# -*- encoding: utf-8; frozen_string_literal: true -*- # #-- # This file is part of HexaPDF. # # HexaPDF - A Versatile PDF Creation and Manipulation Library For Ruby # Copyright (C) 2014-2024 Thomas Leitner # # HexaPDF is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License version 3 as # published by the Free Software Foundation with the addition of the # following permission added to Section 15 as permitted in Section 7(a): # FOR ANY PART OF THE COVERED WORK IN WHICH THE COPYRIGHT IS OWNED BY # THOMAS LEITNER, THOMAS LEITNER DISCLAIMS THE WARRANTY OF NON # INFRINGEMENT OF THIRD PARTY RIGHTS. # # HexaPDF is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public # License for more details. # # You should have received a copy of the GNU Affero General Public License # along with HexaPDF. If not, see . # # The interactive user interfaces in modified source and object code # versions of HexaPDF must display Appropriate Legal Notices, as required # under Section 5 of the GNU Affero General Public License version 3. # # In accordance with Section 7(b) of the GNU Affero General Public # License, a covered work must retain the producer line in every PDF that # is created or manipulated using HexaPDF. # # If the GNU Affero General Public License doesn't fit your need, # commercial licenses are available at . #++ require 'hexapdf/content/graphics_state' require 'hexapdf/content/operator' require 'hexapdf/content/canvas_composer' require 'hexapdf/serializer' require 'hexapdf/utils/math_helpers' require 'hexapdf/utils/graphics_helpers' require 'hexapdf/content/graphic_object' require 'hexapdf/stream' module HexaPDF module Content # This class provides the basic drawing operations supported by PDF. # # == General Information # # A canvas object is used for modifying content streams on a level higher than text. It would # be possible to write a content stream by hand since PDF uses a simplified reversed polish # notation for specifying operators: First come the operands, then comes the operator and no # operator returns any result. However, it is easy to make mistakes this way and one has to # know all operators and their operands. # # This is rather tedious and therefore this class exists. It allows one to modify a content # stream by invoking methods that should be familiar to anyone that has ever used a graphics # API. There are methods for moving the current point, drawing lines and curves, setting the # color, line width and so on. # # The PDF operators themselves are implemented as classes, see Operator. The canvas class uses # the Operator::BaseOperator#invoke and Operator::BaseOperator#serialize methods for applying # changes and serialization, with one exception: color setters don't invoke the corresponding # operator implementation but work directly on the graphics state. # # === General Graphics State Manipulation Methods # # * #save_graphics_state # * #restore_graphics_state # * #fill_color # * #stroke_color # * #opacity # * #rendering_intent # # === Transformation Methods # # * #transform # * #translate # * #scale # * #rotate # * #skew # # === Path Construction Methods # # * #move_to # * #line_to # * #curve_to # * #rectangle # * #line # * #polyline # * #polygon # * #circle # * #ellipse # * #arc # * #close_subpath # * #end_path # # === Path Painting Methods # # * #fill # * #stroke # * #fill_stroke # * #close_stroke # * #close_fill_stroke # * #clip_path # # === Path Related Graphics State Methods # # * #line_cap_style # * #line_dash_pattern # * #line_join_style # * #line_width # * #miter_limit # # === Text Related Methods # # * #begin_text # * #end_text # * #text # * #show_glyphs # * #show_glyphs_only # * #text_cursor # * #move_text_cursor # * #font # * #font_size # * #character_spacing # * #horizontal_scaling # * #text_rise # * #word_spacing # * #leading # * #text_matrix # * #text_rendering_mode # # === Other Methods # # * #image # * #xobject # * #graphic_object # * #draw # * #marked_content_point # * #marked_content_sequence # * #end_marked_content_sequence # # # == PDF Graphics # # === Graphics Operators and Objects # # There are about 60 PDF content stream operators. Some are used for changing the graphics # state, some for drawing paths and others for showing text. This is all abstracted through # the Canvas class. # # PDF knows about five different graphics objects: path objects, text objects, external # objects, inline image objects and shading objects. If none of the five graphics objects is # current, the content stream is at the so called page description level (in between graphics # objects). # # Additionally the PDF operators are divided into several groups, like path painting or text # showing operators, and such groups of operators are allowed to be used only in certain # graphics objects or the page description level. # # Have a look at the PDF specification (PDF2.0 s8.2) for more details. # # HexaPDF tries to ensure the proper use of the operators and graphics objects and if it # cannot do it, an error is raised. So if you don't modify a content stream directly but via # the Canvas methods, you generally don't have to worry about the low-level inner workings. # # === Graphics State # # Some operators modify the so called graphics state (see GraphicsState). The graphics state is # a collection of settings that is used during processing or creating a content stream. For # example, the path painting operators don't have operands to specify the line width or the # stroke color but take this information from the graphics state. # # One important thing about the graphics state is that it is only possible to restore a prior # state using the save and restore methods. It is not possible to reset the graphics state # while creating the content stream! # # This means, for example, if you use a clipping path (see #clip_path) you should first save the # graphics state (#save_graphics_state) and then restore it afterwards # (#restore_graphics_state). Otherwise all following operations will be clipped to the clipping # path. # # === Paths # # A PDF path object consists of one or more subpaths. Each subpath can be a rectangle or can # consist of lines and cubic bezier curves. No other types of subpaths are known to PDF. # However, the Canvas class contains additional methods that use the basic path construction # methods for drawing other paths like circles. # # When a subpath is started, the current graphics object is changed to :path. After all path # constructions are finished, a path painting method needs to be invoked to change back to the # page description level. Optionally, the path painting method may be preceeded by a clipping # path method to change the current clipping path (see #clip_path). # # There are four kinds of path painting methods: # # * Those that stroke the path, # * those that fill the path, # * those that stroke and fill the path and # * one to neither stroke or fill the path (used, for example, to just set the clipping path). # # In addition filling may be done using either the nonzero winding number rule or the even-odd # rule. # # See: PDF2.0 s8, s9 class Canvas include HexaPDF::Utils::MathHelpers include HexaPDF::Utils::GraphicsHelpers # The context for which the canvas was created (a HexaPDF::Type::Page or HexaPDF::Type::Form # object). # # The context object is used for two things: # # * To store the resources (#resources) that are needed by the canvas (e.g. font references). # # * To access the HexaPDF::Document object to which this canvas and the context object # belongs. This is used internally but it is also useful in other situations since some # parts of HexaPDF only yield a canvas object, and not also the underlying document object. attr_reader :context # The serialized contents produced by the various canvas operations up to this point. # # Note that the returned string may not be a completely valid PDF content stream since a # graphic object may be open or the graphics state may not be completely restored. # # See: #stream_data attr_reader :contents # A StreamData object representing the serialized contents produced by the various canvas # operations. # # In contrast to #contents, it is ensured that an open graphics object is closed and all saved # graphics states are restored when the contents of the stream data object is read. # # *Note* that this means that reading the stream data object may change the state of the # canvas! attr_reader :stream_data # The GraphicsState object containing the current graphics state. # # The graphics state must not be changed directly, only by using the provided methods. If it # is changed directly, the output will not be correct. attr_reader :graphics_state # The current graphics object. # # The graphics object should not be changed directly! It is automatically updated by the # invoked methods. # # This attribute can have the following values: # # :none:: No current graphics object, i.e. the page description level. # :path:: The current graphics object is a path. # :clipping_path:: The current graphics object is a clipping path. # :text:: The current graphics object is a text object. # # See: PDF2.0 s8.2 attr_accessor :graphics_object # The current point [x, y] of the path. # # This attribute holds the current point which is only valid if the current graphics object # (see #graphic_object) is :path. # # When the current point changes, the array is modified in place instead of creating a new # array! attr_reader :current_point # The operator name/implementation map used when invoking or serializing an operator. # # Defaults to Operator::DEFAULT_OPERATORS, i.e. the standard implementation provided by # HexaPDF. attr_reader :operators # Creates a new Canvas object for the given context object (either a HexaPDF::Type::Page or a # HexaPDF::Type::Form). # # This method is usually not invoked directly but through HexaPDF::Type::Page#canvas or # HexaPDF::Type::Form#canvas to make sure the contents of the canvas is properly assigned to # the context object. # # Examples: # # doc = HexaPDF::Document.new # canvas = doc.pages.add.canvas def initialize(context) @context = context @operators = Operator::DEFAULT_OPERATORS.dup @graphics_state = GraphicsState.new @graphics_object = :none @font = nil @font_stack = [] @serializer = HexaPDF::Serializer.new @current_point = [0, 0] @start_point = [0, 0] @contents = ''.b source = HexaPDF::Filter.source_from_proc do case graphics_object when :path, :clipping_path then end_path when :text then end_text end restore_graphics_state while graphics_state.saved_states? @contents end @stream_data = HexaPDF::StreamData.new(source) end # Returns the resource dictionary of the context object. # # See HexaPDF::Type::Resources def resources @context.resources end # Returns the position (x,y) transformed by the current transformation matrix. # # The resulting position should be interpreted in terms of the coordinate system of the # context object (e.g. the page or Form XObject). def pos(x, y) graphics_state.ctm.evaluate(x, y) end # :call-seq: # canvas.save_graphics_state => canvas # canvas.save_graphics_state { block } => canvas # # Saves the current graphics state and returns +self+. # # If invoked without a block a corresponding call to #restore_graphics_state must be done to # ensure proper nesting. Otherwise, i.e. when invoked with a block, the graphics state is # automatically restored when the block is finished. # # Any saved graphics states are also restored when the content stream associated with the # canvas is serialized to ensure proper nesting. # # Examples: # # #>pdf # # With a block # canvas.save_graphics_state do # canvas.stroke_color("hp-blue") # After the block the color is reset # canvas.line(20, 