(__TEXTpp__text__TEXTj2__stubs__TEXTOO__stub_helper__TEXTOO__const__TEXTP@P__cstring__TEXTROR__unwind_info__TEXT n n(__DATApp__nl_symbol_ptr__DATApp__got__DATApp__la_symbol_ptr__DATApp__data__DATApp__bss__DATAPq(__common__DATAxqH__LINKEDIT04+ 0@rpath/libosqp.dylib"0hxp0 PܝX P /@'+S=}$ * 8/usr/lib/libSystem.B.dylib&()@UHAWAVSHXHHH{XL0LxL)f)EH{PL)f)EH{@L)f)EH{`L)f)EHHx L)f)EH{pL)f(M_f)MH{hLh)f(MfMf(Uff_fX )3f(f(MfMf^Hf(^WQY_23]23HX[A^A_]ffffff.UHSPHHHP(f(Yf.w^f.w1HqHHAxH[]ffff.UHLA2f.2f(f(fTfUfVf(fTfUfVf(wf(f.vf(AHHy1LOLW HA(HQ0 2f."vf.%2vH(H1.\1f.H(vHY1HA1f(^A"Hy1%1-1f4f.HHOHư>HHO H.AHI~\ y0f.Hw(HvQHHHOH Y L0 H0^HO I~}T]Ht=HHOHHH 0^ HO  I~}1I~ /Iư>I.A//%/A,f.A4v.f.v(H<HHOLHO L\f.HvBHtqHHOH+Y,f(^HO 49fHt0HHOHHHf(^+HG ,йHI;V.HuHGHwHH H[A^]1[A^]fff.UHHHHH]fffff.UHSPHHH{0H0W'HH{@HpW'HH{8HpWH[]'fUHAWAVAUATSLMMdHLYLHLgPAAY$Mh A\EAI-AMOIIs IWIIOI4H I\$H]M4I]H]I\H9EI9EL9H9uAH9H9u@ƺ]ׄ]D u}@ uxMIIVAI\$IuIOLfKffYfYf^f\ff\fIfH H H HuM9t.fffff.AAYA\DAHL9|MxM~LGXLW L_8HwHIsE1HwH_J KHKKO4H9AI9AH9I9L9I9E1Eu} uy uuMII@IZISJLMf@ffSffbfYf\ffYf\fAf H H H H IuM9IGALt&CC CY \K LHL9tdI)INLILITI\1fDLYL\AD Y \AHI9uHHG[A\A]A^A_]ffff.UHAWAVATSHL0MHL@`L_0LOHLWPIs1K4HaK KL9AI9I9I9AI9I9@1AD @ u|LHAf( )f\IIIRI[Hff.fQffYfYfbf*fYfXfYfXfcf+H H H HuI9tA)fffff.Af(\AY AYXAHL9|MLO0HWPHI1INH)LHt)Hfffff.A\HHuHzI)HDHLITfff.B\A@B\A@B\A@\H H H Iu J4K JHf.H*LIHHHSxIp(Ix0*fWf(_Y]Y.XXHefffff.f(_Y]YXXHH9|Yf.EIxHsxH1E1+HHxt*Hu HHx HHHHq HHH01Mf.fWeYf.q1H[A^]fW]HDfffff.UHSH(EHHHxt Ht*HHH0E f.6HHxHHHHf.]HHHHx f)EMMYMYMf.sMHHHxH1M(HHHxHA*HHxt*Hu HHx HHHHHHH0.Mf.HHHxH1'HHxt+Hu!HHx(HHHHHJH LAM~lf(eYef(fWHq01 1f. vHf.w.HQ(f.vHf.wHL9|¸1H([]fUHHO(HAH s r 1H]1]DUHSPHHH@(HH  HHHH9H0/HHHyHpcHH@(HtHu;HH{xHp|HH{x ^Hpf(<HH@(HtHu4HHH03HH q^H0f(HH{0H0fWHH{@HpfWHH{8HpfWH[]HH{0HH1HHH{8HHqHPlHHxtHH[]lH[]fUHAWAVAUATSH(HHtUHCLLp8L@@HHHHML`PLxXH@`HEIhHuTHHxHLLGLs0HC8HELC@HH0L`8Lx@HHHHMLhXHtL}MHHxL-EHHHx LbXEHHxt HY@A$ML}HHxSfWHULeAHLA$HrAEHǃH([A\A]A^A_]f.UHSPHHCXHChHC(H{H5LkHCxH[]UHHw(H Hw!HHc HHH5 ]k]HH5Z]zkHH5$]ikHH5,]XkHH5]GkHH5]6kHH5]%kHH5J]kHH5@]kHH5S]jHH5x]jBSSUfwSS@UHAWAVATSH IHHG@f.wGHf.v?HG(HH5-NjHHAHH8H [A\A^A_]Hf@@fHPMtf()fYfYf)MHHxt-f(Hf)EHf.@@vE1AE1AHf(EmIE1f(Ef(HCHf.GHv+Mt[MHG(HH5_i!(EHMt(MHtMHG(HH5K1MuHMHHG(HH5HG(HH5#hHHxt(HuHHxHHsxHHH/HHꌠ9Y>)FLHG(HH5qh311HG(HH5MhHHxt*Hu HHxHHHHHHꌠ9Y>)ffffff.UHAVSHHHSHL[MH{ 5LMLKML9RIL;RfLBI1ItH9}HB @H9<_HH9|HL9H|M9K`M9SVMsHK(HS01E1BfB.