// Copyright 2022 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Implementation of CRCs (aka Rabin Fingerprints). // Treats the input as a polynomial with coefficients in Z(2), // and finds the remainder when divided by an irreducible polynomial // of the appropriate length. // It handles all CRC sizes from 8 to 128 bits. // It's somewhat complicated by having separate implementations optimized for // CRC's <=32 bits, <= 64 bits, and <= 128 bits. // The input string is prefixed with a "1" bit, and has "degree" "0" bits // appended to it before the remainder is found. This ensures that // short strings are scrambled somewhat and that strings consisting // of all nulls have a non-zero CRC. // // Uses the "interleaved word-by-word" method from // "Everything we know about CRC but afraid to forget" by Andrew Kadatch // and Bob Jenkins, // http://crcutil.googlecode.com/files/crc-doc.1.0.pdf // // The idea is to compute kStride CRCs simultaneously, allowing the // processor to more effectively use multiple execution units. Each of // the CRCs is calculated on one word of data followed by kStride - 1 // words of zeroes; the CRC starting points are staggered by one word. // Assuming a stride of 4 with data words "ABCDABCDABCD", the first // CRC is over A000A000A, the second over 0B000B000B, and so on. // The CRC of the whole data is then calculated by properly aligning the // CRCs by appending zeroes until the data lengths agree then XORing // the CRCs. #include "absl/crc/internal/crc.h" #include #include "absl/base/internal/endian.h" #include "absl/base/internal/prefetch.h" #include "absl/base/internal/raw_logging.h" #include "absl/crc/internal/crc_internal.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace crc_internal { namespace { // Constants #if defined(__i386__) || defined(__x86_64__) constexpr bool kNeedAlignedLoads = false; #else constexpr bool kNeedAlignedLoads = true; #endif // We express the number of zeroes as a number in base ZEROES_BASE. By // pre-computing the zero extensions for all possible components of such an // expression (numbers in a form a*ZEROES_BASE**b), we can calculate the // resulting extension by multiplying the extensions for individual components // using log_{ZEROES_BASE}(num_zeroes) polynomial multiplications. The tables of // zero extensions contain (ZEROES_BASE - 1) * (log_{ZEROES_BASE}(64)) entries. constexpr int ZEROES_BASE_LG = 4; // log_2(ZEROES_BASE) constexpr int ZEROES_BASE = (1 << ZEROES_BASE_LG); // must be a power of 2 constexpr uint32_t kCrc32cPoly = 0x82f63b78; uint32_t ReverseBits(uint32_t bits) { bits = (bits & 0xaaaaaaaau) >> 1 | (bits & 0x55555555u) << 1; bits = (bits & 0xccccccccu) >> 2 | (bits & 0x33333333u) << 2; bits = (bits & 0xf0f0f0f0u) >> 4 | (bits & 0x0f0f0f0fu) << 4; return absl::gbswap_32(bits); } // Polynomial long multiplication mod the polynomial of degree 32. void PolyMultiply(uint32_t* val, uint32_t m, uint32_t poly) { uint32_t l = *val; uint32_t result = 0; auto onebit = uint32_t{0x80000000u}; for (uint32_t one = onebit; one != 0; one >>= 1) { if ((l & one) != 0) { result ^= m; } if (m & 1) { m = (m >> 1) ^ poly; } else { m >>= 1; } } *val = result; } } // namespace void CRCImpl::FillWordTable(uint32_t poly, uint32_t last, int word_size, Uint32By256* t) { for (int j = 0; j != word_size; j++) { // for each byte of extension.... t[j][0] = 0; // a zero has no effect for (int i = 128; i != 0; i >>= 1) { // fill in entries for powers of 2 if (j == 0 && i == 128) { t[j][i] = last; // top