20, 70, 180).stroke # end # canvas.line(60, 20, 110, 180).stroke # # # Same without a block # canvas.save_graphics_state. # stroke_color("red"). # line(100, 20, 150, 180).stroke. # restore_graphics_state # canvas.line(140, 20, 190, 180).stroke # # See: PDF2.0 s8.4.2, #restore_graphics_state def save_graphics_state raise_unless_at_page_description_level invoke0(:q) @font_stack.push(@font) if block_given? yield restore_graphics_state end self end # :call-seq: # canvas.restore_graphics_state => canvas # # Restores the graphics state to the last saved version and returns +self+. # # Must not be invoked more times than #save_graphics_state. # # Example: # # #>pdf # canvas.save_graphics_state # canvas.circle(100, 100, 50).clip_path.end_path # canvas.fill_color("hp-blue").rectangle(0, 0, 100, 100).fill # canvas.restore_graphics_state # canvas.rectangle(100, 0, 100, 100).fill # # See: PDF2.0 s8.4.2, #save_graphics_state def restore_graphics_state raise_unless_at_page_description_level invoke0(:Q) @font = @font_stack.pop self end # :call-seq: # canvas.transform(a, b, c, d, e, f) => canvas # canvas.transform(a, b, c, d, e, f) { block } => canvas # # Transforms the coordinate system by applying the given matrix to the current transformation # matrix and returns self. # # If invoked with a block, the transformation is only active during the block by saving and # restoring the graphics state. # # The given values are interpreted as a matrix in the following way: # # a b 0 # c d 0 # e f 1 # # Example: # # #>pdf # canvas.transform(1, 0, 0, 1, 100, 100) do # Translate origin to (100, 100) # canvas.stroke_color("hp-blue"). # line(0, 0, 100, 50).stroke # Actually from (100, 100) to (200, 150) # end # canvas.line(0, 0, 100, 50).stroke # Really from (0, 0) to (100, 50) # # See: PDF2.0 s8.3, s8.4.4 def transform(a, b, c, d, e, f) raise_unless_at_page_description_level save_graphics_state if block_given? invoke(:cm, a, b, c, d, e, f) if block_given? yield restore_graphics_state end self end # :call-seq: # canvas.rotate(angle, origin: nil) => canvas # canvas.rotate(angle, origin: nil) { block } => canvas # # Rotates the coordinate system +angle+ degrees around the origin or around the given point # and returns +self+. # # If invoked with a block, the rotation of the coordinate system is only active during the # block by saving and restoring the graphics state. # # Note that the origin of the coordinate system itself doesn't change even if the +origin+ # argument is given! # # origin:: # The point around which the coordinate system should be rotated. # # Examples: # # #>pdf-center # canvas.stroke_color("hp-gray-light"). # rectangle(0, 0, 60, 40).stroke # The rectangle that gets rotated # # canvas.rotate(45) do # Positive x-axis pointing to top-right corner # canvas.stroke_color("hp-blue"). # rectangle(0, 0, 60, 40).stroke # end # # canvas.rotate(-45, origin: [-50, -50]) do # Rotate around (-50,-50) # canvas.stroke_color("hp-orange"). # rectangle(0, 0, 60, 40).stroke # end # # See: #transform def rotate(angle, origin: nil, &block) cos = Math.cos(deg_to_rad(angle)) sin = Math.sin(deg_to_rad(angle)) # Rotation is performed around the coordinate system origin but points are translated so # that the rotated rotation origin coincides with the unrotated one. tx = (origin ? origin[0] - (origin[0] * cos - origin[1] * sin) : 0) ty = (origin ? origin[1] - (origin[0] * sin + origin[1] * cos) : 0) transform(cos, sin, -sin, cos, tx, ty, &block) end # :call-seq: # canvas.scale(sx, sy = sx, origin: nil) => canvas # canvas.scale(sx, sy = sx, origin: nil) { block } => canvas # # Scales the coordinate system +sx+ units in the horizontal and +sy+ units in the vertical # direction and returns +self+. If the optional +origin+ is specified, scaling is done from # that point. # # If invoked with a block, the scaling is only active during the block by saving and # restoring the graphics state. # # Note that the origin of the coordinate system itself doesn't change even if the +origin+ # argument is given! # # origin:: # The point from which the coordinate system should be scaled. # # Examples: # # #>pdf-center # canvas.stroke_color("hp-gray-light"). # rectangle(10, 10, 10, 10).stroke # The rectangle that gets scaled # # canvas.scale(4, 2) do # Scale from origin # canvas.stroke_color("hp-blue"). # rectangle(10, 10, 10, 10).stroke # Actually (40, 20) to (80, 40) # end # # canvas.scale(-2, 4, origin: [10, 10]) do # Scale from (10, 10) # canvas.stroke_color("hp-orange"). # rectangle(10, 10, 10, 10).stroke # Actually (10, 10) to (-10, 40) # end # # See: #transform def scale(sx, sy = sx, origin: nil, &block) # As with rotation, scaling is performed around the coordinate system origin but points # are translated so that the scaled scaling origin coincides with the unscaled one. tx = (origin ? origin[0] - origin[0] * sx : 0) ty = (origin ? origin[1] - origin[1] * sy : 0) transform(sx, 0, 0, sy, tx, ty, &block) end # :call-seq: # canvas.translate(x, y) => canvas # canvas.translate(x, y) { block } => canvas # # Translates the coordinate system coordinate system origin to the given +x+ and +y+ # coordinates and returns +self+. # # If invoked with a block, the translation of the coordinate system is only active during the # block by saving and restoring the graphics state. # # Examples: # # #>pdf-center # canvas.stroke_color("hp-gray-light"). # rectangle(0, 0, 40, 20).stroke # Rectangle from (0, 0) to (40, 20) # canvas.translate(50, 50) do # Origin is now at (50, 50) # canvas.stroke_color("hp-blue"). # rectangle(0, 0, 40, 20).stroke # Actually (50, 50) to (90, 70) # end # # See: #transform def translate(x, y, &block) transform(1, 0, 0, 1, x, y, &block) end # :call-seq: # canvas.skew(a, b, origin: nil) => canvas # canvas.skew(a, b, origin: nil) { block } => canvas # # Skews the the x-axis by +a+ degrees and the y-axis by +b+ degress and returns +self+. If the # optional +origin+ is specified, skewing is done from that point. # # If invoked with a block, the skewing is only active during the block by saving and # restoring the graphics state. # # Note that the origin of the coordinate system itself doesn't change! # # origin:: # The point from which the axes are skewed. # # Examples: # # #>pdf-center # canvas.stroke_color("hp-gray-light"). # rectangle(10, 10, 40, 20).stroke # The rectangle that gets skewed # # canvas.skew(0, 30) do # Point (10, 10) is now actually (15, 10) # canvas.stroke_color("hp-blue"). # rectangle(10, 10, 40, 20).stroke # Now a parallelogram # end # # canvas.skew(30, 30, origin: [-50, 50]) do # Skew from (-50, 50) # canvas.stroke_color("hp-orange"). # rectangle(-50, 50, 20, 20).stroke # end # # See: #transform def skew(a, b, origin: nil, &block) tan_a = Math.tan(deg_to_rad(a)) tan_b = Math.sin(deg_to_rad(b)) # As with rotation, skewing is performed around the coordinate system origin but points # are translated so that the skewed skewing origin coincides with the unskewed one. tx = (origin ? -origin[1] * tan_b : 0) ty = (origin ? -origin[0] * tan_a : 0) transform(1, tan_a, tan_b, 1, tx, ty, &block) end # :call-seq: # canvas.line_width => current_line_width # canvas.line_width(width) => canvas # canvas.line_width(width) { block } => canvas # # The line width determines the thickness of a stroked path. # # Note that half the line width lies on either side of the path. For example, if a path from # (0, 0) to (0, 100) is drawn with a line width of 20, the stroked path is actually 20 units # wide, from -10 to 10. And if a rectangle is drawn stroked, but not filled, from (20, 20) # with a width and height of 20 and a line width of 10, the "inside" of the rectangle would # only be from (25, 25) to (35, 35). Also see the examples below. # # Returns the current line width (see GraphicsState#line_width) when no argument is given. # Otherwise sets the line width to the given +width+ and returns +self+. The setter version # can also be called in the line_width= form. # # If the +width+ and a block are provided, the changed line width is only active during the # block by saving and restoring the graphics state. # # Examples: # # #>pdf # canvas.line_width(10). # line(10, 100, 10, 190).stroke # canvas.line_width # => 10 # canvas.line_width = 5 # => 5 # canvas.line(60, 100, 60, 190).stroke # # canvas.line_width(10) do # canvas.line_width # => 10 # canvas.line(110, 100, 110, 190).stroke # end # canvas.line_width # => 5 # canvas.line(160, 100, 160, 190).stroke # # canvas.line_width(10).rectangle(20, 20, 20, 20).stroke # The rectangle # canvas.fill_color("hp-blue").rectangle(25, 25, 10, 10).fill # The inside # # See: PDF2.0 s8.4.3.2 def line_width(width = nil, &block) gs_getter_setter(:line_width, :w, width, &block) end alias line_width= line_width # :call-seq: # canvas.line_cap_style => current_line_cap_style # canvas.line_cap_style(style) => canvas # canvas.line_cap_style(style) { block } => canvas # # The line cap style specifies how the ends of stroked, open paths should look like. # # The +style+ parameter can be one of (also see LineCapStyle): # # :butt or 0:: # Stroke is squared off at the endpoint of a path. # :round or 1:: # A semicircular arc is drawn at the endpoint of a path. # :projecting_square or 2:: # The stroke continues half the line width beyond the endpoint of a path. # # Note that the return value is always a normalized line cap style (i.e. a NamedValue). # # Returns the current line cap style (see GraphicsState#line_cap_style) when no argument is # given. Otherwise sets the line cap style to the given +style+ and returns +self+. The setter # version can also be called in the line_cap_style= form. # # If the +style+ and a block are provided, the changed line cap style is only active during # the block by saving and restoring the graphics state. # # Examples: # # #>pdf # canvas.line_cap_style(:butt) # canvas.line_cap_style # => # # canvas.line_cap_style = :round # => # # # canvas.line_cap_style(:butt) do # canvas.line_cap_style # => # # end # canvas.line_cap_style # => # # # # visual example # [:butt, :round, :projecting_square].each_with_index do |style, index| # canvas.line_cap_style(style). # line_width(10).stroke_color("black"). # line(50 + index * 50, 30, 50 + index * 50, 170).stroke # canvas.stroke_color("white").line_width(1).line_cap_style(:butt). # line(50 + index * 50, 30, 50 + index * 50, 170).stroke # end # # See: PDF2.0 s8.4.3.3, Content::LineCapStyle def line_cap_style(style = nil, &block) gs_getter_setter(:line_cap_style, :J, style && LineCapStyle.normalize(style), &block) end alias line_cap_style= line_cap_style # :call-seq: # canvas.line_join_style => current_line_join_style # canvas.line_join_style(style) => canvas # canvas.line_join_style(style) { block } => canvas # # The line join style specifies the shape that is used at the corners of stroked paths. # # The +style+ parameter can be one of (also see LineJoinStyle): # # :miter or 0:: # The outer lines of the two segments continue until the meet at an angle. # :round or 1:: # An arc of a circle is drawn around the point where the segments meet. # :bevel or 2:: # The two segments are finished with butt caps and the space between the ends is filled # with a triangle. # # Note that the return value is always a normalized line join style (i.e. a NamedValue). # # Returns the current line join style (see GraphicsState#line_join_style) when no argument is # given. Otherwise sets the line join style to the given +style+ and returns +self+. The # setter version can also be called in the line_join_style= form. # # If the +style+ and a block are provided, the changed line join style is only active during # the block by saving and restoring the graphics state. # # Examples: # # #>pdf # canvas.line_join_style(:miter) # canvas.line_join_style # => # # canvas.line_join_style = :round # => # # # canvas.line_join_style(:bevel) do # canvas.line_join_style # => # # end # canvas.line_join_style # => # # # # visual example # [:miter, :round, :bevel].each_with_index do |style, index| # canvas.line_join_style(style). # line_width(10).stroke_color("black"). # polyline(20 + index * 60, 30, 40 + index * 60, 170, 60 + index * 60, 30).stroke # canvas.stroke_color("white").line_width(1).line_join_style(:bevel). # polyline(20 + index * 60, 30, 40 + index * 60, 170, 60 + index * 60, 30).stroke # end # # See: PDF2.0 s8.4.3.4, Content::LineJoinStyle def line_join_style(style = nil, &block) gs_getter_setter(:line_join_style, :j, style && LineJoinStyle.normalize(style), &block) end alias line_join_style= line_join_style # :call-seq: # canvas.miter_limit => current_miter_limit # canvas.miter_limit(limit) => canvas # canvas.miter_limit(limit) { block } => canvas # # The miter limit specifies the maximum ratio of the miter length to the line width for # mitered line joins (see #line_join_style). When the limit is exceeded, a bevel join is # used instead of a miter join. # # Returns the current miter limit (see GraphicsState#miter_limit) when no argument is given. # Otherwise sets the miter limit to the given +limit+ and returns +self+. The setter version # can also be called in the miter_limit= form. # # If the +limit+ and a block are provided, the changed miter limit is only active during the # block by saving and restoring the graphics state. # # Examples: # # #>pdf # canvas.miter_limit(10) # canvas.miter_limit # => 10 # canvas.miter_limit = 5 # => 5 # # canvas.miter_limit(10) do # canvas.miter_limit # => 10 # end # canvas.miter_limit # => 5 # # # visual example # [10, 5].each_with_index do |limit, index| # canvas.miter_limit(limit) # canvas.line_width(10).polyline(20 + index * 80, 30, 40 + index * 80, 170, # 60 + index * 80, 30).stroke # end # # See: PDF2.0 s8.4.3.5 def miter_limit(limit = nil, &block) gs_getter_setter(:miter_limit, :M, limit, &block) end alias miter_limit= miter_limit # :call-seq: # canvas.line_dash_pattern => current_line_dash_pattern # canvas.line_dash_pattern(line_dash_pattern) => canvas # canvas.line_dash_pattern(length, phase = 0) => canvas # canvas.line_dash_pattern(array, phase = 0) => canvas # canvas.line_dash_pattern(value, phase = 0) { block } => canvas # # The line dash pattern defines the appearance of a stroked path (line _or_ curve), ie. if # it is solid or if it contains dashes and gaps. # # There are multiple ways to set the line dash pattern: # # * By providing a LineDashPattern object # * By providing a single Integer/Float that is used for both dashes and gaps # * By providing an array of Integers/Floats that specify the alternating dashes and gaps # # The phase (i.e. the distance into the dashes/gaps at which to start) can additionally be # set in the last two cases. # # A solid line can be achieved by using 0 for the length or by using an empty array. # # Returns the current line dash pattern (a LineDashPattern object, see # GraphicsState#line_dash_pattern) when no argument is given. Otherwise sets the line dash # pattern using the given arguments and returns +self+. The setter version can also be called # in the line_dash_pattern= form (but only without the second argument!). # # If arguments and a block are provided, the changed line dash pattern is only active during # the block by saving and restoring the graphics state. # # Examples: # # #>pdf # canvas.line_dash_pattern(10) # canvas.line_dash_pattern # => LineDashPattern.new([10], 0) # canvas.line_dash_pattern(10, 2) # canvas.line_dash_pattern([5, 3, 1], 2) # canvas.line_dash_pattern = HexaPDF::Content::LineDashPattern.new([5, 3, 1], 1) # # canvas.line_dash_pattern(10) do # canvas.line_dash_pattern # => LineDashPattern.new([10], 0) # end # canvas.line_dash_pattern # => LineDashPattern.new([5, 3, 1], 1) # # # visual example # [10, [10, 2], [[5, 3, 1], 2]].each_with_index do |pattern, index| # canvas.line_dash_pattern(*pattern) # canvas.line_width(10).line(50 + index * 50, 30, 50 + index * 50, 170). # stroke # end # # See: PDF2.0 s8.4.3.5, LineDashPattern def line_dash_pattern(value = nil, phase = 0, &block) gs_getter_setter(:line_dash_pattern, :d, value && LineDashPattern.normalize(value, phase), &block) end alias line_dash_pattern= line_dash_pattern # :call-seq: # canvas.rendering_intent => current_rendering_intent # canvas.rendering_intent(intent) => canvas # canvas.rendering_intent(intent) { block } => canvas # # The rendering intent is used to specify the intent on how colors should be rendered since # sometimes compromises have to be made when the capabilities of an output device are not # sufficient. The +intent+ parameter can be one of the following symbols: # # * +:AbsoluteColorimetric+ # * +:RelativeColorimetric+ # * +:Saturation+ # * +:Perceptual+ # # Returns the current rendering intent (see GraphicsState#rendering_intent) when no argument # is given. Otherwise sets the rendering intent using the +intent+ argument and returns # +self+. The setter version can also be called in the rendering_intent= form. # # If the +intent+ and a block are provided, the changed rendering intent is only active # during the block by saving and restoring the graphics state. # # Examples: # # canvas.rendering_intent(:Perceptual) # canvas.rendering_intent # => :Perceptual # canvas.rendering_intent = :Saturation # => :Saturation # # canvas.rendering_intent(:Perceptual) do # canvas.rendering_intent # => :Perceptual # end # canvas.rendering_intent # => :Saturation # # See: PDF2.0 s8.6.5.8, RenderingIntent def rendering_intent(intent = nil, &bk) gs_getter_setter(:rendering_intent, :ri, intent && RenderingIntent.normalize(intent), &bk) end alias rendering_intent= rendering_intent # :call-seq: # canvas.stroke_color => current_stroke_color # canvas.stroke_color(gray) => canvas # canvas.stroke_color(r, g, b) => canvas # canvas.stroke_color(c, m, y, k) => canvas # canvas.stroke_color(string) => canvas # canvas.stroke_color(color_object) => canvas # canvas.stroke_color(array) => canvas # canvas.stroke_color(color_spec) { block } => canvas # # The stroke color defines the color used for stroking operations, i.e. for painting paths. # # There are several ways to define the color that should be used: # # * A single numeric argument specifies a gray color (see ColorSpace::DeviceGray::Color). # # * Three numeric arguments specify an RGB color (see ColorSpace::DeviceRGB::Color). # # * A string in the format "RRGGBB" where "RR" is the hexadecimal number for the red, "GG" # for the green and "BB" for the blue color value also specifies an RGB color. # # * As does a string in the format "RGB" where "RR", "GG" and "BB" would be used as the # hexadecimal numbers for the red, green and blue color values of an RGB color. # # * Any other string is treated as a color name. HexaPDF supports CSS Color Module Level 3 # color names (see https://www.w3.org/TR/css-color-3/#svg-color) as well as HexaPDF design # colors. # # * Four numeric arguments specify a CMYK color (see ColorSpace::DeviceCMYK::Color). # # * A color object is used directly (normally used for color spaces other than DeviceRGB, # DeviceCMYK and DeviceGray). # # * An array is treated as if its items were specified separately as arguments. # # Returns the current stroke color (see GraphicsState#stroke_color) when no argument is given. # Otherwise sets the stroke color using the given arguments and returns +self+. The setter # version can also be called in the stroke_color= form. # # If the arguments and a block are provided, the changed stroke color is only active during # the block by saving and restoring the graphics state. # # Examples: # # #>pdf # canvas.line_width(5) # # # With no arguments just returns the current color # canvas.stroke_color # => DeviceGray.color(0.0) # # # Same gray color because integer values are normalized to the range of 0.0 to 1.0 # canvas.stroke_color(102).rectangle(10, 170, 20, 20).stroke # canvas.stroke_color(0.4).rectangle(40, 170, 20, 20).stroke # # # Specifying RGB color yellow in all possible formats # canvas.stroke_color(255, 255, 0).rectangle(10, 140, 20, 20).stroke # canvas.stroke_color(1.0, 1.0, 0).rectangle(40, 140, 20, 20).stroke # canvas.stroke_color("FFFF00").rectangle(70, 140, 20, 20).stroke # canvas.stroke_color("FF0").rectangle(100, 140, 20, 20).stroke # canvas.stroke_color("yellow").rectangle(130, 140, 20, 20).stroke # # # Specifying CMYK colors # canvas.stroke_color(100, 100, 0, 60).rectangle(10, 110, 20, 20).stroke # canvas.stroke_color(1.0, 1.0, 0, 0.6).rectangle(40, 110, 20, 20).stroke # # # Can use a color object directly, only numeric normalization is performed # color = HexaPDF::Content::ColorSpace::DeviceRGB.new.color(0, 255, 0) # canvas.stroke_color(color).rectangle(10, 80, 20, 20).stroke # # # An array argument is destructured - these calls are all equal # canvas.stroke_color(0, 255, 0).rectangle(40, 80, 20, 20).stroke # canvas.stroke_color([0, 255, 0]).rectangle(70, 80, 20, 20).stroke # canvas.stroke_color = [0, 255, 0] # canvas.rectangle(100, 80, 20, 20).stroke # # # As usual, can be invoked with a block to limit the effects # canvas.stroke_color(102) do # canvas.stroke_color # => ColorSpace::DeviceGray.color(0.4) # end # # See: PDF2.0 s8.6, ColorSpace def stroke_color(*color, &block) color_getter_setter(:stroke_color, color, :RG, :G, :K, :CS, :SCN, &block) end alias stroke_color= stroke_color # The fill color defines the color used for non-stroking operations, i.e. for filling paths. # # Works exactly the same as #stroke_color but for the fill color. See #stroke_color for # details on invocation and use. def fill_color(*color, &block) color_getter_setter(:fill_color, color, :rg, :g, :k, :cs, :scn, &block) end alias fill_color= fill_color # :call-seq: # canvas.opacity => current_values # canvas.opacity(fill_alpha:) => canvas # canvas.opacity(stroke_alpha:) => canvas # canvas.opacity(fill_alpha:, stroke_alpha:) => canvas # canvas.opacity(fill_alpha:, stroke_alpha:) { block } => canvas # # The fill and stroke alpha values determine how opaque drawn elements will be. Note that # the fill alpha value applies not just to fill values but to all non-stroking operations # (e.g. images, ...). # # Returns the current fill alpha (see GraphicsState#fill_alpha) and stroke alpha (see # GraphicsState#stroke_alpha) values using a hash with the keys +:fill_alpha+ and # +:stroke_alpha+ when no argument is given. Otherwise sets the fill and stroke alpha values # and returns +self+. The setter version can also be called in the #opacity= form. # # If the values are set and a block is provided, the changed alpha values are only active # during the block by saving and restoring the graphics state. # # Examples: # # #>pdf # canvas.opacity(fill_alpha: 0.5) # canvas.opacity # => {fill_alpha: 0.5, stroke_alpha: 1.0} # canvas.opacity(fill_alpha: 0.4, stroke_alpha: 0.9) # canvas.opacity # => {fill_alpha: 0.4, stroke_alpha: 0.9} # # canvas.opacity(stroke_alpha: 0.7) do # canvas.opacity # => {fill_alpha: 0.4, stroke_alpha: 0.7} # end # canvas.opacity # => {fill_alpha: 0.4, stroke_alpha: 0.9} # # # visual example # canvas.opacity(fill_alpha: 1, stroke_alpha: 1) # canvas.fill_color("hp-gray-light"). # background rectangle on right side # rectangle(100, 0, 100, 200).fill # canvas.opacity(fill_alpha: 0.5, stroke_alpha: 0.8). # foreground rectangle, with a thick # line_width(20). # stroke that also overlays the # fill_color("hp-blue").stroke_color("hp-blue"). # inside of the rectangle, creating # rectangle(20, 20, 160, 160).fill_stroke # multiple shadings due to opacity # # See: PDF2.0 s11.6.4.4 def opacity(fill_alpha: nil, stroke_alpha: nil) if !fill_alpha.nil? || !stroke_alpha.nil? raise_unless_at_page_description_level_or_in_text save_graphics_state if block_given? if (!fill_alpha.nil? && graphics_state.fill_alpha != fill_alpha) || (!stroke_alpha.nil? && graphics_state.stroke_alpha != stroke_alpha) dict = {Type: :ExtGState} dict[:CA] = stroke_alpha unless stroke_alpha.nil? dict[:ca] = fill_alpha unless fill_alpha.nil? dict[:AIS] = false if graphics_state.alpha_source invoke1(:gs, resources.add_ext_gstate(dict)) end if block_given? yield restore_graphics_state end self elsif block_given? raise ArgumentError, "Block only allowed with an argument" else {fill_alpha: graphics_state.fill_alpha, stroke_alpha: graphics_state.stroke_alpha} end end # :call-seq: # canvas.move_to(x, y) => canvas # # Begins a new subpath (and possibly a new path) by moving the current point to the given # point and returns +self+. # # Examples: # # canvas.move_to(10, 50) # canvas.current_point # => [10, 50] # # See: PDF2.0 s8.5.2.1, #line_to, #curve_to, #rectangle def move_to(x, y) raise_unless_at_page_description_level_or_in_path invoke2(:m, x, y) @current_point[0] = @start_point[0] = x @current_point[1] = @start_point[1] = y self end # :call-seq: # canvas.line_to(x, y) => canvas # # Appends a straight line segment from the current point to the given point (which becomes the # new current point) to the current subpath and returns +self+. # # If there is no current path when the method is invoked, an error is raised since a valid # current point (#current_point) is needed. # # Examples: # # #>pdf-center # canvas.move_to(10, 50) # canvas.line_to(80, 80) # canvas.current_point # => [80, 80] # canvas.stroke # # See: PDF2.0 s8.5.2.1, #move_to, #curve_to, #rectangle def line_to(x, y) raise_unless_in_path invoke2(:l, x, y) @current_point[0] = x @current_point[1] = y self end # :call-seq: # canvas.curve_to(x, y, p1:, p2:) => canvas # canvas.curve_to(x, y, p1:) => canvas # canvas.curve_to(x, y, p2:) => canvas # # Appends a cubic Bezier curve to the current subpath starting from the current point and # returns +self+. The end point becomes the new current point. # # If there is no current path when the method is invoked, an error is raised since a valid # current point (#current_point) is needed. # # A Bezier curve consists of the start point, the end point and the two control points +p1+ # and +p2+. The start point is always the current point and the end point is specified as the # +x+ and +y+ arguments. # # Additionally, either the first control point +p1+ or the second control +p2+ or both # control points have to be specified (as arrays containing two numbers). If the first # control point is not specified, the current point is used as first control point. If the # second control point is not specified, the end point is used as the second control point. # # Examples: # # #>pdf-center # canvas.move_to(10, 50). # curve_to(80, 80, p1: [10, 70], p2: [50, 100]). # curve_to(90, -20, p1: [50, 50]). # curve_to(-30, 60, p2: [-20, -40]) # canvas.current_point # => [-30, 60] # canvas.stroke # # See: PDF2.0 s8.5.2.2, #move_to, #line_to, #rectangle def curve_to(x, y, p1: nil, p2: nil) raise_unless_in_path if p1 && p2 invoke(:c, *p1, *p2, x, y) elsif p1 invoke(:y, *p1, x, y) elsif p2 invoke(:v, *p2, x, y) else raise ArgumentError, "At least one control point must be specified for Bézier curves" end @current_point[0] = x @current_point[1] = y self end # :call-seq: # canvas.rectangle(x, y, width, height, radius: 0) => canvas # # Appends a rectangle to the current path as a complete subpath (drawn in counterclockwise # direction), with the bottom left corner specified by +x+ and +y+ and the given +width+ and # +height+. Returns +self+. # # If +radius+ is greater than 0, the corners are rounded with the given radius. # # Note that the rectangle degrades to a line if either width or height is zero and to nothing # if both are zero. # # If there is no current path when the method is invoked, a new path is automatically begun. # # The current point is set to the bottom left corner if +radius+ is zero, otherwise it is set # to (x, y + radius). # # Examples: # # #>pdf # canvas.rectangle(10, 110, 80, 50).stroke # canvas.rectangle(110, 110, 80, 50, radius: 10).stroke # canvas.rectangle(10, 90, 80, 0).stroke # Degraded: Just a line # canvas.rectangle(110, 90, 0, 0).stroke # Degraded: Draws nothing # # See: PDF2.0 s8.5.2.1, #move_to, #line_to, #curve_to def rectangle(x, y, width, height, radius: 0) raise_unless_at_page_description_level_or_in_path if radius == 0 invoke(:re, x, y, width, height) @current_point[0] = @start_point[0] = x @current_point[1] = @start_point[1] = y self else polygon(x, y, x + width, y, x + width, y + height, x, y + height, radius: radius) end end # :call-seq: # canvas.close_subpath => canvas # # Closes the current subpath by appending a straight line from the current point to the # start point of the subpath which also becomes the new current point. Returns +self+. # # If there is no current path when the method is invoked, an error is raised since a valid # current point (#current_point) is needed. # # Examples: # # #>pdf # canvas.move_to(10, 10). # line_to(110, 10). # line_to(60, 60). # close_subpath. # Draws the line from (60, 60) to (10, 10) # stroke # # See: PDF2.0 s8.5.2.1 def close_subpath raise_unless_in_path invoke0(:h) @current_point = @start_point self end # :call-seq: # canvas.line(x0, y0, x1, y1) => canvas # # Moves the current point to (x0, y0) and appends a line to (x1, y1) to the current path. # Returns +self+. # # If there is no current path when the method is invoked, a new path is automatically begun. # # Examples: # # #>pdf # canvas.line(10, 10, 100, 100).stroke # # See: #move_to, #line_to def line(x0, y0, x1, y1) move_to(x0, y0) line_to(x1, y1) end # :call-seq: # canvas.polyline(x0, y0, x1, y1, x2, y2, ...) => canvas # # Moves the current point to (x0, y0) and appends line segments between all given # consecutive points, i.e. between (x0, y0) and (x1, y1), between (x1, y1) and (x2, y2) and # so on. The last point becomes the new current point. Returns +self+. # # If there is no current path when the method is invoked, a new path is automatically begun. # # Examples: # # #>pdf # canvas.polyline(50, 50, 150, 50, 150, 150, 50, 150, 50, 50).stroke # # See: #move_to, #line_to, #polygon def polyline(*points) check_poly_points(points) move_to(points[0], points[1]) i = 2 while i < points.length line_to(points[i], points[i + 1]) i += 2 end self end # :call-seq: # canvas.polygon(x0, y0, x1, y1, x2, y2, ..., radius: 0) => canvas # # Appends a polygon consisting of the given points to the path as a complete subpath and # returns +self+. The point (x0, y0 + radius) becomes the new current point. # # If +radius+ is greater than 0, the corners are rounded with the given radius. # # If there is no current path when the method is invoked, a new path is automatically begun. # # Examples: # # #>pdf # canvas.polygon(10, 10, 90, 10, 70, 90, 20, 100).stroke # canvas.stroke_color("hp-blue"). # polygon(130, 130, 150, 100, 170, 150, 130, 190, radius: 10).stroke # # See: #polyline def polygon(*points, radius: 0) if radius == 0 polyline(*points) else check_poly_points(points) move_to(*point_on_line(points[0], points[1], points[2], points[3], distance: radius)) points.concat(points[0, 4]) 0.step(points.length - 6, 2) do |i| line_with_rounded_corner(*points[i, 6], in_radius: radius) end end close_subpath end # :call-seq: # canvas.circle(cx, cy, radius) => canvas # # Appends a circle with center (cx, cy) and the given radius (in degrees) to the path as a # complete subpath (drawn in counterclockwise direction). The point (center_x + radius, # center_y) becomes the new current point. Returns +self+. # # If there is no current path when the method is invoked, a new path is automatically begun. # # Examples: # # #>pdf # canvas.circle(100, 100, 30) # cp = canvas.current_point # canvas.stroke # canvas.stroke_color("hp-orange").line(*cp, 180, 100).stroke # # See: #arc (for approximation accuracy), #ellipse def circle(cx, cy, radius) arc(cx, cy, a: radius) close_subpath end # :call-seq: # canvas.ellipse(cx, cy, a:, b:, inclination: 0) => canvas # # Appends an ellipse with center (cx, cy), semi-major axis +a+, semi-minor axis +b+ and an # inclination from the x-axis of +inclination+ degrees to the path as a complete subpath. The # outer-most point on the positive semi-major axis becomes the new current point. Returns # self. # # If there is no current path when the method is invoked, a new path is automatically begun. # # Examples: # # #>pdf # # Ellipse aligned to x-axis and y-axis # canvas.ellipse(50, 50, a: 20, b: 10).stroke # # # Inclined ellipse with line from the end point # canvas.stroke_color("hp-blue"). # ellipse(150, 150, a: 20, b: 10, inclination: 30) # cp = canvas.current_point # x, y = 2 * canvas.current_point[0] - 150, 2 * canvas.current_point[1] - 150 # canvas.stroke. # stroke_color("hp-orange").line(*cp, x, y).stroke # # See: #arc (for approximation accuracy), #circle def ellipse(cx, cy, a:, b:, inclination: 0) arc(cx, cy, a: a, b: b, inclination: inclination) close_subpath end # :call-seq: # canvas.arc(cx, cy, a:, b: a, start_angle: 0, end_angle: 360, clockwise: false, inclination: 0) => canvas # # Appends an elliptical arc to the path and returns +self+. The endpoint of the arc becomes # the new current point. # # +cx+:: # x-coordinate of the center point of the arc # # +cy+:: # y-coordinate of the center point of the arc # # +a+:: # Length of semi-major axis # # +b+:: # Length of semi-minor axis (default: +a+) # # +start_angle+:: # Angle in degrees at which to start the arc (default: 0) # # +end_angle+:: # Angle in degrees at which to end the arc (default: 360) # # +clockwise+:: # If +true+ the arc is drawn in clockwise direction, otherwise in counterclockwise # direction (default: false). # # +inclination+:: # Angle in degrees between the x-axis and the semi-major axis (default: 0) # # If +a+ and +b+ are equal, a circular arc is drawn. If the difference of the start angle # and end angle is equal to 360, a full ellipse (or circle) is drawn. # # If there is no current path when the method is invoked, a new path is automatically begun. # # This arc does *not* start from the current point (#current_point). If this functionality is # needed, use #draw together with GraphicObject::EndpointArc. # # Since PDF doesn't have operators for drawing elliptical or circular arcs, they have to be # approximated using Bezier curves (see #curve_to). The accuracy of the approximation can be # controlled using the configuration option 'graphic_object.arc.max_curves'. # # Examples: # # #>pdf # canvas.arc(50, 150, a: 10) # Circle with radius 10 # canvas.arc(100, 150, a: 10, b: 5) # Ellipse with radii 10 and 5 # canvas.arc(150, 150, a: 10, b: 5, inclination: 45) # The above ellipse inclined 45 degrees # canvas.stroke # # # Circular and elliptical arcs from 30 degrees to 160 degrees # canvas.stroke_color("hp-blue") # canvas.arc(50, 100, a: 10, start_angle: 30, end_angle: 160) # canvas.arc(100, 100, a: 10, b: 5, start_angle: 30, end_angle: 160) # canvas.stroke # # # Arcs from 135 degrees to 30 degrees, the first in counterclockwise direction (i.e. the # # big arc), the other in clockwise direction (i.e. the small arc) # canvas.stroke_color("hp-orange") # canvas.arc(50, 50, a: 10, start_angle: 135, end_angle: 30) # canvas.arc(100, 50, a: 10, start_angle: 135, end_angle: 30, clockwise: true) # canvas.stroke # # See: #arc, #circle, #ellipse, GraphicObject::Arc, GraphicObject::EndpointArc def arc(cx, cy, a:, b: a, start_angle: 0, end_angle: 