[IM9|H=9H51H=H=H51H=dH=H51H=FH=H51x3SH=1e#H=H5p1NH=1@ <[A^]H={H5913H=1H=TH51H=H=6H51H=H=H51sH=71kH=H51HC(HK0BB H=Dbffff.UH1H]ÐUHHt_HxvHH Wf.G0f.G(H=HH5B1H=H='H5!1H=%vH= H51H=XH=H51H=:H=H51iH=H=H51KH=(1= 9]Hx]Wf.suf.GWf.GpH8G@Wf.H=2H5,1H=YH=H51H=_`H=H51H=?H=H51nH=H=H51MH=H=H51,H=OHf.v!H=dH5^1H=Wf.u+z)f.u#z!H=0H5*1 H=@|f.WPWf.GXO`f.f. 8hHHH HWf..H=H51" H=" H=`H5Z1 H=H=?H591 H=H=H51 H=jH=H51 H=IH=H51x H=(H=H51W H=H=H516 H=H=yH5s1 H=1]ÐUHSPCH >-HH=1 H[]ÐHHE1LIM)HHt(HB YBX B IHuIL)JDJTJtfDJYXNHJYXNHJYXNH YXH H H HuUHSHLL I9AH9I9AH9AE1A[] E III@HDHAHMQI)1ff\f$flfYfXfYfXf$flfT f\0fd fl0fYfXfYfXfd fl0HIuMt1ff\f$flfYfXfYfXf$flI9(1MuUHH~ЃHufW1HW]H)fW1f( fWfffff.dYf(f(fUfWfTfV_Ydf(f(fUfWfTfV_HH9uHt; Y f(8 fWfWf(f(fUfTfV_f(]ffff.UHH~HufW1Hu|W]H)fW1f( fWfdf(f(fUfWfTfV_f(f(fUfWfTfV_HH9uHt6 f(X fWfWf(f(fUfTfV_f(]ffff.UHH~ЃHufW1HW]H)fW1f(fWfffff.d\f(f(fUfWfTfV_\df(f(fUfWfTfV_HH9uHt; \ f(XfWfWf(f(fUfTfV_f(]ffff.UHH~HNHsfW1HuZxfWrHH)fW1fXXDXDXDXD XD(XD0XD8HH9uHt H Hfff.XHHuH*^]UHHHsE1IIfHnfpDIHHHDHAHs1MIIH)1fDD D0D@DPD`DpǀǐǠǰH H{Mt(HDIfffff.@H IuI9tJL)fH0HHu]fUHH HsE1III@HHJHs1HHAH)1f.f fLfL fL0fL@fLPfL`fLpf׀fאfנfװffffH H{Ht(HDHfffff.fHfH HuI9tJL)fHHu]ÐUHHHs1HHHPHDBAHIHH)1fff\fd fl0fXfXff\fXfXfd fl0HHuMtff\fXfXff\H9t%H H)f X HHu]1MuUHHHs1HHHPHDBAHIHH)1fff\fd fl0fYfYff\fYfYfd fl0HHuMtff\fYfYff\H9t%H H)f Y HHu]1MuUHAWAVATSIIN4LHHtM~HLL1H[A\A^A_]@UHHHrHH9HH9E1҉D)LBM)HtHff.JJIHuI<L)JL8JD8fHpHqHpHqHpHqHpHqHpHqHpHqHpHqH0H1H@H@HuIIMJLHDAAI s 1MuuMHI)1f.LLD L0D L0D@LPD@LPD`LpD`LpHIuMt0LLHLIfDA AAA I H IuI9]UHHHrHH9HH9E1҉D)LBM)HtHff.JJIHuI<L)JL8JD8fHpHqHpHqHpHqHpHqHpHqHpHqHpHqH0H1H@H@HuIIMJLHDAAI s 1MuuMHI)1f.LLD L0D L0D@LPD@LPD`LpD`LpHIuMt0LLHLIfDA AAA I H IuI9]UHH'HtHH9HH9E1HBLtB^BLHL9H)HDHL[ff.f(^HIf(^ HHHuIIIIHDAAHtnI@H)1f(f f(f^ffLf(f^fTHHuMtff( Nf^f I9]1MuUHH~HJЃHsfW1HuiW]H)fW1f. TY XYTXLYLXDYDXHH9uHt-HH Hf Y XHHHu]DHHE1LAM)HHt$HBBYBIHuIrL)JDJTJtf.FYB@FYB@FYB@YH H H HuUHSHLL I9AH9I9AH9AE1A[]E IIIAHD@AHMPI)1@ffLffYfDfYffDfD fL0fT fYfD0fYfT fD0HIuMt)ffLffYfDfYffDI9P1MuUHHHNHs 1Hu\}H)1LQWQDDQDDQDHH9uHt&H Hf.QHHu]fUHHHs1HHHPHDBAHIHH)1fff\fd fl0f_f_ff\f_f_fd fl0HHuMtff\f_f_ff\H9t%H H)f _ HHu]1MuUHHHs1HHHPHDBAHIHH)1fff\fd fl0f]f]ff\f]f]fd fl0HHuMtff\f]f]ff\H9t%H H)f ] HHu]1MuHUHSAAHuE1\L)1E1LLf.MGIHLTDHDf.DIGHHDIHL9uM[]tJBJ fB.HGHJffff.HUHSAAHuE1\L)1E1LLf.MGIHLTHDDf.DIGHHDIHL9uM[]tJJ BfB.HGHJffff.UHHGHOHHHO(Hs1HHHzHDGAHIpH)1fff\fd fl0fYfYff\fYfYfd fl0HHuMtff\fYfYff\H9t%H H)f Y HHu]1MuUHAWAVSLGMLOME1LO\II9L HO(D)MsI)Ht-Hffffff.IYHHuIrmffffff.IYIDYDDIDYDDIDYDDHL9|M9)[A^A_]fUHAWAVAUATSLGMFLOM)E1LE1MfDLLLQMlMI)LHG(IHLHH9v J I9MII^HD{AHtAHL0MGI)1ffLfTf\f$fYfYfLfTfYfYf\f$HIuMt&HAf fTfYfYf fTM9LEtLAYHL9|M9[A\A]A^A_]DUHAWAVAUATSPIHIIMuIwH~ HHMOMGK<IMtM(E1LMLWMlM9IG IO(DD)Me@LtBAYJ4XIsM9tGf.AYHXDAYHTXHL9|M9ZMM(E1fDLMLWMlM9IO IG(DD)Me@Lt"BAYJ4 \ IsM9tKfDAYH \ DAYHT \ HL9|M9RH[A\A]A^A_]UHAWAVAUATSPMIIIMH}uHwH~HLH}HwLGI<IMHM E1ffffff.LMLHMdM9Lo