bit in last byte is given } else { // each successive power of two is derived from the previous // one, either in this table, or the last table uint32_t pred; if (i == 128) { pred = t[j - 1][1]; } else { pred = t[j][i << 1]; } // Advance the CRC by one bit (multiply by X, and take remainder // through one step of polynomial long division) if (pred & 1) { t[j][i] = (pred >> 1) ^ poly; } else { t[j][i] = pred >> 1; } } } // CRCs have the property that CRC(a xor b) == CRC(a) xor CRC(b) // so we can make all the tables for non-powers of two by // xoring previously created entries. for (int i = 2; i != 256; i <<= 1) { for (int k = i + 1; k != (i << 1); k++) { t[j][k] = t[j][i] ^ t[j][k - i]; } } } } int CRCImpl::FillZeroesTable(uint32_t poly, Uint32By256* t) { uint32_t inc = 1; inc <<= 31; // Extend by one zero bit. We know degree > 1 so (inc & 1) == 0. inc >>= 1; // Now extend by 2, 4, and 8 bits, so now `inc` is extended by one zero byte. for (int i = 0; i < 3; ++i) { PolyMultiply(&inc, inc, poly); } int j = 0; for (uint64_t inc_len = 1; inc_len != 0; inc_len <<= ZEROES_BASE_LG) { // Every entry in the table adds an additional inc_len zeroes. uint32_t v = inc; for (int a = 1; a != ZEROES_BASE; a++) { t[0][j] = v; PolyMultiply(&v, inc, poly); j++; } inc = v; } ABSL_RAW_CHECK(j <= 256, ""); return j; } // Internal version of the "constructor". CRCImpl* CRCImpl::NewInternal() { // Find an accelearated implementation first. CRCImpl* result = TryNewCRC32AcceleratedX86ARMCombined(); // Fall back to generic implementions if no acceleration is available. if (result == nullptr) { result = new CRC32(); } result->InitTables(); return result; } // The CRC of the empty string is always the CRC polynomial itself. void CRCImpl::Empty(uint32_t* crc) const { *crc = kCrc32cPoly; } // The 32-bit implementation void CRC32::InitTables() { // Compute the table for extending a CRC by one byte. Uint32By256* t = new Uint32By256[4]; FillWordTable(kCrc32cPoly, kCrc32cPoly, 1, t); for (int i = 0; i != 256; i++) { this->table0_[i] = t[0][i]; } // Construct a table for updating the CRC by 4 bytes data followed by // 12 bytes of zeroes. // // Note: the data word size could be larger than the CRC size; it might // be slightly faster to use a 64-bit data word, but doing so doubles the // table size. uint32_t last = kCrc32cPoly; const size_t size = 12; for (size_t i = 0; i < size; ++i) { last = (last >> 8) ^ this->table0_[last & 0xff]; } FillWordTable(kCrc32cPoly, last, 4, t); for (size_t b = 0; b < 4; ++b) { for (int i = 0; i < 256; ++i) { this->table_[b][i] = t[b][i]; } } int j = FillZeroesTable(kCrc32cPoly, t); ABSL_RAW_CHECK(j <= static_cast(ABSL_ARRAYSIZE(this->zeroes_)), ""); for (int i = 0; i < j; i++) { this->zeroes_[i] = t[0][i]; } delete[] t; // Build up tables for _reversing_ the operation of doing CRC operations on // zero bytes. // In C++, extending `crc` by a single zero bit is done by the following: // (A) bool low_bit_set = (crc & 1); // crc >>= 1; // if (low_bit_set) crc ^= kCrc32cPoly; // // In particular note that the high bit of `crc` after this operation will be // set if and only if the low bit of `crc` was set before it. This means that // no information is lost, and the operation can be reversed, as follows: // (B) bool high_bit_set = (crc & 0x80000000u); // if (high_bit_set) crc ^= kCrc32cPoly; // crc <<= 1; // if (high_bit_set) crc ^= 1; // // Or, equivalently: // (C) bool high_bit_set = (crc & 0x80000000u); // crc <<= 1; // if (high_bit_set) crc ^= ((kCrc32cPoly << 1) ^ 1); // // The last observation is, if we store our checksums in variable `rcrc`, // with order of the bits reversed, the inverse operation becomes: // (D) bool low_bit_set = (rcrc & 1); // rcrc >>= 1; // if (low_bit_set) rcrc ^= ReverseBits((kCrc32cPoly << 1) ^ 1) // // This is the same algorithm (A) that we started with, only with a different // polynomial bit pattern. This means that by building up our tables with // this alternate polynomial, we can apply the CRC algorithms to a // bit-reversed CRC checksum to perform inverse zero-extension. const uint32_t kCrc32cUnextendPoly = ReverseBits(static_cast((kCrc32cPoly << 1) ^ 1)); FillWordTable(kCrc32cUnextendPoly, kCrc32cUnextendPoly, 1, &reverse_table0_); j = FillZeroesTable(kCrc32cUnextendPoly, &reverse_zeroes_); ABSL_RAW_CHECK(j <= static_cast(ABSL_ARRAYSIZE(this->reverse_zeroes_)), ""); } void CRC32::Extend(uint32_t* crc, const void* bytes, size_t length) const { const uint8_t* p = static_cast(bytes); const uint8_t* e = p + length; uint32_t l = *crc; auto step_one_byte = [this, &p, &l] () { int c = (l & 0xff) ^ *p++; l = this->table0_[c] ^ (l >> 8); }; if (kNeedAlignedLoads) { // point x at first 4-byte aligned byte in string. this might be past the // end of the string. const uint8_t* x = RoundUp<4>(p); if (x <= e) { // Process bytes until finished or p is 4-byte aligned while (p != x) { step_one_byte(); } } } const size_t kSwathSize = 16; if (static_cast(e - p) >= kSwathSize) { // Load one swath of data into the operating buffers. uint32_t buf0 = absl::little_endian::Load32(p) ^ l; uint32_t buf1 = absl::little_endian::Load32(p + 4); uint32_t buf2 = absl::little_endian::Load32(p + 8); uint32_t buf3 = absl::little_endian::Load32(p + 12); p += kSwathSize; // Increment a CRC value by a "swath"; this combines the four bytes // starting at `ptr` and twelve zero bytes, so that four CRCs can be // built incrementally and combined at the end. const auto step_swath = [this](uint32_t crc_in, const std::uint8_t* ptr) { return absl::little_endian::Load32(ptr) ^ this->table_[3][crc_in & 0xff] ^ this->table_[2][(crc_in >> 8) & 0xff] ^ this->table_[1][(crc_in >> 16) & 0xff] ^ this->table_[0][crc_in >> 24]; }; // Run one CRC calculation step over all swaths in one 16-byte stride const auto step_stride = [&]() { buf0 = step_swath(buf0, p); buf1 = step_swath(buf1, p + 4); buf2 = step_swath(buf2, p + 8); buf3 = step_swath(buf3, p + 12); p += 16; }; // Process kStride interleaved swaths through the data in parallel. while ((e - p) > kPrefetchHorizon) { base_internal::PrefetchNta( reinterpret_cast(p + kPrefetchHorizon)); // Process 64 bytes at a time step_stride(); step_stride(); step_stride(); step_stride(); } while (static_cast(e - p) >= kSwathSize) { step_stride(); } // Now advance one word at a time as far as possible. This isn't worth // doing if we have word-advance tables. while (static_cast(e - p) >= 4) { buf0 = step_swath(buf0, p); uint32_t tmp = buf0; buf0 = buf1; buf1 = buf2; buf2 = buf3; buf3 = tmp; p += 4; } // Combine the results from the different swaths. This is just a CRC // on the data values in the bufX words. auto combine_one_word = [this](uint32_t crc_in, uint32_t w) { w ^= crc_in; for (size_t i = 0; i < 4; ++i) { w = (w >> 8) ^ this->table0_[w & 0xff]; } return w; }; l = combine_one_word(0, buf0); l = combine_one_word(l, buf1); l = combine_one_word(l, buf2); l = combine_one_word(l, buf3); } // Process the last few bytes while (p != e) { step_one_byte(); } *crc = l; } void CRC32::ExtendByZeroesImpl(uint32_t* crc, size_t length, const uint32_t zeroes_table[256], const uint32_t poly_table[256]) const { if (length != 0) { uint32_t l = *crc; // For each ZEROES_BASE_LG bits in length // (after the low-order bits have been removed) // we lookup the appropriate polynomial in the zeroes_ array // and do a polynomial long multiplication (mod the CRC polynomial) // to extend the CRC by the appropriate number of bits. for (int i = 0; length != 0; i += ZEROES_BASE - 1, length >>= ZEROES_BASE_LG) { int c = length & (ZEROES_BASE - 1); // pick next ZEROES_BASE_LG bits if (c != 0) { // if they are not zero, // multiply by entry in table // Build a table to aid in multiplying 2 bits at a time. // It takes too long to build tables for more bits. uint64_t m = zeroes_table[c + i - 1]; m <<= 1; uint64_t m2 = m << 1; uint64_t mtab[4] = {0, m, m2, m2 ^ m}; // Do the multiply one byte at a time. uint64_t result = 0; for (int x = 0; x < 32; x += 8) { // The carry-less multiply. result ^= mtab[l & 3] ^ (mtab[(l >> 2) & 3] << 2) ^ (mtab[(l >> 4) & 3] << 4) ^ (mtab[(l >> 6) & 3] << 6); l >>= 8; // Reduce modulo the polynomial result = (result >> 8) ^ poly_table[result & 0xff]; } l = static_cast(result); } } *crc = l; } } void CRC32::ExtendByZeroes(uint32_t* crc, size_t length) const { return CRC32::ExtendByZeroesImpl(crc, length, zeroes_, table0_); } void CRC32::UnextendByZeroes(uint32_t* crc, size_t length) const { // See the comment in CRC32::InitTables() for an explanation of the algorithm // below. *crc = ReverseBits(*crc); ExtendByZeroesImpl(crc, length, reverse_zeroes_, reverse_table0_); *crc = ReverseBits(*crc); } void CRC32::Scramble(uint32_t* crc) const { // Rotate by near half the word size plus 1. See the scramble comment in // crc_internal.h for an explanation. constexpr int scramble_rotate = (32 / 2) + 1; *crc = RotateRight(static_cast(*crc + kScrambleLo), 32, scramble_rotate) & MaskOfLength(32); } void CRC32::Unscramble(uint32_t* crc) const { constexpr int scramble_rotate = (32 / 2) + 1; uint64_t rotated = RotateRight(static_cast(*crc), 32, 32 - scramble_rotate); *crc = (rotated - kScrambleLo) & MaskOfLength(32); } // Constructor and destructor for base class CRC. CRC::~CRC() {} CRC::CRC() {} // The "constructor" for a CRC32C with a standard polynomial. CRC* CRC::Crc32c() { static CRC* singleton = CRCImpl::NewInternal(); return singleton; } // This Concat implementation works for arbitrary polynomials. void CRC::Concat(uint32_t* px, uint32_t y, size_t ylen) { // https://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks // The CRC of a message M is the remainder of polynomial divison modulo G, // where the coefficient arithmetic is performed modulo 2 (so +/- are XOR): // R(x) = M(x) x**n (mod G) // (n is the degree of G) // In practice, we use an initial value A and a bitmask B to get // R = (A ^ B)x**|M| ^ Mx**n ^ B (mod G) // If M is the concatenation of two strings S and T, and Z is the string of // len(T) 0s, then the remainder CRC(ST) can be expressed as: // R = (A ^ B)x**|ST| ^ STx**n ^ B // = (A ^ B)x**|SZ| ^ SZx**n ^ B ^ Tx**n // = CRC(SZ) ^ Tx**n // CRC(Z) = (A ^ B)x**|T| ^ B // CRC(T) = (A ^ B)x**|T| ^ Tx**n ^ B // So R = CRC(SZ) ^ CRC(Z) ^ CRC(T) // // And further, since CRC(SZ) = Extend(CRC(S), Z), // CRC(SZ) ^ CRC(Z) = Extend(CRC(S) ^ CRC(''), Z). uint32_t z; uint32_t t; Empty(&z); t = *px ^ z; ExtendByZeroes(&t, ylen); *px = t ^ y; } } // namespace crc_internal ABSL_NAMESPACE_END } // namespace absl