use magnus::{IntoValue, RArray, RHash, Value}; use polars::io::RowCount; use polars::lazy::frame::{LazyFrame, LazyGroupBy}; use polars::prelude::*; use std::cell::RefCell; use std::io::{BufWriter, Read}; use std::path::PathBuf; use crate::conversion::*; use crate::file::get_file_like; use crate::lazy::utils::rb_exprs_to_exprs; use crate::{RbDataFrame, RbExpr, RbPolarsErr, RbResult, RbValueError}; #[magnus::wrap(class = "Polars::RbLazyGroupBy")] pub struct RbLazyGroupBy { lgb: RefCell>, } impl RbLazyGroupBy { pub fn agg(&self, aggs: RArray) -> RbResult { let lgb = self.lgb.borrow_mut().take().unwrap(); let aggs = rb_exprs_to_exprs(aggs)?; Ok(lgb.agg(aggs).into()) } pub fn head(&self, n: usize) -> RbLazyFrame { let lgb = self.lgb.take().unwrap(); lgb.head(Some(n)).into() } pub fn tail(&self, n: usize) -> RbLazyFrame { let lgb = self.lgb.take().unwrap(); lgb.tail(Some(n)).into() } } #[magnus::wrap(class = "Polars::RbLazyFrame")] #[derive(Clone)] pub struct RbLazyFrame { pub ldf: LazyFrame, } impl RbLazyFrame { fn get_schema(&self) -> RbResult { let schema = self.ldf.schema().map_err(RbPolarsErr::from)?; Ok(schema) } } impl From for RbLazyFrame { fn from(ldf: LazyFrame) -> Self { RbLazyFrame { ldf } } } impl RbLazyFrame { pub fn read_json(rb_f: Value) -> RbResult { // it is faster to first read to memory and then parse: https://github.com/serde-rs/json/issues/160 // so don't bother with files. let mut json = String::new(); let _ = get_file_like(rb_f, false)? .read_to_string(&mut json) .unwrap(); // Safety // we skipped the serializing/deserializing of the static in lifetime in `DataType` // so we actually don't have a lifetime at all when serializing. // &str still has a lifetime. Bit its ok, because we drop it immediately // in this scope let json = unsafe { std::mem::transmute::<&'_ str, &'static str>(json.as_str()) }; let lp = serde_json::from_str::(json) .map_err(|err| RbValueError::new_err(format!("{:?}", err)))?; Ok(LazyFrame::from(lp).into()) } pub fn new_from_ndjson( path: String, infer_schema_length: Option, batch_size: Option, n_rows: Option, low_memory: bool, rechunk: bool, row_count: Option<(String, IdxSize)>, ) -> RbResult { let row_count = row_count.map(|(name, offset)| RowCount { name, offset }); let lf = LazyJsonLineReader::new(path) .with_infer_schema_length(infer_schema_length) .with_batch_size(batch_size) .with_n_rows(n_rows) .low_memory(low_memory) .with_rechunk(rechunk) .with_row_count(row_count) .finish() .map_err(RbPolarsErr::from)?; Ok(lf.into()) } pub fn new_from_csv(arguments: &[Value]) -> RbResult { // start arguments // this pattern is needed for more than 16 let path: String = arguments[0].try_convert()?; let sep: String = arguments[1].try_convert()?; let has_header: bool = arguments[2].try_convert()?; let ignore_errors: bool = arguments[3].try_convert()?; let skip_rows: usize = arguments[4].try_convert()?; let n_rows: Option = arguments[5].try_convert()?; let cache: bool = arguments[6].try_convert()?; let overwrite_dtype: Option)>> = arguments[7].try_convert()?; let low_memory: bool = arguments[8].try_convert()?; let comment_char: Option = arguments[9].try_convert()?; let quote_char: Option = arguments[10].try_convert()?; let null_values: Option> = arguments[11].try_convert()?; let infer_schema_length: Option = arguments[12].try_convert()?; let with_schema_modify: Option = arguments[13].try_convert()?; let rechunk: bool = arguments[14].try_convert()?; let skip_rows_after_header: usize = arguments[15].try_convert()?; let encoding: Wrap = arguments[16].try_convert()?; let row_count: Option<(String, IdxSize)> = arguments[17].try_convert()?; let try_parse_dates: bool = arguments[18].try_convert()?; let eol_char: String = arguments[19].try_convert()?; // end arguments let null_values = null_values.map(|w| w.0); let comment_char = comment_char.map(|s| s.as_bytes()[0]); let quote_char = quote_char.map(|s| s.as_bytes()[0]); let delimiter = sep.as_bytes()[0]; let eol_char = eol_char.as_bytes()[0]; let row_count = row_count.map(|(name, offset)| RowCount { name, offset }); let overwrite_dtype = overwrite_dtype.map(|overwrite_dtype| { let fields = overwrite_dtype .into_iter() .map(|(name, dtype)| Field::new(&name, dtype.0)); Schema::from(fields) }); let r = LazyCsvReader::new(path) .with_infer_schema_length(infer_schema_length) .with_delimiter(delimiter) .has_header(has_header) .with_ignore_errors(ignore_errors) .with_skip_rows(skip_rows) .with_n_rows(n_rows) .with_cache(cache) .with_dtype_overwrite(overwrite_dtype.as_ref()) .low_memory(low_memory) .with_comment_char(comment_char) .with_quote_char(quote_char) .with_end_of_line_char(eol_char) .with_rechunk(rechunk) .with_skip_rows_after_header(skip_rows_after_header) .with_encoding(encoding.0) .with_row_count(row_count) .with_try_parse_dates(try_parse_dates) .with_null_values(null_values); if let Some(_lambda) = with_schema_modify { todo!(); } Ok(r.finish().map_err(RbPolarsErr::from)?.into()) } #[allow(clippy::too_many_arguments)] pub fn new_from_parquet( path: String, n_rows: Option, cache: bool, parallel: Wrap, rechunk: bool, row_count: Option<(String, IdxSize)>, low_memory: bool, use_statistics: bool, ) -> RbResult { let row_count = row_count.map(|(name, offset)| RowCount { name, offset }); let args = ScanArgsParquet { n_rows, cache, parallel: parallel.0, rechunk, row_count, low_memory, // TODO support cloud options cloud_options: None, use_statistics, }; let lf = LazyFrame::scan_parquet(path, args).map_err(RbPolarsErr::from)?; Ok(lf.into()) } pub fn new_from_ipc( path: String, n_rows: Option, cache: bool, rechunk: bool, row_count: Option<(String, IdxSize)>, memory_map: bool, ) -> RbResult { let row_count = row_count.map(|(name, offset)| RowCount { name, offset }); let args = ScanArgsIpc { n_rows, cache, rechunk, row_count, memmap: memory_map, }; let lf = LazyFrame::scan_ipc(path, args).map_err(RbPolarsErr::from)?; Ok(lf.into()) } pub fn write_json(&self, rb_f: Value) -> RbResult<()> { let file = BufWriter::new(get_file_like(rb_f, true)?); serde_json::to_writer(file, &self.ldf.logical_plan) .map_err(|err| RbValueError::new_err(format!("{:?}", err)))?; Ok(()) } pub fn describe_plan(&self) -> String { self.ldf.describe_plan() } pub fn describe_optimized_plan(&self) -> RbResult { let result = self .ldf .describe_optimized_plan() .map_err(RbPolarsErr::from)?; Ok(result) } #[allow(clippy::too_many_arguments)] pub fn optimization_toggle( &self, type_coercion: bool, predicate_pushdown: bool, projection_pushdown: bool, simplify_expr: bool, slice_pushdown: bool, cse: bool, allow_streaming: bool, ) -> RbLazyFrame { let ldf = self.ldf.clone(); let ldf = ldf .with_type_coercion(type_coercion) .with_predicate_pushdown(predicate_pushdown) .with_simplify_expr(simplify_expr) .with_slice_pushdown(slice_pushdown) .with_common_subplan_elimination(cse) .with_streaming(allow_streaming) .with_projection_pushdown(projection_pushdown); ldf.into() } pub fn sort(&self, by_column: String, reverse: bool, nulls_last: bool) -> Self { let ldf = self.ldf.clone(); ldf.sort( &by_column, SortOptions { descending: reverse, nulls_last, multithreaded: true, }, ) .into() } pub fn sort_by_exprs( &self, by_column: RArray, reverse: Vec, nulls_last: bool, ) -> RbResult { let ldf = self.ldf.clone(); let exprs = rb_exprs_to_exprs(by_column)?; Ok(ldf.sort_by_exprs(exprs, reverse, nulls_last).into()) } pub fn cache(&self) -> Self { let ldf = self.ldf.clone(); ldf.cache().into() } pub fn collect(&self) -> RbResult { let ldf = self.ldf.clone(); let df = ldf.collect().map_err(RbPolarsErr::from)?; Ok(df.into()) } #[allow(clippy::too_many_arguments)] pub fn sink_parquet( &self, path: PathBuf, compression: String, compression_level: Option, statistics: bool, row_group_size: Option, data_pagesize_limit: Option, maintain_order: bool, ) -> RbResult<()> { let compression = parse_parquet_compression(&compression, compression_level)?; let options = ParquetWriteOptions { compression, statistics, row_group_size, data_pagesize_limit, maintain_order, }; let ldf = self.ldf.clone(); ldf.sink_parquet(path, options).map_err(RbPolarsErr::from)?; Ok(()) } pub fn fetch(&self, n_rows: usize) -> RbResult { let ldf = self.ldf.clone(); let df = ldf.fetch(n_rows).map_err(RbPolarsErr::from)?; Ok(df.into()) } pub fn filter(&self, predicate: &RbExpr) -> Self { let ldf = self.ldf.clone(); ldf.filter(predicate.inner.clone()).into() } pub fn select(&self, exprs: RArray) -> RbResult { let ldf = self.ldf.clone(); let exprs = rb_exprs_to_exprs(exprs)?; Ok(ldf.select(exprs).into()) } pub fn groupby(&self, by: RArray, maintain_order: bool) -> RbResult { let ldf = self.ldf.clone(); let by = rb_exprs_to_exprs(by)?; let lazy_gb = if maintain_order { ldf.groupby_stable(by) } else { ldf.groupby(by) }; Ok(RbLazyGroupBy { lgb: RefCell::new(Some(lazy_gb)), }) } pub fn groupby_rolling( &self, index_column: String, period: String, offset: String, closed: Wrap, by: RArray, ) -> RbResult { let closed_window = closed.0; let ldf = self.ldf.clone(); let by = rb_exprs_to_exprs(by)?; let lazy_gb = ldf.groupby_rolling( by, RollingGroupOptions { index_column: index_column.into(), period: Duration::parse(&period), offset: Duration::parse(&offset), closed_window, }, ); Ok(RbLazyGroupBy { lgb: RefCell::new(Some(lazy_gb)), }) } #[allow(clippy::too_many_arguments)] pub fn groupby_dynamic( &self, index_column: String, every: String, period: String, offset: String, truncate: bool, include_boundaries: bool, closed: Wrap, by: RArray, start_by: Wrap, ) -> RbResult { let closed_window = closed.0; let by = rb_exprs_to_exprs(by)?; let ldf = self.ldf.clone(); let lazy_gb = ldf.groupby_dynamic( by, DynamicGroupOptions { index_column: index_column.into(), every: Duration::parse(&every), period: Duration::parse(&period), offset: Duration::parse(&offset), truncate, include_boundaries, closed_window, start_by: start_by.0, }, ); Ok(RbLazyGroupBy { lgb: RefCell::new(Some(lazy_gb)), }) } pub fn with_context(&self, contexts: RArray) -> RbResult { let contexts = contexts .each() .map(|v| v.unwrap().try_convert()) .collect::>>()?; let contexts = contexts .into_iter() .map(|ldf| ldf.ldf.clone()) .collect::>(); Ok(self.ldf.clone().with_context(contexts).into()) } #[allow(clippy::too_many_arguments)] pub fn join_asof( &self, other: &RbLazyFrame, left_on: &RbExpr, right_on: &RbExpr, left_by: Option>, right_by: Option>, allow_parallel: bool, force_parallel: bool, suffix: String, strategy: Wrap, tolerance: Option>>, tolerance_str: Option, ) -> RbResult { let ldf = self.ldf.clone(); let other = other.ldf.clone(); let left_on = left_on.inner.clone(); let right_on = right_on.inner.clone(); Ok(ldf .join_builder() .with(other) .left_on([left_on]) .right_on([right_on]) .allow_parallel(allow_parallel) .force_parallel(force_parallel) .how(JoinType::AsOf(AsOfOptions { strategy: strategy.0, left_by: left_by.map(strings_to_smartstrings), right_by: right_by.map(strings_to_smartstrings), tolerance: tolerance.map(|t| t.0.into_static().unwrap()), tolerance_str: tolerance_str.map(|s| s.into()), })) .suffix(suffix) .finish() .into()) } #[allow(clippy::too_many_arguments)] pub fn join( &self, other: &RbLazyFrame, left_on: RArray, right_on: RArray, allow_parallel: bool, force_parallel: bool, how: Wrap, suffix: String, ) -> RbResult { let ldf = self.ldf.clone(); let other = other.ldf.clone(); let left_on = rb_exprs_to_exprs(left_on)?; let right_on = rb_exprs_to_exprs(right_on)?; Ok(ldf .join_builder() .with(other) .left_on(left_on) .right_on(right_on) .allow_parallel(allow_parallel) .force_parallel(force_parallel) .how(how.0) .suffix(suffix) .finish() .into()) } pub fn with_columns(&self, exprs: RArray) -> RbResult { let ldf = self.ldf.clone(); Ok(ldf.with_columns(rb_exprs_to_exprs(exprs)?).into()) } pub fn rename(&self, existing: Vec, new: Vec) -> Self { let ldf = self.ldf.clone(); ldf.rename(existing, new).into() } pub fn reverse(&self) -> Self { let ldf = self.ldf.clone(); ldf.reverse().into() } pub fn shift(&self, periods: i64) -> Self { let ldf = self.ldf.clone(); ldf.shift(periods).into() } pub fn shift_and_fill(&self, periods: i64, fill_value: &RbExpr) -> Self { let ldf = self.ldf.clone(); ldf.shift_and_fill(periods, fill_value.inner.clone()).into() } pub fn fill_nan(&self, fill_value: &RbExpr) -> Self { let ldf = self.ldf.clone(); ldf.fill_nan(fill_value.inner.clone()).into() } pub fn min(&self) -> Self { let ldf = self.ldf.clone(); ldf.min().into() } pub fn max(&self) -> Self { let ldf = self.ldf.clone(); ldf.max().into() } pub fn sum(&self) -> Self { let ldf = self.ldf.clone(); ldf.sum().into() } pub fn mean(&self) -> Self { let ldf = self.ldf.clone(); ldf.mean().into() } pub fn std(&self, ddof: u8) -> Self { let ldf = self.ldf.clone(); ldf.std(ddof).into() } pub fn var(&self, ddof: u8) -> Self { let ldf = self.ldf.clone(); ldf.var(ddof).into() } pub fn median(&self) -> Self { let ldf = self.ldf.clone(); ldf.median().into() } pub fn quantile( &self, quantile: &RbExpr, interpolation: Wrap, ) -> Self { let ldf = self.ldf.clone(); ldf.quantile(quantile.inner.clone(), interpolation.0).into() } pub fn explode(&self, column: RArray) -> RbResult { let ldf = self.ldf.clone(); let column = rb_exprs_to_exprs(column)?; Ok(ldf.explode(column).into()) } pub fn unique( &self, maintain_order: bool, subset: Option>, keep: Wrap, ) -> RbResult { let ldf = self.ldf.clone(); Ok(match maintain_order { true => ldf.unique_stable(subset, keep.0), false => ldf.unique(subset, keep.0), } .into()) } pub fn drop_nulls(&self, subset: Option>) -> Self { let ldf = self.ldf.clone(); ldf.drop_nulls(subset.map(|v| v.into_iter().map(|s| col(&s)).collect())) .into() } pub fn slice(&self, offset: i64, len: Option) -> Self { let ldf = self.ldf.clone(); ldf.slice(offset, len.unwrap_or(IdxSize::MAX)).into() } pub fn tail(&self, n: IdxSize) -> Self { let ldf = self.ldf.clone(); ldf.tail(n).into() } pub fn melt( &self, id_vars: Vec, value_vars: Vec, value_name: Option, variable_name: Option, streamable: bool, ) -> Self { let args = MeltArgs { id_vars: strings_to_smartstrings(id_vars), value_vars: strings_to_smartstrings(value_vars), value_name: value_name.map(|s| s.into()), variable_name: variable_name.map(|s| s.into()), streamable, }; let ldf = self.ldf.clone(); ldf.melt(args).into() } pub fn with_row_count(&self, name: String, offset: Option) -> Self { let ldf = self.ldf.clone(); ldf.with_row_count(&name, offset).into() } pub fn drop_columns(&self, cols: Vec) -> Self { let ldf = self.ldf.clone(); ldf.drop_columns(cols).into() } pub fn clone(&self) -> Self { self.ldf.clone().into() } pub fn columns(&self) -> RbResult { let schema = self.get_schema()?; let iter = schema.iter_names().map(|s| s.as_str()); Ok(RArray::from_iter(iter)) } pub fn dtypes(&self) -> RbResult { let schema = self.get_schema()?; let iter = schema.iter_dtypes().map(|dt| Wrap(dt.clone()).into_value()); Ok(RArray::from_iter(iter)) } pub fn schema(&self) -> RbResult { let schema = self.get_schema()?; let schema_dict = RHash::new(); schema.iter_fields().for_each(|fld| { // TODO remove unwrap schema_dict .aset::( fld.name().to_string(), Wrap(fld.data_type().clone()).into_value(), ) .unwrap(); }); Ok(schema_dict) } pub fn unnest(&self, cols: Vec) -> Self { self.ldf.clone().unnest(cols).into() } pub fn width(&self) -> RbResult { Ok(self.get_schema()?.len()) } }