DD)M\$Lt2KTfWH9tHMHI(BAYAXAIRM9H}tbfDILfWH9fWtH_( AY AX A ILH9tH_(DAYAXAHL9|I9+MHM E1fffff.LMLKMdM9Lo DD)M\$Lt6KTfWH9tHEHH(BAYA \A IRM9H}tffILfWH9fWtHG( AY A\AILH9tHG(DAYA \A HL9|I9#HME1ffffff.LMLJMTM9HEHx HH(ADD)MbuLM9u@{fffff.B JAY XAICM9tJffff. HAY XA DH\AYXAHL9|I9:HME1fDLMLJMTM9HELh HH(ADD)MbuLM9u@|fffff.B KDAY \AICM9tJfff. I|AY \ALI|AY \AHL9|I99H[A\A]A^A_]f.UHAWAVSPHIM~MJ4HmMFIE1f(fWf(DLHLNILH9I~()LQuHI9uKfD$f(f(fUfWfTfV_,HBf(I9th$f(f(fUfWfTfV_,df(f(fUfWfTfV_HH9|M9H[A^A_]fff.UHAVSHIIvH~ HH(MFMMNIE1f(fWf(HKTIH9I~ IF()LZHt4H f(f(fUfWfTfV_$$HNI9tvff.H4f(f(fUfWfTfV_$$Ht\f(f(fUfWfTfV_$$HH9|M9[A^]UHAWAVSPHIM~MJ4HMFI1f(bfWfffff.LJI|H9}]MV Iv(f.If(f(fUfWfTfVf(_H9t _HH9|M9HLuH[A^A_]ffffff.UHSPLOMLGIfW1 M\L9}WLW fIH9u'HG(YYY ff.},H_(YYXHL9|HL9L|1H=AH51H=1 fWH[]ÐUH(e(kGHG (hG(HG8(eG@(jGPH?HG`GhHư>HGpHGx(DfHnfsHLJHLJ]fffff.UHAWAVAUATSH8IIHLHtH5MLpHtH5/=IML3ZIHHB88IHAEI}]IHAIuI} IHA HHAHI}]IHAHrIuI}(IHA(IuI}0IHA0I]HtH8HA(H+L$LzHEIFLIgMIF tHH}LIF(Mt HI]HHEIF0LHEIF@J<#HEIFHHHI^PLHEIFXL{IF8H}CH}8H/MtH}HH} LzMeLHEIF`I]HHEIFhHHEIFpLHEIFxHHEIHHEIHHILeLxIH}=H}2H}'H}HH}tH}HH}L,?IHI0HIHM}ILHEHCLHEHC IEHEL$LHEHCLeLHC(H}JH}?H}tH}-H$L{HILiIMH}VIHMH}t HL.,IdžIdžIdžIdžL跱IxhhHtH5,wLHIINHpHPI@D@hE1hHtH56hIMfMIEHEL<LWHEID$(LFHEID$0L5HEID$L$HEID$ I]HH IMl$8LHEID$@LID$HM}H}t@H}kH}`H}UH}JH}?H6PIMMH0HI$LID$HHu H}IHHH~IH@pH@hH@`H@XI{<I@PIdžIdžIdžH@xIHHHtL#6Idž1H8[A\A]A^A_]H5H8[A\A]A^A_]XUHAWAVAUATSHXIMIuIH@`IdžIIHHEa;IHt+5&fIHQHx8`IF0HEIFPHEIF@HEIFXHEE11Luffff.H}HuSH}HuFL讲LֵLLv!fMgIIHH`HPIHDE:If. u{UXf.HHt[LHHHHtOLH ףp= ףHLHH?HHHiMI9M@@1HuM1AAAuE1H}ALHUD@t H}6DHt1H}DHRLuLuMI}tI} t~I}3IM H&HEHHHuEu1LHuHUjLHMuIM;}8ffff.uI8MIAM0YHPf.vvIHHEWH*HMtWH*f(YXEXf(E M\H,HMH9HLIM uI}fffff.IM;}8#IMHH5HX[A\A]A^A_]pLhIHx8AHEHuI1LLHUIHtIuL41LH}u)IHtIv0LI@8IHtIIHx(LHIHIHx(IHH=R\IHIHKH==1H@HLs3IHx(,IHx(u%L6HuIHLƧII 6IGXIHxxtH(uLSIGXHG`HOPIHDXXGhGpt IdžfHnAIHt Hpx3L1`HHX[A\A]A^A_]1HMLuHH=H51H=1 }UHAVSHHH;HtiHGHt H@H;HGHt H?H;HG Ht HH;HG(Ht HH;HG0Ht HH;HHteHGHtHHHG HtHHHGHtHuHHG(HtH]HQHHt@HHt/HHtH{Ht HGHtHHxh,^IH{HHG(Ht HH{HG0Ht HH{HGHt HH{HG Ht HH{HG8Ht H}H{HG@Ht HhH{HGHHt HSH{JH{Hu#&E1E1H{HEH{HtH{ Ht H{(HtH{0HtH{@HtH{HHtH{PHtH{XHtH{8HtH{`HtH{hHtH{pHtH{xHtqHHt`HHtOHHt>HHt-HHtHHt4HHtHHHGHtHHHHtHHtHL[A^]@UHAVSIHHHuHǃHH@`H0HHHp LxHHxt7HHHyHHp HHHH0Hx CHGH0HX@`@`1[A^]H5r[A^]fffff.UHAWAVSPIHIMIuIdžIH@`I0IHPH~!1fDfA.HH9|Hp(H[IHPHp0LHIHxtH]H~LHH@H@(HSكH1H/MHUH@LHH@H@(HrI H9H L91ɉ)HH)HtHfDIHrIUHH=H51LH=1> :]H5HH1ff.Ht>HrIUHH=@H51ܺH=1κ ʺ]H5r鬮HH1ff.HtHx"HH1H5tdUHH=H5X1KH=h1= 9]fff.HtWf.s H@p1H5HUHH==H5,1ٹH=41˹ ǹ]f.Ht>HrIUHH=H51茹H=1~ z]H5\HHpxHH@h1ffffff.HtHx"HH1H5UHH=OH51H=1ݸ ٸ]fff.Ht>HrIUHH=H51蜸H=1莸 芸]H5SlHH1ff.Ht Wf.v(UHH=>]H55H1ÐUHHLHMLP(LX0EAIu1MM)11 >D>fA. :w I : H >I;A ;f. HGHH>fA.D:w IL:HL>ID;AD;f.HGHHD>HHI9uMt0HI fA.HGIAf.HGHH]ff.UHHL@M~MHOXHx(H@0@X_] \ HHHHHIu]ÐUHHHs1JHHHHHDAAHIPH)1fD(Tf(lf(%@f,ftf| fT0f(fAf(fAf8f(f8f(f]f(f]ffLf(fAf(fAf8f(f8f(f]f(f]fD fL0HH`MtZff\f(%f(ff(ff(%f8f(f8f(f(f]f]f fDH9t^H H) mffff.f(f(fTfUfVf(]HHu]1M6ffffff.UHAWAVAUATSPMMIHIH+LLHLHL菼LLH[A\A]A^A_]fDUHAWAVAUATSHhII$I$HLpH?HHyHI$I$Hy H0}I$I$HyHp\ǮI$I$Hy(Hp;覮I$HxHCHHIVHrHHH}LHH}HMHHEH)HMHuHFHUH)HE1Lxa1f(=7f(5OfD(fH}1f(= f(5$fD(;H}Gff.HpI$II$HxLhM$I$HEH6LLHLHLLxH萺LHuHI$5fD(=ijfD(5fD(Hs1:ffffff.H}HM1f(=f(5fD(6fDff\fd fl0f(ff(ff8f(f8fA(f]fA(f]ffLf(ff(ff8f(f8fA(f]fA(f]fD fL0HH`H}tHff\f(ff(ff8f(f8fA(f]fA(f]ffLHEH9HtJHH)H ff.f(Af(fATfUfVfA(]HHuMI$Is18ffff.H}_HU1f(=gf(5fD(fDff\fd fl0f(ff(ff8f(f8fA(f]fA(f]ffLf(ff(ff8f(f8fA(f]fA(f]fD fL0HH`H}tHff\f(ff(ff8f(f8fA(f]fA(f]ffLHMI9HtJLH)Hff.f(Af(fATfUfVfA(]HHuH胴I$LsI$HH萰I$HL}I$I$Hx(I$I$HxI$I$HxI$I$HxI$I$Hp HHI$I$HxHHI$I$HxHLбI$I$HxI$H f)EI$Hx Hf(%Jf(fUEfTfVf(]f(M_f(f(f(fUfTfVf(]f(^f)EI$HxնI$Hx f(EH`f(MI$YHpHI$H;Q? I$^@HxHp I$H蜮I$I$HyHq(HPI$I$HyHHHp(H_I$I$HyHHHp0H?1Hh[A\A]A^A_]fffff.UHSPHHHHxA迵HHHxHq 訶HHHxHq 葷HHH0Hx AHHHy HHp H虯HHHxHq(BHHHxHq +HHHy(HHHp(HMHHHy(HHHp0H/1H[]fDUHSPHHHHyHH1HHHHHyHHqHHHϮHHxHHAHp 1H[]ÐUHHU]UHfff.HHDŽu]ffffff.UHH=1螪H=1萪H=.1肪 ]}UHAWAVAUATSHXIHHHEIMHCHKHPH@HqHID$D$(})E)E)E)EfE-L}LH=H5]1(?)E)E)E)EfE-LͩH=1賩3SH= 1蠩H=+1D菩H=01聩AEhH H4H=1dIFHp(HtH=1HH=1:AE@AMHH= AEPAMXH= AEH=AI}tH=81ݨH=1ϨAEAM`H=赨Au8H=&1裨IHtH=1艨 H=臨AWf.u{H=YI}t H='H=61;ItH=1ItH=!H=kIuH=1I}xt H=$H=(1ЧAWf.u{H=讧 H=謧H)HH;Eu HX[A\A]A^A_]~UHAWAVSPII3H=ȸ1LC8H=9C@L5L#CHLILItCPC`XCXH=f֦ ҦILJH[A^A_]fDUHAWAVSPIIH='H5$1臦C8H=tC@L5L^CHLOH=1AItCPC`XCXXChH= H[A^A_]ffffff.UHAVSIH ߥHsH=u1ǥMt+H{(u$HC0Hu H= Hy H=L裥3H=O1臥HC(HHwC8H=IgCpH=RTH=Y> [A^]6UHSPHHtpC@C @ C0@0C@@@CP@PHK`HH`KhHhCp@p1H[]ffffff.UHSPH^HH[]UHAVSI=HI^I+I~0AFANH1HHfHnfbf\f|^[A^]ÐUHAWAVAUATSHHLMLHMEIIH~HFI}IMIUHuHvHHHƹAHO HHELeMtI}HtI$HEHI}H]L}M]M11LmMLufHILI9u%IF HIFHIF( HMILHBI9HE-HMM MU(MnMf IF(K I ITKMIL~IH9}M;DuITITLHIILI9L|ILmHEI;EILLuqH]HtH;HEH0H跡HHUHZHLbH}I4$1LMLe@HGILH9HENMVMMf MM^(HLr IHZ(HEML,1I MMAMIHHIHuI HsMI4$E1MGK|H9}kOLffff.ILHIM%I6HIF fWfAHtrALOIIr/IWHHOHfffff.HMH;MtHIHE@HHH;HILXLMHI{KDH@KL1H}HELIfDI4HHH~dHHH KtH] HHMtHI1HH[A\A]A^A_]HMHELHþLHHHHEWI*XEH}HMI}H}rHþLbIHHEH)M HEWH*MXMIOWH*XMHLLHULeLMH]IuHLHHHH3H1HE1HULLHULEMHHHHHsH}kN4*I9K .L9N4)I9K .L9vmN4)I9vpK .L9vaN4)I9u^H}LzHrH}iH}`MHHI΄uEI΄:HHI9$L MIMH]MfInfbCf\Cf|MXY QDAO8LLHUHMLeMH]IAWuAVARH H}H}{HsLkLcHEWH*ALLHUHML}MH]IjuAVARsH H}H} HL L HEUHAWAVSI9MQE1L4IuqKHxLH]HEHx@H]HHp-IMH;u-Mu(Mu#1ҹL ILu5HCHGHOHHLRLYE1fff.LLLsL|I9AD)MgIt! YHA\ALhI9taMM)KKffff.HYLkC\CYL+C\CHHIuI9AHHrIL9IL9E1HGL)HHtHfCCYCIHuHDIM)KDK\fff.CY@@CY@@CY@@YH