360, clockwise: false, inclination: 0) arc = GraphicObject::Arc.configure(cx: cx, cy: cy, a: a, b: b, start_angle: start_angle, end_angle: end_angle, clockwise: clockwise, inclination: inclination) arc.draw(self) self end # Used for calculating the optimal distance of the control points for # #line_with_rounded_corner. # # See: http://itc.ktu.lt/itc354/Riskus354.pdf, p373 right column KAPPA = 0.55191496 #:nodoc: # :call-seq: # canvas.line_with_rounded_corner(x0 = current_point[0], y0 = current_point[1], x1, y1, x2, y2, in_radius:, out_radius: in_radius) # # Appends a line with a rounded corner at (x1, y1) from the current point and returns +self+. # The end point of the rounded corner (i.e. +out_radius+ units from (x1, y1) in the direction # of (x2, y2)) becomes the current point. In degraded cases the corner point (x1, y1) becomes # the current point. # # The corner is specified by (x0, y0) which defaults to the #current_point of the path, (x1, # y1) and (x2, y2) - all of which need to be different points. The +in_radius+ specifies the # corner radius into the corner and the +out_radius+ the one out of the corner. Degraded # cases, like with (x0, y0) == (x1, y1), are handled gracefully. # # There has to be a current path when this method is invoked, otherwise an error is raised. # For example, the current point could be estabilshed beforehand using #move_to. # # Examples: # # #>pdf # canvas.move_to(10, 180) # Both radii are the same # canvas.line_with_rounded_corner(180, 180, 180, 100, in_radius: 20) # canvas.move_to(10, 150) # Different radii # canvas.line_with_rounded_corner(180, 150, 180, 100, in_radius: 50, out_radius: 20) # canvas.move_to(10, 120) # One radius is zero, making it just a line # canvas.line_with_rounded_corner(180, 120, 150, 100, in_radius: 0, out_radius: 10) # canvas.stroke # # # Special effects when (x0, y0) is not the current point, like when the current # # point would be equal to the corner point. Rounded rectangle use this method # # internally, as high-lighted by the blue segment. # canvas.rectangle(10, 10, 60, 60, radius: 60).stroke # canvas.stroke_color("hp-blue"). # move_to(70, 10). # Start point at the end of the lower-left rounded corner # line_with_rounded_corner(10, 10, 70, 10, 70, 70, in_radius: 60).stroke # canvas.stroke_color("black"). # rectangle(110, 10, 60, 60, radius: 70).stroke def line_with_rounded_corner(x0 = current_point[0], y0 = current_point[1], x1, y1, x2, y2, in_radius:, out_radius: in_radius) if in_radius == 0 || out_radius == 0 line_to(x1, y1) else p0 = point_on_line(x1, y1, x0, y0, distance: in_radius) p3 = point_on_line(x1, y1, x2, y2, distance: out_radius) p1 = point_on_line(p0[0], p0[1], x1, y1, distance: KAPPA * in_radius) p2 = point_on_line(p3[0], p3[1], x1, y1, distance: KAPPA * out_radius) if p0[0].finite? && p3[0].finite? line_to(*p0) curve_to(p3[0], p3[1], p1: p1, p2: p2) else line_to(x1, y1) end end self end # :call-seq: # canvas.form {|form_canvas| block } => form # canvas.form(width, height) {|form_canvas| block } => form # # Creates a reusable Form XObject, yields its canvas and then returns it. # # If no arguments are provided, the bounding box of the form is the same as that of the # context object of this canvas. Otherwise you need to provide the +width+ and +height+ for # the form. # # Once the form has been created, it can be used like an image and drawn mulitple times with # the #xobject method. Note that the created form object is independent of this canvas and its # context object. This means it can also be used with other canvases. # # Examples: # # #>pdf # form = canvas.form do |form_canvas| # form_canvas.fill_color("hp-blue").line_width(5). # rectangle(10, 10, 80, 80).fill_stroke # end # canvas.xobject(form, at: [0, 0]) # canvas.xobject(form, width: 50, at: [100, 100]) # # See: HexaPDF::Type::Form def form(width = nil, height = nil) # :yield: canvas obj = if width && height context.document.add({Type: :XObject, Subtype: :Form, BBox: [0, 0, width, height]}) elsif width || height raise ArgumentError, "Both arguments width and height need to be provided" else context.document.add({Type: :XObject, Subtype: :Form, BBox: context.box.value.dup}) end yield(obj.canvas) if block_given? obj end # :call-seq: # canvas.graphic_object(obj, **options) => obj # canvas.graphic_object(name, **options) => graphic_object # # Returns the named graphic object, configured with the given options. # # If an object responding to :configure is given, it is used. Otherwise the graphic object is # looked up via the given name in the configuration option 'graphic_object.map'. Either way, # the graphic object is then configured with the given options if at least one is given. # # Examples: # # #>pdf # obj = canvas.graphic_object(:solid_arc, cx: 100, cy: 100, inner_a: 20, inner_b: 10, # outer_a: 50, outer_b: 40, end_angle: 135) # canvas.draw(obj).stroke # # See: #draw, GraphicObject def graphic_object(obj, **options) unless obj.respond_to?(:configure) obj = context.document.config.constantize('graphic_object.map', obj) end obj = obj.configure(**options) unless options.empty? && obj.respond_to?(:draw) obj end # :call-seq: # canvas.draw(obj, **options) => canvas # canvas.draw(name, **options) => canvas # # Draws the given graphic object on the canvas. # # This is the same as "graphic_object(obj_or_name, **options).draw(self)". # # See #graphic_object for details on the arguments and invocation. def draw(name, **options) graphic_object(name, **options).draw(self) self end # :call-seq: # canvas.stroke => canvas # # Strokes the path and returns +self+. # # Examples: # # #>pdf # canvas.polyline(10, 10, 120, 40, 50, 160) # canvas.stroke # # See: PDF2.0 s8.5.3.1, s8.5.3.2, #close_stroke, #close_fill_stroke def stroke raise_unless_in_path_or_clipping_path invoke0(:S) self end # :call-seq: # canvas.close_stroke => canvas # # Closes the last subpath and then strokes the path. Returns +self+. # # Examples: # # #>pdf # canvas.polyline(10, 10, 120, 40, 50, 160) # No line from the top to the left # canvas.close_stroke # # See: PDF2.0 s8.5.3.1, s8.5.3.2, #stroke, #close_fill_stroke def close_stroke raise_unless_in_path_or_clipping_path invoke0(:s) self end # :call-seq: # canvas.fill(rule = :nonzero) => canvas # # Fills the path using the given rule and returns +self+. # # The argument +rule+ may either be +:nonzero+ to use the nonzero winding number rule or # +:even_odd+ to use the even-odd rule for determining which regions to fill in. Details on # how these rules work are found in the PDF 2.0 spec section 8.5.3.3 or via Internet search. # # Any open subpaths are implicitly closed before being filled. # # Examples: # # #>pdf # canvas.fill_color("hp-blue"). # polyline(20, 10, 90, 60, 10, 60, 80, 10, 50, 90). # fill # # canvas.fill_color("hp-orange"). # polyline(120, 110, 190, 160, 110, 160, 180, 110, 150, 190). # fill(:even_odd) # # See: PDF2.0 s8.5.3.1, s8.5.3.3, #fill_stroke, #close_fill_stroke def fill(rule = :nonzero) raise_unless_in_path_or_clipping_path invoke0(rule == :nonzero ? :f : :'f*') self end # :call-seq: # canvas.fill_stroke(rule = :nonzero) => canvas # # Fills and then strokes the path using the given rule. Returns +self+. # # The argument +rule+ may either be +:nonzero+ to use the nonzero winding number rule or # +:even_odd+ to use the even-odd rule for determining which regions to fill in. Details on # how these rules work are found in the PDF 2.0 spec section 8.5.3.3 or via Internet search. # # Note that any open subpaths are *not* closed concerning the stroking operation. # # Examples: # # #>pdf # canvas.stroke_color("hp-orange").line_width(3) # canvas.fill_color("hp-blue"). # polyline(20, 10, 90, 60, 10, 60, 80, 10, 50, 90). # fill_stroke # Note the missing stroke from the top corner # # canvas.fill_color("hp-teal"). # polyline(120, 110, 190, 160, 110, 160, 180, 110, 150, 190). # fill_stroke(:even_odd) # Note the missing stroke from the top corner # # See: PDF2.0 s8.5.3.1, s8.5.3.3, #fill, #close_fill_stroke def fill_stroke(rule = :nonzero) raise_unless_in_path_or_clipping_path invoke0(rule == :nonzero ? :B : :'B*') self end # :call-seq: # canvas.close_fill_stroke(rule = :nonzero) => canvas # # Closes the last subpath and then fills and strokes the path using the given rule. Returns # +self+. # # The argument +rule+ may either be +:nonzero+ to use the nonzero winding number rule or # +:even_odd+ to use the even-odd rule for determining which regions to fill in. Details on # how these rules work are found in the PDF 2.0 spec section 8.5.3.3 or via Internet search. # # Examples: # # #>pdf # canvas.stroke_color("hp-orange").line_width(3) # canvas.fill_color("hp-blue"). # polyline(20, 10, 90, 60, 10, 60, 80, 10, 50, 90). # close_fill_stroke # # canvas.fill_color("hp-teal"). # polyline(120, 110, 190, 160, 110, 160, 180, 110, 150, 190). # close_fill_stroke(:even_odd) # # See: PDF2.0 s8.5.3, #fill, #fill_stroke def close_fill_stroke(rule = :nonzero) raise_unless_in_path_or_clipping_path invoke0(rule == :nonzero ? :b : :'b*') self end # :call-seq: # canvas.end_path => canvas # # Ends the path without stroking or filling it and returns +self+. # # This method is usually used in conjunction with the clipping path methods to define the # clipping path. # # Examples: # # canvas.line(10, 10, 100, 100) # canvas.end_path # Nothing to see here! # # See: PDF2.0 s8.5.3.1, #clip_path def end_path raise_unless_in_path_or_clipping_path invoke0(:n) self end # :call-seq: # canvas.clip_path(rule = :nonzero) => canvas # # Modifies the clipping path by intersecting it with the current path. Returns +self+. # # The argument +rule+ may either be +:nonzero+ to use the nonzero winding number rule or # +:even_odd+ to use the even-odd rule for determining which regions lie inside the clipping # path. Details on how these rules work are found in the PDF 2.0 spec section 8.5.3.3 or via # Internet search. # # The initial clipping path includes the entire canvas. Once the clipping path is reduced to a # subset of the canvas, there is no way to enlarge it. To restrict the effect of this method, # use #save_graphics_state before modifying the clipping path. # # Note that the current path cannot be modified after invoking this method! This means that # one of the path painting methods or #end_path must be called immediately afterwards. # # Examples: # # #>pdf # canvas.ellipse(100, 100, a: 50, b: 30). # Restrict operations to this intersecting path # ellipse(100, 100, a: 30, b: 50). # where the inside is not part of it # clip_path(:even_odd).end_path # canvas.rectangle(0, 0, 200, 200).fill # Fills everything inside the clipping path # # See: PDF2.0 s8.5.4, #end_path def clip_path(rule = :nonzero) raise_unless_in_path invoke0(rule == :nonzero ? :W : :'W*') self end # :call-seq: # canvas.xobject(filename, at:, width: nil, height: nil) => xobject # canvas.xobject(io, at:, width: nil, height: nil) => xobject # canvas.xobject(image_object, at:, width: nil, height: nil) => image_object # canvas.xobject(form_object, at:, width: nil, height: nil) => form_object # # Draws the given XObject (either an image XObject or a form XObject) at the specified # position and returns the XObject. # # Any image format for which a HexaPDF::ImageLoader object is available and registered with # the configuration option 'image_loader' can be used. PNG (lossless), JPEG (lossy) and PDF # (vector) images are supported out of the box. # # If the filename or the IO specifies a PDF file, the first page of this file is used to # create a form XObject which is then drawn. # # The +at+ argument has to be an array containing two numbers specifying the bottom left # corner at which to draw the XObject. # # If +width+ and +height+ are specified, the drawn XObject will have exactly these # dimensions. If only one of them is specified, the other dimension is automatically # calculated so that the aspect ratio is retained. If neither is specified, the width and # height of the XObject are used (for images, 1 pixel being represented by 1 PDF point, i.e. # 72 DPI). # # *Note*: If a form XObject is drawn, all currently set graphics state parameters influence # the rendering of the form XObject. This means, for example, that when the line width is # set to 20, all lines of the form XObject are drawn with that line width unless the line # width is changed in the form XObject itself. # # Examples: # # #>pdf # canvas.xobject(machu_picchu, at: [10, 10], width: 90) # bottom left # # file = File.new(machu_picchu, 'rb') # top left # canvas.xobject(file, at: [10, 110], height: 50) # # image = doc.images.add(machu_picchu) # canvas.xobject(image, at: [110, 10], width: 50, height: 90) # bottom right # # form = doc.add({Type: :XObject, Subtype: :Form, BBox: [0, 0, 100, 100]}) # form.canvas.stroke_color("hp-blue").line(10, 10, 90, 90).stroke # canvas.line_width = 20 # canvas.xobject(form, at: [100, 100]) # top right # # See: PDF2.0 s8.8, s.8.10.1, HexaPDF::Type::Image, HexaPDF::Type::Form, HexaPDF::ImageLoader def xobject(obj, at:, width: nil, height: nil) unless obj.kind_of?