\batchmode \documentclass[a4j,12pt,openbib]{jreport} \RequirePackage{ifthen} \usepackage{ascmac} \usepackage{tabularx} \usepackage{graphicx} \usepackage{amssymb} \usepackage{amsmath} \usepackage{Dennou6} \pagestyle{Dmyheadings} \Dtitle[NumRu::GPhys::EP\_Flux]{NumRu::GPhys::EP\_Flux \\数理ドキュメント} \Dauthor[地球流体電脳倶楽部]{地球流体電脳倶楽部} \Dfile{} \setcounter{section}{0} \setcounter{equation}{0} \setcounter{page}{1} \setcounter{figure}{0} \setcounter{footnote}{0} \Dparskip \Dnoparindent \usepackage[dvips]{color} \pagecolor[gray]{.7} \usepackage[]{inputenc} \makeatletter \makeatletter \count@=\the\catcode`\_ \catcode`\_=8 \newenvironment{tex2html_wrap}{}{}% \catcode`\<=12\catcode`\_=\count@ \newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}% \newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}% \expandafter\renewcommand\csname #1\endcsname}% \newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}% \let\newedcommand\renewedcommand \let\renewedenvironment\newedenvironment \makeatother \let\mathon=$ \let\mathoff=$ \ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi \newbox\sizebox \setlength{\hoffset}{0pt}\setlength{\voffset}{0pt} \addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt} \addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt} \addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt} \addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt} \setlength{\textwidth}{349pt} \newwrite\lthtmlwrite \makeatletter \let\realnormalsize=\normalsize \global\topskip=2sp \def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float \def\@float{\let\@savefreelist\@freelist\real@float} \def\liih@math{\ifmmode$\else\bad@math\fi} \def\end@float{\realend@float\global\let\@freelist\@savefreelist} \let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float \let\@largefloatcheck=\relax \let\if@boxedmulticols=\iftrue \def\@dbflt{\let\@savefreelist\@freelist\real@dbflt} \def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}% \def\phantompar{\csname par\endcsname}\normalsize}% \def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}% \newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }% \newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }% \newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup % \let\ifinner=\iffalse \let\)\liih@math }% \newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}% \expandafter\box\next\egroup}% \newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}% \newcommand\lthtmllogmath{\lthtmltypeout{l2hSize % :\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}% \newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist \lthtmlmathtype{#1}\lthtmlvboxmathA}% \newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}% \newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup \let\@savefreelist\@freelist \lthtmlhboxmathB}% \newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}% \newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox \global\let\@freelist\@savefreelist}% \newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}% \newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}% \newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}% \lthtmldisplayA{#1}\let\@eqnnum\relax}% \newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}% \newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB} \newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA \vrule height1.5ex width0pt }% \newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}% \newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}% \newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline} \newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath} \newcommand\lthtmlindisplaymathZ{\egroup % \centerinlinemath\lthtmllogmath\lthtmlsetmath} \def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{% \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{% \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt% \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt% \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\centerinlinemath{% \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1 \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax} \def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill \else\expandafter\vss\fi}% \providecommand{\selectlanguage}[1]{}% \makeatletter \tracingstats = 1 \providecommand{\Eta}{\textrm{H}} \providecommand{\Mu}{\textrm{M}} \providecommand{\Alpha}{\textrm{A}} \providecommand{\Iota}{\textrm{J}} \providecommand{\Nu}{\textrm{N}} \providecommand{\Omicron}{\textrm{O}} \providecommand{\omicron}{\textrm{o}} \providecommand{\Chi}{\textrm{X}} \providecommand{\Beta}{\textrm{B}} \providecommand{\Kappa}{\textrm{K}} \providecommand{\Tau}{\textrm{T}} \providecommand{\Epsilon}{\textrm{E}} \providecommand{\Zeta}{\textrm{Z}} \providecommand{\Rho}{\textrm{R}} \begin{document} \pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}% \makeatletter \if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}% \else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi% \lthtmltypeout{}% \makeatother \setcounter{page}{1} \onecolumn % !!! IMAGES START HERE !!! \setcounter{section}{0} \setcounter{equation}{0} \setcounter{figure}{0} \setcounter{footnote}{0} \stepcounter{chapter} \stepcounter{chapter} \stepcounter{section} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3164}% $ \lambda$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3166}% $ \phi$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3168}% $ z^*$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3171}% $\displaystyle z^*$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3173}% $\displaystyle =$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3175}% $\displaystyle -H \ln(p/p_s),\ \ \ \ H = \frac{R_{d} T_s}{g_0}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3177}% $ H$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3179}% $ R_{d}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3181}% $ R$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3183}% $ w$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3185}% $ R_{d} = R/w$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3187}% $ T_s$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3189}% $ g_0$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3191}% $ p$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3193}% $ p_s$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3200}% $ \rho_s$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \setcounter{equation}{1} \lthtmldisplayA{subequations3202}% \begin{subequations}\begin{align} \hat{F}_\phi &\equiv \sigma \cos \phi \left( \DP{\overline{u}}{z^*} \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'} \right), \\ \hat{F}_{z^*} &\equiv \sigma \cos \phi \left( \left[ f - \Dinv{a\cos\phi}{\DP{\overline{u}\cos \phi}{\phi}} \right] \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'} \right) \end{align}\end{subequations}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3204}% $ \hat{F}_\phi$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3206}% $ \hat{F}_{z^*}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3212}% $ \overline{\bullet}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3214}% $ \bullet'$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3216}% $ u, v, w$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3219}% $\displaystyle (u, v, w)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3221}% $\displaystyle \equiv$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3223}% $\displaystyle \left(a\cos\phi\DD{\lambda}{t}, a\DD{\phi}{t}, \DD{z^*}{t}\right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3225}% $ \theta$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3227}% $ a$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3229}% $ \sigma$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3230}% $\displaystyle \sigma \equiv \frac{\rho_0}{\rho_s} = \exp\left(\frac{-z^*}{H}\right),$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3232}% $ \rho_0$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3235}% $\displaystyle \rho_0(z^*)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3239}% $\displaystyle \rho_s e^{-z^*/H}, \hspace{2em} \rho_s \equiv p_s/RT_s$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3241}% $ f$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3244}% $\displaystyle f = 2 \Omega \sin \phi = \frac{4 \pi}{T_{rot}} \sin \phi$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3246}% $ \Omega$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3248}% $ T_{rot}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \setcounter{equation}{4} \lthtmldisplayA{subequations3252}% \setcounter{equation}{3} \begin{subequations}\begin{align} {F_\phi} =& \rho_0 a \cos \phi \left(\DP{\overline{u}}{\overline{z^*}} \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}\right)\\ {F_z^*} =& \rho_0 a \cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right] \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}\right). \end{align}\end{subequations}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3254}% $ F_\phi$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3256}% $ F_{z^*}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3262}% $ F_y, F_z^*$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3264}% $ \hat{F_y}, \hat{F_z^*}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3265}% $\displaystyle (F_y, F_z^*) = a\rho_s(\hat{F_y}, \hat{F_{z^*}})$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3270}% $ (0, \overline{v}^*, \overline{w}^*)$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \setcounter{equation}{6} \lthtmldisplayA{subequations3272}% \setcounter{equation}{5} \begin{subequations}\begin{align} \overline{v}^* &\equiv \overline{v} - \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0\frac{\overline{v'\theta'}} {\DP{\overline{\theta}}{z^*}}\right)\\ &= \overline{v} - \Dinv{\sigma}\DP{}{z^*}\left(\sigma\frac{\overline{v'\theta'}} {\DP{\overline{\theta}}{z^*}}\right)\\ \overline{w}^* &\equiv \overline{w} + \Dinv{a \cos\phi}\DP{}{\phi}\left(\cos\phi\frac{\overline{v'\theta'}} {\DP{\overline{\theta}}{z^*}}\right) \end{align}\end{subequations}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} \stepcounter{section} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3277}% $ u$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3280}% $\displaystyle \DP{\overline{u}}{t} + \overline{v}^*\left[\Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f\right] + \overline{w}^*\DP{\overline{u}}{z^*} - \overline{X} = \Dinv{\sigma \cos\phi}\Ddiv\Dvect{\hat{F}}.