H IuIIIFHDPAH+MZI)1ff.fAfALfAfYfADfYfAL fA\0fAfADfAD fYfAL0fYfAD fAL0HIuMt/fAfALfAfYfADfYfAfADI9H~_Lffffff.LADLDI9}'LLD HAY \HL9|ADHH[A\A]A^A_]1MNxUHAWAVATSHH]LHǃHHHHHLHLLLLLAVPPATAWASARs8s@PHPHt0H=sH5O01A6H=Y01 H{0HtyH{8HtH{@HtH{HHtH{PHtH{XHtvHHteHHtTHHtCHHt2H[A\A^A_]"[A\A^A_]UHAWAVAUATSHhMHM)EIIHIH]L+L}MM}pLuMvMuxK >If(EAE`MehH IEHIEH IEHxIE AEHMHHpIEHHdIEPHXHI]XLeMt=Mf(EHuH}IMNIpAHEH@JfHHHzHDGAHnIpH)1fvfff.o oTffA AToL oT0ffAL AT0HHuMt$ooLfvffAALH9IHMMfIVHMIL HrJtH9JtH91AyI)Ht#Hffff.HHHHHuIH)HDHTfDHrHHpHrHHpHrHHpH2HH0H H HuHHH^HDCAHIxH)1fvfDo oTff ToL oT0ffL T0HHuMt"ooLfvffLH91H}ÿt IHEIHE(AIHEIHE(AIHEIHEIHEMIIDžIDžIDžIDžWAAAAIDžIDžAAAAAAAAAAAAAAA A A0A0A@A@APAPA`A`ApApAAAAAAAAAAAAAAAAAAAAA A A0A0A@A@APAPA`A`ApApf(E fAIIDžIDž IDž1IE(IDž IE0MIMLxLHuHUHMMLeMuAWAWuuuSAu8Au@p(HPIt%H=H5%1AAH=%zIDžIE0HxHuHUHMMMuAWAWuuuSAu8Au@p(hHPIt[H=)H5E%1AH=%1 LHEHHh[A\A]A^A_]11M%61M1M]zff.UHAWAVAUATSPIHLHǃ!HHHHLLS0LLLHLAWsPAVPAUATASs8s@Ar(6HPHt:H=H5$1A7H=$1 ~H{ht1}LKpM#HKPIs1JL9vKH9s1LHHBHHwH s 1Hu}HFH)1fDLAALD L0AD AL0D@LPAD@ALPfD`fLpfAD`fALpHHuHt6IDH|Hf.fGff@fH H HuI9tfff.HIHL9|HKxHLCPLSXHsA1KK41fAYXHH9|H[A\A]A^A_]KJ I4I.A52T52TE-C6?@@?KH9Aꌠ9Y>)F@??ư> @?MbP?MbP?-C6?-C6?)@9@@@@----------------0C0E0C0EeA|=$@@$@?"@ @& .>solvedsolved inaccurateprimal infeasibleprimal infeasible inaccurateunsolveddual infeasibledual infeasible inaccuratemaximum iterations reachedinterruptedproblem non convexvalidate_dataMissing dataMissing matrix PMissing matrix AMissing vector qn must be positive and m nonnegative; n = %i, m = %iP does not have dimension n x n with n = %iP is not squareP is not upper triangularA does not have dimension %i x %iLower bound at index %d is greater than upper bound: %.4e > %.4evalidate_settingsMissing settings!scaling must be nonnegativeadaptive_rho must be either 0 or 1adaptive_rho_interval must be nonnegativeadaptive_rho_fraction must be positiveadaptive_rho_tolerance must be >= 1rho must be positivesigma must be positivedelta must be positiveat least one of eps_abs and eps_rel must be positiveeps_prim_inf must be positiveeps_dual_inf must be positivealpha must be strictly between 0 and 2linsys_solver not recognizedverbose must be either 0 or 1scaled_termination must be either 0 or 1check_termination must be nonnegativewarm_start must be either 0 or 1time_limit must be nonnegativeProblem data validation.Solver settings validation.Linear system solver not available. Tried to obtain it from shared library.Linear system solver initialization.KKT matrix factorization. The problem seems to be non-convex.Memory allocation.Solver workspace not initialized.ERROR in %s: %s quad_formquad_form matrix is not upper triangularosqp_setuposqp_solveERROR in %s: Failed rho updateosqp_update_lin_costosqp_update_boundslower bound must be lower than or equal to upper boundosqp_update_lower_boundupper bound must be greater than or equal to lower boundosqp_update_upper_boundosqp_warm_startosqp_warm_start_xosqp_warm_start_yosqp_update_Pnew number of elements (%i) greater than elements in P (%i)new KKT matrix is not quasidefiniteosqp_update_Anew number of elements (%i) greater than elements in A (%i)osqp_update_P_Aosqp_update_rhoosqp_update_max_itermax_iter must be positiveosqp_update_eps_abseps_abs must be nonnegativeosqp_update_eps_releps_rel must be nonnegativeosqp_update_eps_prim_infeps_prim_inf must be nonnegativeosqp_update_eps_dual_infeps_dual_inf must be nonnegativeosqp_update_alphaalpha must be between 0 and 2osqp_update_warm_startwarm_start should be either 0 or 1osqp_update_scaled_terminationscaled_termination should be either 0 or 1osqp_update_check_terminationcheck_termination should be nonnegativeosqp_update_deltaosqp_update_polishpolish should be either 0 or 1osqp_update_polish_refine_iterpolish_refine_iter must be nonnegativeosqp_update_verboseverbose should be either 0 or 1osqp_update_time_limitrun time limit reachedSolver interrupted0.6.2iter objective pri res dua res rho time OSQP v%s - Operator Splitting QP Solver (c) Bartolomeo Stellato, Goran Banjac University of Oxford - Stanford University 2021 problem: variables n = %i, constraints m = %i nnz(P) + nnz(A) = %i settings: linear system solver = %s (%d threads), eps_abs = %.1e, eps_rel = %.1e, eps_prim_inf = %.1e, eps_dual_inf = %.1e, rho = %.2e (adaptive)sigma = %.2e, alpha = %.2f, max_iter = %i check_termination: on (interval %i), time_limit: %.2e sec, scaling: on, scaling: off, warm start: on, warm start: off, polish: on, polish: off, time_limit: %.2e sec %4i %12.4e %9.2e %9.2es%4splsh --------status: %s number of iterations: %i optimal objective: %.4f run time: %.2es optimal rho estimate: %.2e check_termination: off,scaled_termination: offtime_limit: offscaled_termination: onsolution polish: unsuccessfulsolution polish: successfulcsc_to_triuMatrix M not squareUpper triangular matrix extraction failed (out of memory)iterative_refinementqdldlmkl pardisolh_load_libno library name givenError while loading dynamic library %s: %slh_load_symCannot find symbol %s in dynamic library, error = %s AMD version %d.%d.%d, %s: approximate minimum degree ordering dense row parameter: %g May 4, 2016 no rows treated as dense (rows with more than max (%g * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes aggressive absorption: no size of AMD integer: %d AMD version %d.