(HexaPDF::Stream) obj = context.document.images.add(obj) end return obj if obj.width == 0 || obj.height == 0 left, bottom = *at width, height = calculate_dimensions(obj.width, obj.height, rwidth: width, rheight: height) if obj[:Subtype] != :Image width /= obj.box.width.to_f height /= obj.box.height.to_f left -= obj.box.left bottom -= obj.box.bottom end if left == 0 && bottom == 0 && width == 1 && height == 1 invoke1(:Do, resources.add_xobject(obj)) else transform(width, 0, 0, height, left, bottom) do invoke1(:Do, resources.add_xobject(obj)) end end obj end alias image xobject # :call-seq: # canvas.character_spacing => current_character_spacing # canvas.character_spacing(amount) => canvas # canvas.character_spacing(amount) { block } => canvas # # The character spacing determines how much additional space is added after each character # (or, more correctly, after each glyph). For horizontal writing positive values increase the # distance between two characters, whereas for vertical writing negative values increase the # distance. # # Note that the character spacing is applied to all characters that are rendered. This has the # effect that there is also a space after the last character which might not be wanted in # certain cases (e.g. when justifying text). # # Returns the current character spacing value (see GraphicsState#character_spacing) when no # argument is given. Otherwise sets the character spacing using the +amount+ argument and # returns +self+. The setter version can also be called in the character_spacing= form. # # If the +amount+ and a block are provided, the changed character spacing is only active # during the block by saving and restoring the graphics state. # # Examples: # # #>pdf # canvas.character_spacing(0.25) # canvas.character_spacing # => 0.25 # canvas.character_spacing = 0.5 # => 0.5 # # canvas.character_spacing(0.10) do # canvas.character_spacing # => 0.10 # end # canvas.character_spacing # => 0.5 # # # visual example # canvas.font("Helvetica", size: 10) # canvas.character_spacing = 0 # initial value # canvas.text("This is an example", at: [10, 150]) # # show that the text cursor is directly after the last glyph # x, y = canvas.text_cursor # canvas.stroke_color("hp-blue").line(x, y, x, y + 10).stroke # # canvas.character_spacing = 5 # canvas.text("This is an example", at: [10, 100]) # # visualize the spacing after the last glyph # x, y = canvas.text_cursor # canvas.stroke_color("hp-blue").line(x, y, x, y + 10).stroke # # See: PDF2.0 s9.3.2, #word_spacing, #horizontal_scaling def character_spacing(amount = nil, &bk) gs_getter_setter(:character_spacing, :Tc, amount, &bk) end alias character_spacing= character_spacing # :call-seq: # canvas.word_spacing => current_word_spacing # canvas.word_spacing(amount) => canvas # canvas.word_spacing(amount) { block } => canvas # # If the font's PDF encoding supports this, the word spacing determines how much additional # space is added when the ASCII space character is encountered in a text. For horizontal # writing positive values increase the distance between two words, whereas for vertical # writing negative values increase the distance. # # *Important*: In HexaPDF only the standard 14 PDF Type1 fonts support this property! When # using any other font, for example a TrueType font, this property has no effect. # # Returns the current word spacing value (see GraphicsState#word_spacing) when no argument is # given. Otherwise sets the word spacing using the +amount+ argument and returns +self+. The # setter version can also be called in the word_spacing= form. # # If the +amount+ and a block are provided, the changed word spacing is only active during # the block by saving and restoring the graphics state. # # Examples: # # #>pdf # canvas.word_spacing(0.25) # canvas.word_spacing # => 0.25 # canvas.word_spacing = 0.5 # => 0.5 # # canvas.word_spacing(0.10) do # canvas.word_spacing # => 0.10 # end # canvas.word_spacing # => 0.5 # # # visual example # canvas.font("Helvetica", size: 10) # canvas.word_spacing = 0 # initial value # canvas.text("This is an example text.", at: [10, 150]) # canvas.word_spacing = 10 # canvas.text("This is an example text.", at: [10, 100]) # # See: PDF2.0 s9.3.3, #character_spacing, #horizontal_scaling def word_spacing(amount = nil, &bk) gs_getter_setter(:word_spacing, :Tw, amount, &bk) end alias word_spacing= word_spacing # :call-seq: # canvas.horizontal_scaling => current_horizontal_scaling # canvas.horizontal_scaling(percent) => canvas # canvas.horizontal_scaling(percent) { block } => canvas # # The horizontal scaling adjusts the width of text character glyphs by stretching or # compressing them in the horizontal direction. The value is specified as percent of the # normal width, so 100 means no scaling. # # Returns the current horizontal scaling value (see GraphicsState#horizontal_scaling) when no # argument is given. Otherwise sets the horizontal scaling using the +percent+ argument and # returns +self+. The setter version can also be called in the horizontal_scaling= form. # # If the +percent+ and a block are provided, the changed horizontal scaling is only active # during the block by saving and restoring the graphics state. # # Examples: # # #>pdf # canvas.horizontal_scaling(50) # each glyph has only 50% width # canvas.horizontal_scaling # => 50 # canvas.horizontal_scaling = 125 # => 125 # # canvas.horizontal_scaling(75) do # canvas.horizontal_scaling # => 75 # end # canvas.horizontal_scaling # => 125 # # # visual example # canvas.font("Helvetica", size: 10) # canvas.horizontal_scaling = 100 # initial value # canvas.text("This is an example text.", at: [10, 150]) # canvas.horizontal_scaling = 50 # canvas.text("This is an example text.", at: [10, 100]) # # See: PDF2.0 s9.3.4, #character_spacing, #word_spacing def horizontal_scaling(amount = nil, &bk) gs_getter_setter(:horizontal_scaling, :Tz, amount, &bk) end alias horizontal_scaling= horizontal_scaling # :call-seq: # canvas.leading => current_leading # canvas.leading(amount) => canvas # canvas.leading(amount) { block } => canvas # # The leading specifies the vertical distance between the baselines of adjacent text lines. It # defaults to 0 if not changed. # # It is *only* used by HexaPDF when invoking #move_text_cursor with +offset+ set to +nil+. # There are other PDF content stream operators that would be effected but those are not used # by the canvas. # # Returns the current leading value (see GraphicsState#leading) when no argument is given. # Otherwise sets the leading using the +amount+ argument and returns +self+. The setter # version can also be called in the leading= form. # # If the +amount+ and a block are provided, the changed leading is only active during the # block by saving and restoring the graphics state. # # Examples: # # #>pdf # canvas.leading(14.5) # canvas.leading # => 14.5 # canvas.leading = 10 # => 10 # # canvas.leading(25) do # canvas.leading # => 25 # end # canvas.leading # => 10 # # # visual example # canvas.font("Helvetica", size: 10) # canvas.leading = 15 # canvas.text("This is an example text.\nwith a second\nand thrid line", at: [10, 150]) # # See: PDF2.0 s9.3.5, #move_text_cursor def leading(amount = nil, &bk) gs_getter_setter(:leading, :TL, amount, &bk) end alias leading= leading # :call-seq: # canvas.text_rendering_mode => current_text_rendering_mode # canvas.text_rendering_mode(mode) => canvas # canvas.text_rendering_mode(mode) { block } => canvas # # The text rendering mode determines if and how glyphs are rendered. # # The +mode+ parameter can be one of the following (also see TextRenderingMode): # # :fill or 0:: # The text is filled (default) # :stroke or 1:: # The text is stroked. # :fill_stroke or 2:: # The test is filled, then stroked. # :invisible or 3:: # The text is neither filled nor stroked. # :fill_clip or 4:: # The text is filled and added to the clipping path. # :stroke_clip or 5:: # The text is stroked and added to the clipping path. # :fill_stroke_clip or 6:: # The text is filled, then stroked and added to the clipping path. # :clip or 7:: # The text is added to the clipping path. # either be a valid integer or one of the symbols +:fill+, +:stroke+, # # Note that the return value is always a normalized text rendering mode value. # # Returns the current text rendering mode value (see GraphicsState#text_rendering_mode) when # no argument is given. Otherwise sets the text rendering mode using the +mode+ argument and # returns +self+. The setter version can also be called in the text_rendering_mode= form. # # If the +mode+ and a block are provided, the changed text rendering mode is only active # during the block by saving and restoring the graphics state. # # Examples: # # #>pdf # canvas.text_rendering_mode(:fill) # canvas.text_rendering_mode # => # # canvas.text_rendering_mode = :stroke # => # # # canvas.text_rendering_mode(3) do # canvas.text_rendering_mode # => # # end # canvas.text_rendering_mode # => # # # # visual example # canvas.font("Helvetica", size: 25) # canvas.stroke_color("green") # [:fill, :stroke, :fill_stroke, :invisible].each_with_index do |trm, index| # canvas.text_rendering_mode = trm # canvas.text("#{trm} text.", at: [20, 150 - 30 * index]) # end # # See: PDF2.0 s9.3.6, GraphicsState::TextRenderingMode def text_rendering_mode(m = nil, &bk) gs_getter_setter(:text_rendering_mode, :Tr, m && TextRenderingMode.normalize(m), &bk) end alias text_rendering_mode= text_rendering_mode # :call-seq: # canvas.text_rise => current_text_rise # canvas.text_rise(amount) => canvas # canvas.text_rise(amount) { block } => canvas # # The text rise specifies the vertical distance to move the baseline up or down from its # default location. Positive values move the baseline up, negative values down. # # Returns the current text rise value (see GraphicsState#text_rise) when no argument is given. # Otherwise sets the text rise using the +amount+ argument and returns +self+. The setter # version can also be called in the text_rise= form. # # If the +amount+ and a block are provided, the changed text rise is only active during the # block by saving and restoring the graphics state. # # Examples: # # #>pdf # canvas.text_rise(5) # canvas.text_rise # => 5 # canvas.text_rise = 10 # => 10 # # canvas.text_rise(15) do # canvas.text_rise # => 15 # end # canvas.text_rise # => 10 # # # visual example # canvas.font("Helvetica", size: 