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3285}% $ \Dvect{F}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3286}% $\displaystyle \Ddiv{} \Dvect{F}= \Dinv{a \cos \phi} \DP{(\cos \phi F_{\phi})}{\phi} + \DP{F_{z^{*}}}{z^*}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3291}% $ \Psi^*$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \setcounter{equation}{9} \lthtmldisplayA{subequations3293}% \setcounter{equation}{8} \begin{subequations}\begin{align} \sigma \overline{v}^* &= -g\Dinv{2\pi a \cos\phi }\DP{\Psi^*}{z^{*}}, \\ \sigma \overline{w}^* &= g\Dinv{2\pi a^2\cos\phi}\DP{\Psi^*}{\phi} \end{align}\end{subequations}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3300}% $\displaystyle \DP{}{z^*}\Psi^*$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3301}% $\displaystyle = -\frac{p}{H}\DP{}{p}\Psi^*$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3303}% $ p=0$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3305}% $ \Psi^* = 0$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3306}% $\displaystyle \Psi^*(\theta, p) = \frac{2\pi a \cos\phi}{g} \int_{0}^{p}\overline{v}^*\Dd p$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} {\newpage\clearpage \setcounter{equation}{12} \lthtmldisplayA{subequations3311}% \setcounter{equation}{11} \begin{subequations}\begin{align} z^* &= -H \log \left( \frac{p}{p_{00}} \right),\\ p &= p_{00} \exp \left( -\frac{z^*}{H} \right) \end{align}\end{subequations}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3315}% $ p_{00}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3321}% $ T$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3323}% $ \omega \equiv Dp/Dt$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3329}% $ w, \theta$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3330}% $\displaystyle w$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3331}% $\displaystyle = -\omega H / p$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3332}% $\displaystyle \theta$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3333}% $\displaystyle = T \left(\frac{p_{00}}{p}\right)^\kappa, \kappa = R/C_p$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3337}% $ C_p$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \appendix \stepcounter{chapter} \stepcounter{section} {\newpage\clearpage \setcounter{equation}{0} \lthtmldisplayA{subequations3343}% \setcounter{equation}{-1} \begin{subequations}\begin{align} \DD{u}{t} &- \left(f + \frac{u\tan\phi}{a}\right)v + \Dinv{a\cos\phi}\DP{\Phi}{\lambda} = X,\\ \DD{v}{t} &+ \left(f + \frac{u\tan\phi}{a}\right)u + \Dinv{a}\DP{\Phi}{\phi} = Y, \end{align} \begin{align} \DP{\Phi}{z^*} & = \frac{R\theta e^{-\kappa z^*/H}}{H}, \end{align} \begin{align} \Dinv{a\cos\phi} & \left[ \DP{u}{\lambda} + \left( \DP{v\cos\phi}{\phi} \right) \right] + \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0 w\right) = 0, \end{align} \begin{align} \DD{\theta}{t} &= Q, \end{align}\end{subequations}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3345}% $ \Phi$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3347}% $ X, Y$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3353}% $ \kappa=R_{d}/c_p$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3355}% $ c_p$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3357}% $ Q$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3360}% $\displaystyle Q$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3364}% $\displaystyle \frac{J}{C_p}e^{\kappa z^*/H}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3366}% $ J$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3371}% $ A$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3373}% $ \phi, z^*, t$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3376}% $\displaystyle \overline{A}(\phi, z^*, t) \equiv \Dinv{2\pi}\int_0^{2\pi} A(\lambda, \phi, z^*, t) \Dd \lambda$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3378}% $ A'$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3381}% $\displaystyle A' = A - \overline{A}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3383}% $ \overline{A'}=0$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3385}% $ \partial \overline{A}/\partial\lambda = 0$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \setcounter{equation}{3} \lthtmldisplayA{subequations3387}% \setcounter{equation}{2} \begin{subequations}\begin{align} & \DP{}{t}(\overline{u} + u') + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{u} + u') + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{u} + u') + (\overline{w} + w')\DP{}{z^*}(\overline{u} + u') \\ & \qquad - \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{v} + v') + \Dinv{a\cos\phi}\DP{}{\lambda}(\overline{\Phi} + \Phi') = \overline{X} + X',\\ & \DP{}{t}(\overline{v} + v') + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{v} + v') + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{v} + v') + (\overline{w} + w')\DP{}{z^*}(\overline{v} + v')\notag\\ & \qquad + \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{u} + u') + \Dinv{a}\DP{}{\phi}(\overline{\Phi} + \Phi') = \overline{Y} + Y', \\ & \DP{}{z^*}(\overline{\Phi} + \Phi') = \frac{Re^{-\kappa z^*/H}}{H}(\overline{\theta} + \theta'),\\ & \Dinv{a\cos\phi} \left[\DP{}{\lambda}(\overline{u} + u') + \DP{}{\phi}\{(\overline{v} + v')\cos\phi\}\right] + \Dinv{\rho_0}\DP{}{z^*}[\rho_0 (\overline{w} + w')] = 0,\\ & \DP{}{t}(\overline{\theta} + \theta') + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{\theta} + \theta') + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{\theta} + \theta') + (\overline{w} + w')\DP{}{z^*}(\overline{\theta} + \theta')\notag\\ & \qquad = \overline{Q} + Q' \end{align}\end{subequations}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \setcounter{equation}{4} \lthtmldisplayA{subequations3389}% \setcounter{equation}{3} \begin{subequations}\begin{align} & \DP{\overline{u}}{t} + \frac{\overline{u}}{a\cos\phi}\DP{\overline{u}}{\lambda} + \frac{\overline{v}}{a}\DP{\overline{u}}{\phi} + \overline{w}\DP{\overline{u}}{z^*} - f\overline{v} - \frac{\tan\phi}{a} \overline{u} \ \overline{v} + \Dinv{a\cos\phi}\DP{\overline{\Phi}}{\lambda} - \overline{X} \\ & \qquad = - \DP{u'}{t} - \frac{\overline{u}}{a\cos\phi}\DP{u'}{\lambda} - \frac{u'}{a\cos\phi}\DP{\overline{u}}{\lambda} - \frac{u'}{a\cos\phi}\DP{u'}{\lambda} \notag\\ & \qquad \qquad - \frac{\overline{v}}{a}\DP{u'}{\phi} - \frac{v'}{a}\DP{\overline{u}}{\phi} - \frac{v'}{a}\DP{u'}{\phi} - \overline{w}\DP{u'}{z^*} - w'\DP{\overline{u}}{z^*} - w'\DP{u'}{z^*} + fv'\notag\\ & \qquad \qquad + \frac{\tan\phi}{a} \overline{u} v' + \frac{\tan\phi}{a} u' \overline{v} + \frac{\tan\phi}{a} u'v' - \Dinv{a\cos\phi}\DP{\Phi'}{\lambda} + X',\\ & \DP{\overline{v}}{t} + \frac{\overline{u}}{a\cos\phi}\DP{\overline{v}}{\lambda} + \frac{\overline{v}}{a}\DP{\overline{v}}{\phi} + \overline{w}\DP{\overline{v}}{z^*} + f\overline{u} + \frac{\tan\phi}{a}(\overline{u})^2 + \Dinv{a}\DP{\overline{\Phi}}{\phi} - \overline{Y} \notag\\ & \qquad = - \DP{v'}{t} - \frac{\overline{u}}{a\cos\phi}\DP{v'}{\lambda} - \frac{u'}{a\cos\phi}\DP{\overline{v}}{\lambda} - \frac{u'}{a\cos\phi}\DP{v'}{\lambda}\notag\\ & \qquad \qquad - \frac{\overline{v}}{a}\DP{v'}{\phi} - \frac{v'}{a}\DP{\overline{v}}{\phi} - \frac{v'}{a}\DP{v'}{\phi} - \overline{w}\DP{v'}{z^*} - w'\DP{\overline{v}}{z^*} - w'\DP{v'}{z^*} - fu'\notag\\ & \qquad \qquad - 2\frac{\tan\phi}{a}\overline{u}u' - \frac{\tan\phi}{a}(u')^2 - \Dinv{a\cos\phi}\DP{\Phi'}{\phi} + Y',\\ & \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = - \DP{\Phi'}{z^*} + \frac{Re^{-\kappa z^*/H}}{H}\theta',\\ & \Dinv{a\cos\phi} \left[\DP{\overline{u}}{\lambda} + \DP{}{\phi}(\overline{v}\cos\phi)\right] + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w}) \notag\\ & \qquad = - \Dinv{a\cos\phi}\left[ \DP{u'}{\lambda} + \DP{}{\phi}(v'\cos\phi) \right] - \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w') ,\\ & \DP{\overline{\theta}}{t} + \frac{\overline{u}}{a\cos\phi}\DP{\overline{\theta}}{\lambda} + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi} + \overline{w}\DP{\overline{\theta}}{z^*} - \overline{Q} \notag\\ & \qquad = - \DP{\theta'}{t} - \frac{\overline{u}}{a\cos\phi}\DP{\theta'}{\lambda} - \frac{u'}{a\cos\phi}\DP{\overline{\theta}}{\lambda} - \frac{u'}{a\cos\phi}\DP{\theta'}{\lambda} \notag \\ & \qquad \qquad - \frac{\overline{v}}{a}\DP{\theta'}{\phi} - \frac{v'}{a}\DP{\overline{\theta}}{\phi} - \frac{v'}{a}\DP{\theta'}{\phi} - \overline{w}\DP{\theta'}{z^*} - w'\DP{\overline{\theta}}{z^*} - w'\DP{\theta'}{z^*} + Q' \end{align}\end{subequations}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \setcounter{equation}{5} \lthtmldisplayA{subequations3391}% \setcounter{equation}{4} \begin{subequations}\begin{align} & \DP{\overline{u}}{t} + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi} + \overline{w}\DP{\overline{u}}{z^*} - f\overline{v} - \frac{\tan\phi}{a} \overline{u} \ \overline{v} - \overline{X} \\ & \qquad = - \Dinv{a\cos\phi}\overline{u'\DP{u'}{\lambda}} - \Dinv{a}\overline{v'\DP{u'}{\phi}} - \overline{w'\DP{u'}{z^*}} + \frac{\tan\phi}{a}\overline{u'v'},\\ & \DP{\overline{v}}{t} + \frac{\overline{v}}{a}\DP{\overline{v}}{\phi} + \overline{w} \DP{\overline{v}}{z^*} + f \overline{u} + \frac{\tan \phi}{a} (\overline{u})^2 + \Dinv{a}\DP{\overline{\Phi}}{\phi} - \overline{Y} \notag\\ & \qquad = - \Dinv{a \cos \phi} \overline{ u' \DP{v'}{\lambda} } - \Dinv{a} \overline{{v'}\DP{v'}{\phi}} - \overline{w'\DP{v'}{z^*}} - \frac{\tan \phi}{a} \overline{u'^2},\\ & \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,\\ & \Dinv{a\cos\phi} \left[ \DP{}{\phi}(\overline{v}\cos\phi) \right] + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w}) = 0,\\ & \DP{\overline{\theta}}{t} + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi} + \overline{w}\DP{\overline{\theta}}{z^*} - \overline{Q} = - \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}} - \Dinv{a}\overline{v'\DP{\theta'}{\phi}} - \overline{w'\DP{\theta'}{z^*}} \end{align}\end{subequations}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3394}% $\displaystyle \Dinv{a\cos\phi}\left[\DP{u'}{\lambda} + \DP{}{\phi}(v'\cos\phi)\right] + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w') = 0$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3396}% $ u'$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3399}% $\displaystyle \Dinv{a \cos \phi} \overline{u' \DP{u'}{\lambda}} + \Dinv{a} \overline{ u' \DP{v'}{\phi} } - \frac{\tan \phi}{a} \overline{ u' v' } + \overline{ u' \DP{w'}{z^*} } + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ u' w' } = 0$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3400}% $\displaystyle \DP{\overline{u}}{t}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3401}% $\displaystyle + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi} + \overline{w}\DP{\overline{u}}{z^*} - f\overline{v} - \frac{\tan\phi}{a}\overline{u}\overline{v} - \overline{X} \notag$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3402}% $\displaystyle = - \frac{2}{a\cos\phi} \overline{u'\DP{u'}{\lambda}} - \Dinv{a}\overline{v'\DP{u'}{\phi}} - \overline{w'\DP{u'}{z^*}} - \Dinv{a}\overline{u'\DP{v'}{\phi}} + \frac{2\tan\phi}{a}\overline{u'v'} - \overline{u'\DP{w'}{z^*}} - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3403}% $\displaystyle - \frac{2}{a\cos\phi} \overline{ u' \DP{u'}{\lambda} }$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3404}% $\displaystyle = - \Dinv{a\cos\phi}\overline{\DP{(u')^2}{\lambda}} = 0,$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3405}% $\displaystyle - \Dinv{a}\overline{v'\DP{u'}{\phi}} - \Dinv{a}\overline{u'\DP{v'}{\phi}} + \frac{2\tan\phi}{a}\overline{u'v'}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3406}% $\displaystyle = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi),$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3407}% $\displaystyle - \overline{w'\DP{u'}{z^*}} - \overline{u'\DP{w'}{z^*}} - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3408}% $\displaystyle = - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3409}% $\displaystyle \DP{\overline{u}}{t} + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi} + \overline{w}\DP{\overline{u}}{z^*} - f\overline{v} - \frac{\tan\phi}{a} \overline{u} \ \overline{v} - \overline{X} \notag$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3410}% $\displaystyle \qquad = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi) - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3412}% $ v'$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3415}% $\displaystyle \Dinv{a \cos \phi} \overline{ v' \DP{u'}{\lambda} } + \Dinv{a} \overline{ v' \DP{v'}{\phi} } + \frac{\tan \phi}{a} \overline{ v'^2 } + \overline{ v' \DP{w'}{z^*} } + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' } = 0$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3416}% $\displaystyle \DP{\overline{v}}{t} + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi} + \overline{w} \DP{\overline{v}}{z^*} + f \overline{u} + \frac{\tan\phi}{a} (\overline{u})^2 + \Dinv{a} \DP{\overline{\Phi}}{\phi} - \overline{Y} \notag$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3417}% $\displaystyle \qquad = - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}} - \Dinv{a}\overline{{v'}\DP{v'}{\phi}} - \overline{w'\DP{v'}{z^*}} - \frac{\tan\phi}{a} \overline{u'^2} \notag$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3418}% $\displaystyle \qquad \qquad - \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}} - \Dinv{a} \overline{ v' \DP{v'}{\phi} } + \frac{\tan \phi}{a} \overline{ v'^2 } - \overline{ v' \DP{w'}{z^*} } - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3421}% $\displaystyle - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}} - \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3425}% $\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' v')}{\lambda}} = 0,$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3427}% $\displaystyle - \Dinv{a} \overline{ v' \DP{v'}{\phi} } - \Dinv{a} \overline{ v' \DP{v'}{\phi} } + \frac{\tan \phi}{a} \overline{ v'^2 }$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3431}% $\displaystyle - \Dinv{a \cos \phi} \DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3433}% $\displaystyle - \overline{w'\DP{v'}{z^*}} - \overline{ v' \DP{w'}{z^*} } - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3437}% $\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3439}% $\displaystyle \qquad = - \Dinv{a \cos \phi} \DP{}{\phi} \left( \cos \phi \overline{v'^2} \right) - \frac{\tan\phi}{a} \overline{u'^2} - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3441}% $ \theta'$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3444}% $\displaystyle \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}} + \Dinv{a} \overline{ \theta' \DP{v'}{\phi} } - \frac{\tan \phi}{a} \overline{ \theta' v' } + \overline{ \theta' \DP{w'}{z^*} } + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' } = 0$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3445}% $\displaystyle \DP{\overline{\theta}}{t} + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi} + \overline{w}\DP{\overline{\theta}}{z^*} - \overline{Q} \notag$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3446}% $\displaystyle \qquad = - \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}} - \Dinv{a}\overline{v'\DP{\theta'}{\phi}} - \overline{w'\DP{\theta'}{z^*}} \notag$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3447}% $\displaystyle \qquad \qquad - \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}} - \Dinv{a} \overline{ \theta' \DP{v'}{\phi} } + \frac{\tan \phi}{a} \overline{ \theta' v' } - \overline{ \theta' \DP{w'}{z^*} } - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3450}% $\displaystyle - \Dinv{a \cos \phi}\overline{u' \DP{\theta'}{\lambda}} - \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3454}% $\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' \theta')}{\lambda}} = 