%d.%d, %s, results: status: OK out of memory invalid matrix OK, but jumbled unknown n, dimension of A: %.20g nz, number of nonzeros in A: %.20g symmetry of A: %.4f number of nonzeros on diagonal: %.20g nonzeros in pattern of A+A' (excl. diagonal): %.20g # dense rows/columns of A+A': %.20g memory used, in bytes: %.20g # of memory compactions: %.20g The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): %.20g nonzeros in L (including diagonal): %.20g # divide operations for LDL' or LU: %.20g # multiply-subtract operations for LDL': %.20g # multiply-subtract operations for LU: %.20g max nz. in any column of L (incl. diagonal): %.20g chol flop count for real A, sqrt counted as 1 flop: %.20g LDL' flop count for real A: %.20g LDL' flop count for complex A: %.20g LU flop count for real A (with no pivoting): %.20g LU flop count for complex A (with no pivoting): %.20g init_linsys_solver_qdldlError forming and permuting KKT matrixLDL_factorError in KKT matrix LDL factorization when computing the elimination tree.Matrix is not perfectly upper triangular.Integer overflow in L nonzero count.Error in KKT matrix LDL factorization when computing the nonzero elements. There are zeros in the diagonal matrixError in KKT matrix LDL factorization when computing the nonzero elements. The problem seems to be non-convexfree_linsys_solver_pardisoError during MKL Pardiso cleanup: %dinit_linsys_solver_pardisoError in forming KKT matrixError during symbolic factorization: %dError during numerical factorization: %dsolve_linsys_pardisoError during linear system solution: %dpardisoPardiso not loaded correctlylibmkl_rt.dylibMKL_Set_Interface_LayerMKL_Get_Max_Threads44X!a LLOL `0 P  0P "&)0 16P8:@<@=@>E G`H@I JJ`Y]p_b0d st~````0 `pP`PP0 @` P1OOOOOOOOP PPP(P2P`Sfngz0oz.`AV0pPy |pЕPЏ)I0a`}z~0N00 'M:OIWФeШse8 0@H@% 5 `"+ ; PK a o  0   @7 `K * PL/ p+S c 8r &| " + @) < 0? @? K C M U W! V- @X= 0SJ 0QY Uf Hp L F G pR E pJ       & / 7 > D J ^ r z         @ _LINSYS_SOLVER_NAME_OSQP_ERROR_MESSAGE_QDLDL_Lsolve_QDLDL_Ltsolve_QDLDL_etree_QDLDL_factor_QDLDL_solve_SuiteSparse_config_SuiteSparse_divcomplex_SuiteSparse_free_SuiteSparse_hypot_SuiteSparse_malloc_SuiteSparse_realloc_SuiteSparse_tic_SuiteSparse_time_SuiteSparse_toc_SuiteSparse_version__osqp_error_adapt_rho_amd_l1_amd_l2_amd_l_aat_amd_l_control_amd_l_defaults_amd_l_info_amd_l_order_amd_l_post_tree_amd_l_postorder_amd_l_preprocess_amd_l_valid_c_strcpy_check_termination_cold_start_compute_dua_res_compute_dua_tol_compute_inf_norm_cols_KKT_compute_obj_val_compute_pri_res_compute_pri_tol