Sha256: d151d05cdbaf05eb016598c5caf6296e376d1080465e8a451ff50d667189ce92
Contents?: true
Size: 939 Bytes
Versions: 3
Compression:
Stored size: 939 Bytes
Contents
# SvmHelper Shared helper classes for usage in context of SVM at experteer [![Build Status](https://travis-ci.org/sch1zo/svm_helper.png?branch=master)](https://travis-ci.org/sch1zo/svm_helper) ## Installation Add this line to your application's Gemfile: gem 'svm_helper' And then execute: $ bundle Or install it yourself as: $ gem install svm_helper ## Usage Dataflow is normally something like this: Job --Preprocessor--> PreprocessedData --Selector--> FeatureVector The FeatureVector can now be used for training or prediction in a (libsvm) SVM. Be aware that a FeatureVector has two Attributes: data: the feature array itself label: 1 for true, 0 for false ## Contributing 1. Fork it 2. Create your feature branch (`git checkout -b my-new-feature`) 3. Commit your changes (`git commit -am 'Add some feature'`) 4. Push to the branch (`git push origin my-new-feature`) 5. Create new Pull Request
Version data entries
3 entries across 3 versions & 1 rubygems
Version | Path |
---|---|
svm_helper-0.2.1 | README.md |
svm_helper-0.1.1 | README.md |
svm_helper-0.1.0 | README.md |