0,$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3456}% $\displaystyle - \Dinv{a} \overline{ v' \DP{\theta'}{\phi} } - \Dinv{a} \overline{ \theta' \DP{v'}{\phi} } + \frac{\tan \phi}{a} \overline{ \theta' v' }$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3460}% $\displaystyle - \Dinv{a \cos \phi} \DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3462}% $\displaystyle - \overline{w'\DP{\theta'}{z^*}} - \overline{ \theta' \DP{w'}{z^*} } - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3466}% $\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3467}% $\displaystyle \DP{\overline{\theta}}{t} + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi} + \overline{w}\DP{\overline{\theta}}{z^*} - \overline{Q} = - \Dinv{a \cos \phi} \DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right) - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \setcounter{equation}{11} \lthtmldisplayA{subequations3469}% \setcounter{equation}{10} \begin{subequations}\begin{align} \DP{\overline{u}}{t} & + \Dinv{a}\overline{v} \DP{\overline{u}}{\phi} + \overline{w} \DP{\overline{u}}{z^*} - f\overline{v} - \frac{\tan\phi}{a} \overline{u} \ \overline{v} - \overline{X} \\ & \qquad = - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi) - \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{w'u'}),\\ \DP{\overline{v}}{t} & + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi} + \overline{w} \DP{\overline{v}}{z^*} + f \overline{u} + \frac{\tan\phi}{a} (\overline{u})^2 + \Dinv{a} \DP{\overline{\Phi}}{\phi} - \overline{Y} \notag\\ & \qquad = - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi) - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'}) - \overline{u'^2}\frac{\tan\phi}{a}, \end{align} \begin{align} \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0, \end{align} \begin{align} \Dinv{a\cos\phi}& \DP{}{\phi}(\overline{v}\cos\phi) + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w}) = 0, \end{align} \begin{align} \DP{\overline{\theta}}{t} + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi} + \overline{w}\DP{\overline{\theta}}{z^*} - \overline{Q} = - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi) - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}). \end{align}\end{subequations}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} \stepcounter{section} {\newpage\clearpage \setcounter{equation}{12} \lthtmldisplayA{subequations3474}% \setcounter{equation}{11} \begin{subequations}\begin{align} \overline{v}^* & = \overline{v} - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \\ \overline{w}^* & = \overline{w} + \Dinv{a \cos\phi} \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \end{align}\end{subequations}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3477}% $\displaystyle {F_\phi}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3481}% $\displaystyle \rho_0 a \cos \phi \left(\DP{\overline{u}}{\overline{z^*}} \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}\right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3483}% $\displaystyle {F_z^*}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3487}% $\displaystyle \rho_0 a \cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right] \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}\right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3488}% $\displaystyle \Dinv{a \cos \phi} \DP{}{\phi}\left[ \left\{ \overline{v}^* + \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right\} \cos\phi \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3489}% $\displaystyle \qquad + \Dinv{\rho_0} \DP{}{z^*} \left[ \rho_0 \left\{ \overline{w}^* - \Dinv{a \cos\phi} \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right\} \right] = 0,$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3490}% $\displaystyle \Dinv{a \cos \phi} \DP{}{\phi} \left( \overline{v}^* \cos\phi \right) + \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{w}^* \right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3491}% $\displaystyle \qquad + \Dinv{a \cos \phi} \DP{}{\phi} \left\{ \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \cos\phi \right\} - \Dinv{\rho_0} \DP{}{z^*} \left\{ \rho_0 \Dinv{a \cos\phi} \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right\} = 0.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3492}% $\displaystyle \qquad \Dinv{a \cos \phi} \DP{}{\phi} \left\{ \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \cos\phi \right\} - \Dinv{\rho_0} \DP{}{z^*} \left\{ \rho_0 \Dinv{a \cos\phi} \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right\}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3493}% $\displaystyle = \Dinv{a \cos \phi} \left[ \DP{}{\phi} \left\{ \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \cos\phi \right\} - \Dinv{\rho_0} \DP{}{z^*} \left\{ \rho_0 \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right\} \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3494}% $\displaystyle = \Dinv{a \cos \phi} \left[ \Dinv{\rho_0} \DP{}{\phi} \left\{ \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \cos\phi \right) \right\} - \Dinv{\rho_0} \DP{}{z^*} \left\{ \DP{}{\phi} \left(\rho_0 \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right\} \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3495}% $\displaystyle = 0.