_compute_rho_estimate_copy_csc_mat_copy_settings_csc_cumsum_csc_done_csc_matrix_csc_pinv_csc_spalloc_csc_spfree_csc_symperm_csc_to_triu_form_KKT_free_linsys_solver_pardiso_free_linsys_solver_qdldl_has_solution_init_linsys_solver_init_linsys_solver_pardiso_init_linsys_solver_qdldl_int_vec_set_scalar_is_dual_infeasible_is_primal_infeasible_lh_load_lib_lh_load_pardiso_lh_load_sym_lh_unload_lib_lh_unload_pardiso_limit_scaling_load_linsys_solver_mat_inf_norm_cols_mat_inf_norm_cols_sym_triu_mat_inf_norm_rows_mat_mult_scalar_mat_postmult_diag_mat_premult_diag_mat_tpose_vec_mat_vec_mkl_get_max_threads_mkl_set_interface_layer_oact_osqp_cleanup_osqp_end_interrupt_listener_osqp_is_interrupted_osqp_set_default_settings_osqp_setup_osqp_solve_osqp_start_interrupt_listener_osqp_tic_osqp_toc_osqp_update_A_osqp_update_P_osqp_update_P_A_osqp_update_alpha_osqp_update_bounds_osqp_update_check_termination_osqp_update_delta_osqp_update_eps_abs_osqp_update_eps_dual_inf_osqp_update_eps_prim_inf_osqp_update_eps_rel_osqp_update_lin_cost_osqp_update_lower_bound_osqp_update_max_iter_osqp_update_polish_osqp_update_polish_refine_iter_osqp_update_rho_osqp_update_scaled_termination_osqp_update_time_limit_osqp_update_upper_bound_osqp_update_verbose_osqp_update_warm_start_osqp_version_osqp_warm_start_osqp_warm_start_x_osqp_warm_start_y_pardiso_permute_x_permutet_x_polish_prea_copy_csc_mat_prea_int_vec_copy_prea_vec_copy_print_footer_print_header_print_polish_print_setup_header_print_summary_project_project_normalcone_quad_form_reset_info_scale_data_set_rho_vec_solve_linsys_pardiso_solve_linsys_qdldl_store_solution_swap_vectors_triplet_to_csc_triplet_to_csr_unload_linsys_solver_unscale_data_unscale_solution_update_KKT_A_update_KKT_P_update_KKT_param2_update_info_update_linsys_solver_matrices_pardiso_update_linsys_solver_matrices_qdldl_update_linsys_solver_rho_vec_pardiso_update_linsys_solver_rho_vec_qdldl_update_rho_vec_update_status_update_x_update_xz_tilde_update_y_update_z_validate_data_validate_linsys_solver_validate_settings_vec_add_scalar_vec_add_scaled_vec_copy_vec_ew_max_vec_ew_max_vec_vec_ew_min_vec_ew_min_vec_vec_ew_prod_vec_ew_recipr_vec_ew_sqrt_vec_mean_vec_mult_scalar_vec_norm_inf_vec_norm_inf_diff_vec_prod_vec_scaled_norm_inf_vec_set_scalar___bzero___stack_chk_fail___stack_chk_guard___tolower___toupper_calloc_dlclose_dlerror_dlopen_dlsym_fmod_free_mach_absolute_time_mach_timebase_info_malloc_memcpy_memset_memset_pattern16_printf_putchar_puts_realloc_sigactiondyld_stub_binder_handle_ctrlc_permute_KKT_int_detected_func_pardiso_func_mkl_set_interface_layer_func_mkl_get_max_threads_Pardiso_handle