10) # canvas.text_rise = 0 # Set the default value # canvas.text("Hello", at: [20, 150]) # canvas.text_rise = 10 # canvas.text("from up here") # canvas.text_rise = -10 # canvas.text("and also down here") # # See: PDF2.0 s9.3.7 def text_rise(amount = nil, &bk) gs_getter_setter(:text_rise, :Ts, amount, &bk) end alias text_rise= text_rise # :call-seq: # canvas.begin_text(force_new: false) -> canvas # # Begins a new text object and returns +self+. # # If +force+ is +true+ and the current graphics object is already a text object, it is ended # and a new text object is begun. # # It is not necessary to invoke this method manually in most cases since it is automatically # called when needed by other methods, i.e. the #text method. # # See: PDF2.0 s9.4.1, #end_text, #text def begin_text(force_new: false) raise_unless_at_page_description_level_or_in_text end_text if force_new invoke0(:BT) if graphics_object == :none self end # :call-seq: # canvas.end_text -> canvas # # Ends the current text object and returns +self+. # # It is not necessary to invoke this method manually in most cases since it is automatically # called when needed by other methods, i.e. when creating a new path. # # See: PDF2.0 s9.4.1, #begin_text def end_text raise_unless_at_page_description_level_or_in_text invoke0(:ET) if graphics_object == :text self end # :call-seq: # canvas.text_matrix(a, b, c, d, e, f) => canvas # # Sets the text matrix (and the text line matrix) to the given matrix and returns +self+. # # The text matrix determines where and how the glyphs are rendered. The most common use is to # translate the text space origin since the text drawing operations always use the text space # origin as starting point for drawing the glyphs. This translation operation can more easily # be specified using #move_text_cursor. # # The given values are interpreted as a matrix in the following way: # # a b 0 # c d 0 # e f 1 # # If the current graphics object is not a text object, #begin_text is automatically called # because the text matrix is only available within a text object. # # Examples: # # #>pdf # canvas.font("Helvetica", size: 10) # canvas.begin_text # Not necessary # canvas.text_matrix(1, 0, 0, 1, 50, 100) # Translate text origin to (50, 100) # canvas.text("This is some text") # # canvas.text_matrix(2, 1, 3, 0.5, 50, 50) # canvas.text("This is some text") # # See: PDF2.0 s9.4.2, #move_text_cursor, #text_cursor def text_matrix(a, b, c, d, e, f) begin_text invoke(:Tm, a, b, c, d, e, f) self end # :call-seq: # canvas.move_text_cursor(offset: nil, absolute: true) -> canvas # # Moves the text cursor by modifying the text and text line matrices. Returns +self+. # # If +offset+ is not specified, the text cursor is moved to the start of the next text line # using #leading as vertical offset. # # Otherwise, the arguments +offset+, which has to be an array of the form [x, y], and # +absolute+ work together: # # * If +absolute+ is +true+, then the text and text line matrices are set to [1, 0, 0, 1, x, # y], placing the origin of text space, and therefore the text cursor, at [x, y]. # # Note that +absolute+ has to be understood in terms of the text matrix since for the actual # rendering the current transformation matrix is multiplied with the text matrix. # # * If +absolute+ is +false+, then the text cursor is moved to the start of the next line, # offset from the start of the current line (the origin of the text line matrix) by # +offset+. # # If the current graphics object is not a text object, #begin_text is automatically called # because the text matrix is only available within a text object. # # Examples: # # #>pdf # canvas.font("Helvetica", size: 10) # canvas.move_text_cursor(offset: [30, 150]) # canvas.text("Absolutely positioned at (30, 150)") # # canvas.move_text_cursor(offset: [20, -15], absolute: false) # canvas.text("Relative offset (20, -15)") # # canvas.leading(30) # canvas.move_text_cursor # canvas.text("Text on next line with leading=30") # # See: PDF2.0 s9.4.2, #leading, #text_cursor, #text, #show_glyphs def move_text_cursor(offset: nil, absolute: true) begin_text if offset if absolute text_matrix(1, 0, 0, 1, offset[0], offset[1]) else invoke2(:Td, offset[0], offset[1]) end else invoke0(:'T*') end self end # :call-seq: # canvas.text_cursor -> [x, y] # # Returns the position of the text cursor, i.e. the origin of text space. This is where the # first glyph of the next drawn text will be placed. # # Note that this method can only be called while the current graphic object is a text object # since the text matrix is otherwise undefined. # # Examples: # # #>pdf # canvas.font("Helvetica", size: 10) # canvas.text("Some sample text", at: [30, 150]) # tx, ty = canvas.text_cursor # Cursor is directly after the text # canvas.stroke_color("hp-blue"). # circle(tx, ty, 0.5). # circle(tx, ty, 5).stroke # canvas.text("Last cursor: (#{tx.round(2)}, #{ty.round(2)})", at: [30, 100]) # # See: #move_text_cursor def text_cursor raise_unless_in_text graphics_state.tm.evaluate(0, 0) end # :call-seq: # canvas.font => current_font # canvas.font(name, size: nil, **options) => canvas # # Specifies the font and optional the font size that should be used when showing text. # # A valid font size needs to be provided on the first invocation, otherwise an error is raised # (this is due to how setting a font works with PDFs). # # If +size+ is specified, the #font_size method is invoked with it as argument. # # All other options are passed on to the font loaders (see HexaPDF::FontLoader) that are used # for loading the specified font. One standard keyword argument for fonts is +:variant+ which # specifies the font variant to use, with standard values of :none, :italic, :bold and # :bold_italic. # # Returns the current font object when no argument is given, otherwise returns +self+. *Note* # that this is the font object itself, not the PDF dictionary representing the font that is # stored in the resources. # # Examples: # # #>pdf # canvas.font("Times", variant: :bold, size: 10) # canvas.font # => font object # canvas.font = "Times" # # # visual example # canvas.text("Times at size 10", at: [10, 150]) # canvas.font("Times", variant: :bold_italic, size: 15) # canvas.text("Times bold+italic at size 15", at: [10, 100]) # # See: PDF2.0 s9.2.2, #font_size, #text def font(name = nil, size: nil, **options) if name @font = (name.respond_to?(:pdf_object) ? name : context.document.fonts.add(name, **options)) if size font_size(size) else size = font_size raise HexaPDF::Error, "No valid font size set" if size <= 0 invoke_font_operator(@font.pdf_object, size) end self else @font end end alias font= font # :call-seq: # canvas.font_size => font_size # canvas.font_size(size) => canvas # # Specifies the font size. # # Note that an error is raised if no font has been set before via #font (this is due to how # setting font and font size works in PDF). # # Returns the current font size when no argument is given, otherwise returns +self+. The # setter version can also be called in the font_size= form. # # Examples: # # #>pdf # canvas.font("Helvetica", size: 10) # Necessary only the first time # canvas.font_size(12) # canvas.font_size # => 12 # canvas.font_size = 10 # # # visual example # 6.step(to: 20, by: 2).each_with_index do |size, index| # canvas.font_size(size) # canvas.text("Text in size #{size}", at: [15, 180 - index * 20]) # end # # See: PDF2.0 s9.2.2, #font, #text def font_size(size = nil) if size unless @font raise HexaPDF::Error, "A font needs to be set before the font size can be set" end invoke_font_operator(@font.pdf_object, size) self else graphics_state.font_size end end alias font_size= font_size # :call-seq: # canvas.text(text) -> canvas # canvas.text(text, at: [x, y]) -> canvas # # Shows the given text string, either at the current or the provided position. Returns +self+. # # If no position is provided, the text is positioned at the current position of the text # cursor (see #text_cursor). # # The text string may contain any valid Unicode newline separator and if so, multiple lines # are shown, using #leading for offsetting the lines. If no leading has been set, a leading # equal to the font size will be set.. # # Note that there are no provisions to make sure that all text is visible! So if the text # string is too long, it may be outside the cropped page and be cut off. # # Examples: # # #>pdf # canvas.font('Times', size: 12) # # Sets leading=12 because mulitple lines are drawn # canvas.text("This is a \n multiline text", at: [15, 150]) # # Starts right after the last text # canvas.text(". Some more text\nafter the newline.") # # See: #leading, #font, #font_size, #show_glyphs, # http://www.unicode.org/reports/tr18/#Line_Boundaries def text(text, at: nil) raise_unless_font_set move_text_cursor(offset: at) if at lines = text.split(/\u{D A}|(?!\u{D A})[\u{A}-\u{D}\u{85}\u{2028}\u{2029}]/, -1) leading(font_size) if leading == 0 && lines.length > 1 lines.each_with_index do |str, index| show_glyphs(@font.decode_utf8(str)) move_text_cursor unless index == lines.length - 1 end self end # :call-seq: # canvas.show_glyphs(glyphs) -> canvas # # Low-level method for actually showing text on the canvas. Returns +self+. # # The argument +glyphs+ needs to be a an array of glyph objects valid for the current font, # optionally interspersed with numbers for kerning. # # Text is always shown at the current position of the text cursor, i.e. the origin of the text # matrix. To move the text cursor to somewhere else use #move_text_cursor before calling this # method. # # The text matrix is updated to correctly represent the graphics state after the invocation. # Since this is a compute intensive operation, use #show_glyphs_only if you don't need a # correct text matrix. # # This method is usually not invoked directly but by higher level methods like #text. # # Examples: # # #>pdf # canvas.font("Helvetica", size: 10) # glyphs = canvas.font.decode_utf8("Some text here") # canvas.move_text_cursor(offset: [15, 100]) # canvas.show_glyphs(glyphs) # canvas.text(canvas.text_cursor.map(&:to_i).join(", "), at: [15, 80]) # # See: #text, #text_cursor, #text_matrix, #move_text_cursor, #show_glyphs_only def show_glyphs(glyphs) return if glyphs.empty? raise_unless_font_set begin_text result = [''.b] offset = 0 glyphs.each do |item| if item.kind_of?(Numeric) result << item << ''.b offset -= item * graphics_state.scaled_font_size else encoded = @font.encode(item) result[-1] << encoded offset += item.width * graphics_state.scaled_font_size + graphics_state.scaled_character_spacing offset += graphics_state.scaled_word_spacing if encoded == " " end end invoke1(:TJ, result) graphics_state.tm.translate(offset, 0) self end # :call-seq: # canvas.show_glyphs_only(glyphs) -> canvas # # Same operation as with #show_glyphs but without updating the text matrix. # # This method should only be used by advanced text layouting algorithms which perform the # necessary calculations themselves! # # *Warning*: Since this method doesn't update the text matrix, all following results from # #text_cursor and other methods using the current text matrix are invalid until the next call # that sets the text matrix. # # Examples: # # #>pdf # canvas.font("Helvetica", size: 10) # glyphs = canvas.font.decode_utf8("Some text here") # canvas.move_text_cursor(offset: [15, 100]) # canvas.show_glyphs_only(glyphs) # canvas.text(canvas.text_cursor.map(&:to_i).join(", "), at: [15, 80]) def show_glyphs_only(glyphs) return if glyphs.empty? raise_unless_font_set begin_text simple = true result = [last = ''.b] glyphs.each do |item| if item.kind_of?