require 'gpt3/builder' KManager.action :utilities do helpers = self action do KDirector::Dsls::BasicDsl .init(k_builder, template_folder: '', on_exist: :write, # %i[skip write compare] on_action: :execute) # %i[queue execute] .blueprint(name: :build_design_system) do cd(:data) # Raw components are source HTML/Tailwind files that have embedded information such as tailwind.config.js and usage instructions source_component_path = File.expand_path('~/dev/kgems/k_templates/templates/tailwind') # Target components are the processed components that are ready to be consumed by the TailwindDSL target_component_path = k_builder.target_folders.get(:components) # The component data shapes are reflected model based on the data inside of a HTML templates target_component_model_path = k_builder.target_folders.get(:component_models) # Builds the design_system.json by reading all the HTML templates for every UIKit found the source_component_path uikit = helpers.load_design_systems(source_component_path) add('design_system.json', content: JSON.pretty_generate(uikit.to_h)) # Separate clean and raw components, tailwind configuration, settings into their own folders component_generator = helpers.generate_components(uikit, source_component_path, target_component_path, reset_root_path: false) components = component_generator.components # Use GPT3 to extract component models in supervised fashion helpers.batch_extraction( components, target_component_model_path, batch_size: 1, filter: { design_system: 'tui', exclude_group_key: [ 'application_ui.application_shells.multi_column', 'application_ui.application_shells.sidebar', 'application_ui.application_shells.stacked', 'application_ui.component.element.avatars', 'application_ui.component.element.badges' ] }, extract_handler: TailwindDsl::Etl::Extractors::DataExtractor ) # puts target_component_path # /Users/davidcruwys/dev/kgems/tailwind_dsl/.components # Goals # - Generate a Tailwind component complete design system so that I can see both the component plus the original source code # [✔️] There should be a deep hierarchy of folders and files in a menu structure # When you click on a menu item, there should be a preview of the component # The menus should be collapsible # The menus should be searchable # The component should have link to the original Tailwind component # The component should show tailwind config if it exists # The component should show the data shape if it exists # The component should show the Astro component if it exists # - Generate a Data Structure JSON file for each component (one at a time, so just the next component using GPT3) # - Bulk training of GPT3 to generate a Data Structure JSON file after every 5 to 10 new components end end def load_design_systems(source_component_path) loader = TailwindDsl::Etl::RawComponents::Load.new loader.add_design_system(File.join(source_component_path, 'tui')) # loader.add_design_system(File.join(source_component_path, 'codepen')) # loader.add_design_system(File.join(source_component_path, 'devdojo')) # loader.add_design_system(File.join(source_component_path, 'merakiui')) # loader.add_design_system(File.join(source_component_path, 'noq')) # loader.add_design_system(File.join(source_component_path, 'starter-kit')) loader.uikit end def generate_components(uikit, source_component_path, target_folder, reset_root_path: false) generator = TailwindDsl::Etl::ComponentStructures::Generator.new(uikit, source_component_path, target_folder, reset_root_path: reset_root_path) generator.generate generator end # Extracts the next component data using GPT3 # # This needs to be supervised and verified, so it will only do a few models at a time def batch_extraction(components, target_folder, batch_size: 1, filter: nil, extract_handler: nil) extraction = TailwindDsl::Etl::Extractors::BatchExtraction.new( components, target_folder, batch_size: batch_size, filter: filter, extract_handler: extract_handler) extraction.extract end end KManager.opts.sleep = 2