # and the matching value is probability of getting that result. A new hash is generated on each # call to this method. # @return [Hash] def to_h GamesDice::Probabilities.prob_ao_to_h( @probs, @offset ) end # @!attribute [r] min # Minimum result in the distribution # @return [Integer] def min @offset end # @!attribute [r] max # Maximum result in the distribution # @return [Integer] def max @offset + @probs.count() - 1 end # @!attribute [r] expected # Expected value of distribution. # @return [Float] def expected @expected ||= calc_expected end # Probability of result equalling specific target # @param [Integer] target # @return [Float] in range (0.0..1.0) def p_eql target i = Integer(target) - @offset return 0.0 if i < 0 || i >= @probs.count @probs[ i ] end # Probability of result being greater than specific target # @param [Integer] target # @return [Float] in range (0.0..1.0) def p_gt target p_ge( Integer(target) + 1 ) end # Probability of result being equal to or greater than specific target # @param [Integer] target # @return [Float] in range (0.0..1.0) def p_ge target target = Integer(target) return @prob_ge[target] if @prob_ge && @prob_ge[target] @prob_ge = {} unless @prob_ge return 1.0 if target <= min return 0.0 if target > max @prob_ge[target] = @probs[target-@offset,@probs.count-1].inject(0.0) {|so_far,p| so_far + p } end # Probability of result being equal to or less than specific target # @param [Integer] target # @return [Float] in range (0.0..1.0) def p_le target target = Integer(target) return @prob_le[target] if @prob_le && @prob_le[target] @prob_le = {} unless @prob_le return 1.0 if target >= max return 0.0 if target < min @prob_le[target] = @probs[0,1+target-@offset].inject(0.0) {|so_far,p| so_far + p } end # Probability of result being less than specific target # @param [Integer] target # @return [Float] in range (0.0..1.0) def p_lt target p_le( Integer(target) - 1 ) end # Probability distribution derived from this one, where we know (or are only interested in # situations where) the result is greater than or equal to target. # @param [Integer] target # @return [GamesDice::Probabilities] new distribution. def given_ge target target = Integer(target) target = min if min > target p = p_ge(target) raise "There is no valid distribution given a result >= #{target}" unless p > 0.0 mult = 1.0/p new_probs = @probs[target-@offset,@probs.count-1].map { |x| x * mult } GamesDice::Probabilities.new( new_probs, target ) end # Probability distribution derived from this one, where we know (or are only interested in # situations where) the result is less than or equal to target. # @param [Integer] target # @return [GamesDice::Probabilities] new distribution. def given_le target target = Integer(target) target = max if max < target p = p_le(target) raise "There is no valid distribution given a result <= #{target}" unless p > 0.0 mult = 1.0/p new_probs = @probs[0..target-@offset].map { |x| x * mult } GamesDice::Probabilities.new( new_probs, @offset ) end # Creates new instance of GamesDice::Probabilities. # @param [Hash] prob_hash A hash representation of the distribution, each key is an integer result, # and the matching value is probability of getting that result # @return [GamesDice::Probabilities] def self.from_h prob_hash probs, offset = prob_h_to_ao( prob_hash ) GamesDice::Probabilities.new( probs, offset ) end # Distribution for a die with equal chance of rolling 1..N # @param [Integer] sides Number of sides on die # @return [GamesDice::Probabilities] def self.for_fair_die sides sides = Integer(sides) raise ArgumentError, "sides must be at least 1" unless sides > 0 GamesDice::Probabilities.new( Array.new( sides, 1.0/sides ), 1 ) end # Combines two distributions to create a third, that represents the distribution created when adding # results together. # @param [GamesDice::Probabilities] pd_a First distribution # @param [GamesDice::Probabilities] pd_b Second distribution # @return [GamesDice::Probabilities] def self.add_distributions pd_a, pd_b combined_min = pd_a.min + pd_b.min combined_max = pd_a.max + pd_b.max new_probs = Array.new( 1 + combined_max - combined_min, 0.0 ) probs_a, offset_a = pd_a.to_ao probs_b, offset_b = pd_b.to_ao probs_a.each_with_index do |pa,i| probs_b.each_with_index do |pb,j| k = i + j pc = pa * pb new_probs[ k ] += pc end end GamesDice::Probabilities.new( new_probs, combined_min ) end # Combines two distributions with multipliers to create a third, that represents the distribution # created when adding weighted results together. # @param [Integer] m_a Weighting for first distribution # @param [GamesDice::Probabilities] pd_a First distribution # @param [Integer] m_b Weighting for second distribution # @param [GamesDice::Probabilities] pd_b Second distribution # @return [GamesDice::Probabilities] def self.add_distributions_mult m_a, pd_a, m_b, pd_b combined_min, combined_max = [ m_a * pd_a.min + m_b * pd_b.min, m_a * pd_a.max + m_b * pd_b.min, m_a * pd_a.min + m_b * pd_b.max, m_a * pd_a.max + m_b * pd_b.max, ].minmax new_probs = Array.new( 1 + combined_max - combined_min, 0.0 ) probs_a, offset_a = pd_a.to_ao probs_b, offset_b = pd_b.to_ao probs_a.each_with_index do |pa,i| probs_b.each_with_index do |pb,j| k = m_a * (i + offset_a) + m_b * (j + offset_b) - combined_min pc = pa * pb new_probs[ k ] += pc end end GamesDice::Probabilities.new( new_probs, combined_min ) end # Adds a distribution to itself repeatedly, to simulate a number of dice # results being summed. # @param [GamesDice::Probabilities] pd Distribution to repeat # @param [Integer] n Number of repetitions, must be at least 1 # @return [GamesDice::Probabilities] def self.repeat_distribution pd, n n = Integer( n ) raise "Cannot combine probabilities less than once" if n < 1 revbin = n.to_s(2).reverse.each_char.to_a.map { |c| c == '1' } pd_power = pd pd_result = nil max_power = revbin.count - 1 revbin.each_with_index do |use_power, i| if use_power if pd_result pd_result = add_distributions( pd_result, pd_power ) else pd_result = pd_power end end pd_power = add_distributions( pd_power, pd_power ) unless i == max_power end pd_result end private # Convert hash to array,offset notation def self.prob_h_to_ao h rmin,rmax = h.keys.minmax o = rmin a = Array.new( 1 + rmax - rmin, 0.0 ) h.each { |k,v| a[k-rmin] = v } [a,o] end # Convert array,offset notation to hash def self.prob_ao_to_h a, o h = Hash.new a.each_with_index { |v,i| h[i+o] = v if v > 0.0 } h end def calc_expected total = 0.0 @probs.each_with_index { |v,i| total += (i+@offset)*v } total end end # class GamesDice::Probabilities