(Numeric) simple = false result << item << (last = ''.b) else last << @font.encode(item) end end simple ? serialize1(:Tj, result[0]) : serialize1(:TJ, result) self end # :call-seq: # canvas.marked_content_point(tag, property_list: nil) -> canvas # # Inserts a marked-content point, optionally associated with a property list. Returns +self+. # # A marked-content point is used to identify a position in the content stream for later use by # other applications. The symbol +tag+ is used to uniquely identify the role of the # marked-content point and should be registered with ISO to avoid conflicts. # # The optional +property_list+ argument can either be a valid PDF dictionary or a symbol # referencing an already used property list in the resource dictionary's /Properties # dictionary. # # Examples: # # canvas.marked_content_point(:Divider) # canvas.marked_content_point(:Divider, property_list: {Key: 'value'}) # # See: PDF2.0 s14.6, #marked_content_sequence, #end_marked_content_sequence def marked_content_point(tag, property_list: nil) raise_unless_at_page_description_level_or_in_text if property_list property_list = resources.property_list(property_list) if property_list.kind_of?(Symbol) invoke2(:DP, tag, resources.add_property_list(property_list)) else invoke1(:MP, tag) end self end # :call-seq: # canvas.marked_content_sequence(tag, property_list: nil) -> canvas # canvas.marked_content_sequence(tag, property_list: nil) { block } -> canvas # # Inserts a marked-content sequence, optionally associated with a property list. Returns # +self+. # # A marked-content sequence is used to identify a sequence of complete graphics objects in the # content stream for later use by other applications, e.g. for tagged PDF. The symbol +tag+ is # used to uniquely identify the role of the marked-content sequence and should be registered # with ISO to avoid conflicts. # # The optional +property_list+ argument can either be a valid PDF dictionary or a symbol # referencing an already used property list in the resource dictionary's /Properties # dictionary. # # If invoked without a block, a corresponding call to #end_marked_content_sequence must be # done. Otherwise the marked-content sequence automatically ends when the block is finished. # # Although the PDF specification would allow using marked-content sequences inside text # objects, this is prohibited in HexaPDF. # # Examples: # # canvas.marked_content_sequence(:Divider) # # Other instructions # canvas.end_marked_content_sequence # # canvas.marked_content_sequence(:Divider, property_list: {Key: 'value'}) do # # Other instructions # end # # See: PDF2.0 s14.6, #end_marked_content_sequence, #marked_content_point def marked_content_sequence(tag, property_list: nil) raise_unless_at_page_description_level if property_list property_list = resources.property_list(property_list) if property_list.kind_of?(Symbol) invoke2(:BDC, tag, resources.add_property_list(property_list)) else invoke1(:BMC, tag) end if block_given? yield end_marked_content_sequence end self end # :call-seq: # canvas.end_marked_content_sequence -> canvas # # Ends a marked-content sequence and returns +self+. # # See #marked_content_sequence for details. # # See: PDF2.0 s14.6, #marked_content_sequence, #marked_content_point def end_marked_content_sequence raise_unless_at_page_description_level invoke0(:EMC) self end # :call-seq: # canvas.optional_content(ocg, &block) -> canvas # canvas.optional_content(name, use_existing_ocg: true, &block) -> canvas # # Inserts an optional content sequence. Returns +self+. # # An optional content sequence marks part of the content stream as belonging to the given # optional content group. See HexaPDF::Type::OptionalContentProperties for details. # # If the first argument is already an optional content group dictionary, it is used. # Otherwise, the first argument needs to be the name of the optional content group. In that # case, the +use_existing_ocg+ specifies whether the first found optional content group with # that name should be used or whether a new OCG should always be created. # # If invoked without a block, a corresponding call to #end_optional_content must be done. # Otherwise the optional content sequence automatically ends when the block is finished. # # Examples: # # canvas.optional_content('Hints') # # Other instructions # canvas.end_optional_content # # canvas.optional_content('Hints', use_existing_ocg: false) do # # Other instructions # end # # See: PDF2.0 s8.11, #end_optional_content, HexaPDF::Type::OptionalContentProperties def optional_content(ocg, use_existing_ocg: true, &block) ocg = if ocg.kind_of?(HexaPDF::Dictionary) || !use_existing_ocg context.document.optional_content.add_ocg(ocg) else context.document.optional_content.ocg(ocg, create: true) end marked_content_sequence(:OC, property_list: ocg, &block) end # Ends an optional content sequence and returns +self+. # # See #optional_content for details. # # See: PDF2.0 s8.11 alias end_optional_content end_marked_content_sequence # :call-seq: # canvas.composer(margin: 0) {|composer| block } -> composer # # Creates a CanvasComposer object for composing content using high-level document layout # features, yields it, if a block is given, and returns it. # # The +margin+ can be any value allowed by HexaPDF::Layout::Style::Quad#set and defines the # margin that should not be used during composition. For the remaining area of the canvas a # frame object will be created. # # Examples: # # #>pdf # canvas.composer(margin: [10, 30]) do |composer| # composer.image(machu_picchu, height: 30, position: :float) # composer.lorem_ipsum(position: :flow) # end # # See: CanvasComposer, HexaPDF::Document::Layout def composer(margin: 0) composer = CanvasComposer.new(self, margin: margin) yield(composer) if block_given? composer end # Creates and returns a color object from the given color specification. See #stroke_color for # details on the possible color specifications. # # This utility method is meant for use by higher-level methods that need to convert a color # specification into a color object. def color_from_specification(spec) spec = Array(spec) if spec.length == 1 && spec[0].kind_of?(String) ColorSpace.device_color_from_specification(spec) elsif spec.length == 1 && spec[0].respond_to?(:color_space) spec[0] else resources.color_space(ColorSpace.for_components(spec)).color(*spec) end end private # Invokes the given operator with the operands and serializes it. def invoke(operator, *operands) @operators[operator].invoke(self, *operands) serialize(operator, *operands) end # Serializes the operator with the operands to the content stream. def serialize(operator, *operands) @contents << @operators[operator].serialize(@serializer, *operands) end # Optimized method for zero operands. def invoke0(operator) @operators[operator].invoke(self) @contents << @operators[operator].serialize(@serializer) end # Optimized method for one operand. def invoke1(operator, op1) @operators[operator].invoke(self, op1) @contents << @operators[operator].serialize(@serializer, op1) end # Optimized method for one operand. def serialize1(operator, op1) @contents << @operators[operator].serialize(@serializer, op1) end # Optimized method for two operands. def invoke2(operator, op1, op2) @operators[operator].invoke(self, op1, op2) @contents << @operators[operator].serialize(@serializer, op1, op2) end # Invokes the font operator using the given PDF font dictionary. def invoke_font_operator(font, font_size) unless graphics_state.font == font && graphics_state.font_size == font_size invoke(:Tf, resources.add_font(font), font_size) end end # Raises an error unless the current graphics object is a path. def raise_unless_in_path unless graphics_object == :path raise HexaPDF::Error, "Operation only allowed if current graphics object is a path" end end # Raises an error unless the current graphics object is a path or a clipping path. def raise_unless_in_path_or_clipping_path unless graphics_object == :path || graphics_object == :clipping_path raise HexaPDF::Error, "Operation only allowed if current graphics object is a " \ "path or clipping path" end end # Raises an error unless the current graphics object is none, i.e. the page description # level. def raise_unless_at_page_description_level end_text if graphics_object == :text unless graphics_object == :none raise HexaPDF::Error, "Operation only allowed if there is no current graphics object" end end # Raises an error unless the current graphics object is none or a text object. def raise_unless_at_page_description_level_or_in_text unless graphics_object == :none || graphics_object == :text raise HexaPDF::Error, "Operation only allowed if current graphics object is a " \ "text object or if there is no current object" end end # Raises an error unless the current graphics object is none or a path object. def raise_unless_at_page_description_level_or_in_path end_text if graphics_object == :text unless graphics_object == :none || graphics_object == :path raise HexaPDF::Error, "Operation only allowed if current graphics object is a " \ "path object or if there is no current object" end end # Raises an error unless the current graphics object is a text object. def raise_unless_in_text unless graphics_object == :text raise HexaPDF::Error, "Operation only allowed if current graphics object is a " \ "text object" end end # Raises an error unless a font has been set. def raise_unless_font_set unless @font raise HexaPDF::Error, "Operation only allowed if a font is set" end end # Utility method that abstracts the implementation of the stroke and fill color methods. def color_getter_setter(name, color, rg, g, k, cs, scn) color.flatten! if !color.empty? raise_unless_at_page_description_level_or_in_text color = color_from_specification(color) save_graphics_state if block_given? unless color == graphics_state.send(name) case color.color_space.family when :DeviceRGB then serialize(rg, *color.components) when :DeviceGray then serialize(g, *color.components) when :DeviceCMYK then serialize(k, *color.components) else if color.color_space != graphics_state.send(name).color_space serialize(cs, resources.add_color_space(color.color_space)) end serialize(scn, *color.components) end graphics_state.send(:"#{name}=", color) end if block_given? yield restore_graphics_state end self elsif block_given? raise ArgumentError, "Block only allowed with arguments" else graphics_state.send(name) end end # Utility method that abstracts the implementation of a graphics state parameter # getter/setter method with a call sequence of: # # canvas.method # => cur_value # canvas.method(new_value) # => canvas # canvas.method(new_value) { block } # => canvas # # +name+:: # The name (Symbol) of the graphics state parameter for fetching the value from the # GraphicState. # # +op+:: # The operator (Symbol) which should be invoked if the value is different from the current # value of the graphics state parameter. # # +value+:: # The new value of the graphics state parameter, or +nil+ if the getter functionality is # needed. def gs_getter_setter(name, op, value) if !value.nil? raise_unless_at_page_description_level_or_in_text save_graphics_state if block_given? if graphics_state.send(name) != value value.respond_to?(:to_operands) ? invoke(op, *value.to_operands) : invoke1(op, value) end if block_given? yield restore_graphics_state end self elsif block_given? raise ArgumentError, "Block only allowed with an argument" else graphics_state.send(name) end end # Modifies and checks the array +points+ so that polylines and polygons work correctly. def check_poly_points(points) if points.length < 4 raise ArgumentError, "At least two points needed to make one line segment" elsif points.length.odd? raise ArgumentError, "Missing y-coordinate for last point" end end end end end