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3498}% $\displaystyle \Dinv{a \cos \phi} \DP{}{\phi} \left( \overline{v}^* \cos\phi \right) + \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{w}^* \right) = 0.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3502}% $\displaystyle + \Dinv{a} \left[ \overline{v}^* + \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right] \DP{\overline{u}}{\phi} + \left[ \overline{w}^* - \Dinv{a \cos\phi} \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right] \DP{\overline{u}}{z^*}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3503}% $\displaystyle \qquad \qquad - f \left[ \overline{v}^* + \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right] - \frac{\tan \phi}{a} \overline{u} \left[ \overline{v}^* + \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right] - \overline{X}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3504}% $\displaystyle \qquad = - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi) - \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'}),$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3506}% $\displaystyle + \frac{\overline{v}^*}{a} \DP{\overline{u}}{\phi} + \overline{w}^* \DP{\overline{u}}{z^*} - f \overline{v}^* - \frac{\tan \phi}{a} \overline{u} \ \overline{v}^* - \overline{X}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3507}% $\displaystyle \qquad = - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi) + \Dinv{a \cos\phi} \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \DP{\overline{u}}{z^*}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3508}% $\displaystyle \qquad \qquad + f \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) - \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'})$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3509}% $\displaystyle \qquad \qquad - \Dinv{\rho_0 a} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \DP{\overline{u}}{\phi} + \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right),$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3511}% $\displaystyle + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi} \left( \overline{u} \cos \phi \right) + \overline{w}^* \DP{\overline{u}}{z^*} - f \overline{v}^* - \overline{X}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3512}% $\displaystyle \qquad = - \Dinv{\rho_0 a^2 \cos^2 \phi} \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi) + \Dinv{a \cos\phi} \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \DP{\overline{u}}{z^*}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3513}% $\displaystyle \qquad \qquad + \frac{1}{\rho_0 a \cos \phi} \DP{}{z^*} \left( f \rho_0 a \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) - \frac{1}{\rho_0 a \cos \phi} \DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3514}% $\displaystyle \qquad \qquad - \Dinv{\rho_0 a} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \DP{\overline{u}}{\phi} + \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3515}% $\displaystyle - \Dinv{\rho_0 a^2 \cos^2 \phi} \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi) + \Dinv{\rho_0 a^2 \cos^2 \phi} \rho_0 a \cos \phi \DP{\overline{u}}{z^*} \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3517}% $\displaystyle \qquad \qquad - \Dinv{\rho_0 a} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \DP{\overline{u}}{\phi} \right) + \Dinv{\rho_0 a} \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \DP{}{z^*} \left( \DP{\overline{u}}{\phi} \right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3518}% $\displaystyle \qquad \qquad + \frac{\tan \phi}{\rho_0 a} \DP{}{z^*} \left( \overline{u} \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) - \frac{\tan \phi}{\rho_0 a} \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \DP{}{z^*} \left( \overline{u} \right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3519}% $\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi} \left[ - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi) + \rho_0 a \cos \phi \DP{\overline{u}}{z^*} \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3520}% $\displaystyle \qquad + \Dinv{\rho_0 a} \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \DP{}{z^*} \left( \DP{\overline{u}}{\phi} \right) - \frac{\tan \phi}{\rho_0 a} \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \DP{\overline{u}}{z^*}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3521}% $\displaystyle \qquad + \frac{1}{\rho_0 a \cos \phi} \DP{}{z^*} \left[ \left( f \rho_0 a \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) - \rho_0 a \cos \phi \overline{w'u'} \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3522}% $\displaystyle \qquad - \Dinv{\rho_0 a} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \DP{\overline{u}}{\phi} \right) + \frac{\tan \phi}{\rho_0 a} \DP{}{z^*} \left( \overline{u} \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3524}% $\displaystyle \qquad + \Dinv{\rho_0 a^2 \cos^2 \phi} \left[ \rho_0 a \cos^2 \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \DP{}{z^*} \left( \DP{\overline{u}}{\phi} \right) - \rho_0 a \cos^2 \phi \tan \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \DP{\overline{u}}{z^*} \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3526}% $\displaystyle \qquad + \Dinv{\rho_0 a \cos \phi} \left[ - \cos \phi \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \DP{\overline{u}}{\phi} \right) + \cos \phi \tan \phi \DP{}{z^*} \left( \overline{u} \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3529}% $\displaystyle \qquad + \frac{1}{\rho_0 a \cos \phi} \DP{}{z^*} \left[ f \rho_0 a \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} - \rho_0 a \cos \phi \overline{w'u'} \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3530}% $\displaystyle \qquad + \Dinv{\rho_0 a \cos \phi} \DP{}{z^*} \left[ - \rho_0 \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \DP{\overline{u}}{\phi} + \sin \phi \overline{u} \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3531}% $\displaystyle \Dinv{\rho_0 a^2 \cos^2 \phi} \left[ - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi) + \rho_0 a \cos \phi \DP{\overline{u}}{z^*} \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3533}% $\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi} \left[ - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi) \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3534}% $\displaystyle \qquad + \Dinv{\rho_0 a^2 \cos^2 \phi} \left[ \rho_0 a \cos^2 \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \DP{}{\phi} \left( \DP{\overline{u}}{z^*} \right) + \DP{\overline{u}}{z^*} \DP{}{\phi} \left(\rho_0 a \cos^2 \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3535}% $\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi} \left[ - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi) \right] + \Dinv{\rho_0 a^2 \cos^2 \phi} \left[ \DP{}{\phi} \left(\rho_0 a \cos^2 \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \DP{\overline{u}}{z^*} \right) \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3536}% $\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi} \DP{}{\phi} \left[ - \rho_0 a \overline{v'u'} \cos^2 \phi + \rho_0 a \cos^2 \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \DP{\overline{u}}{z^*} \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3537}% $\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi} \DP{}{\phi} \left[ \rho_0 a \cos^2 \phi \left\{ \DP{\overline{u}}{z^*} \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} - \overline{v'u'} \right\} \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3538}% $\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi} \DP{}{\phi} \left( \cos \phi F^{*}_{\phi} \right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3539}% $\displaystyle \frac{1}{\rho_0 a \cos \phi} \DP{}{z^*} \left[ f \rho_0 a \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} - \rho_0 a \cos \phi \overline{w'u'} \right] + \Dinv{\rho_0 a \cos \phi} \DP{}{z^*} \left[ - \rho_0 \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \DP{\overline{u}}{\phi} + \sin \phi \overline{u} \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3540}% $\displaystyle = \frac{1}{\rho_0 a \cos \phi} \DP{}{z^*} \left[ \rho_0 a \cos \phi \left\{ f \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} - \overline{w'u'} - \frac{\overline{v'\theta'}} {a \overline{\DP{\theta}{z^*}}} \DP{\overline{u}}{\phi} + \sin \phi \overline{u} \frac{\overline{v'\theta'}} {a \cos \phi \overline{\DP{\theta}{z^*}}} \right\} \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3541}% $\displaystyle = \frac{1}{\rho_0 a \cos \phi} \DP{}{z^*} \left[ \rho_0 a \cos \phi \left\{ f \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} - \left( \cos \phi \DP{\overline{u}}{\phi} - \sin \phi \overline{u} \right) \frac{\overline{v'\theta'}} {a \cos \phi \overline{\DP{\theta}{z^*}}} - \overline{w'u'} \right\} \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3543}% $\displaystyle = \frac{1}{\rho_0 a \cos \phi} \DP{}{z^*} \left[ \rho_0 a \cos \phi \left\{ \left( f - \frac{\DP{(\overline{u} \cos \phi)}{\phi}} {a \cos \phi} \right) \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} - \overline{w'u'} \right\} \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3544}% $\displaystyle = \frac{1}{\rho_0 a \cos \phi} \DP{F^{*}_{z}}{z^*}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3545}% $\displaystyle \DP{\overline{u}}{t} + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi} \left( \overline{u} \cos \phi \right) + \overline{w}^* \DP{\overline{u}}{z^*} - f \overline{v}^* - \overline{X} = \Dinv{\rho_0 a^2 \cos^2 \phi} \DP{}{\phi} \left( \cos \phi F^{*}_{\phi} \right) + \frac{1}{\rho_0 a \cos \phi} \DP{F^{*}_{z}}{z^*}, \nonumber$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3546}% $\displaystyle \DP{\overline{u}}{t} + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi} \left( \overline{u} \cos \phi \right) + \overline{w}^* \DP{\overline{u}}{z^*} - f \overline{v}^* - \overline{X} = \Dinv{\rho_0 a \cos \phi} \Ddiv{\Dvect{F}}.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3547}% $\displaystyle \Ddiv{\Dvect{F}} = \Dinv{a \cos \phi } \DP{(\cos \phi F_{\phi})}{\phi} + \DP{F_{z^{*}}}{z^*}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3548}% $\displaystyle \DP{\overline{\theta}}{t} + \frac{1}{a} \left[ \overline{v}^* + \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right] \DP{\overline{\theta}}{\phi} + \left[ \overline{w}^* - \Dinv{a \cos\phi} \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right] \DP{\overline{\theta}}{z^*} - \overline{Q}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3549}% $\displaystyle \qquad = - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi) - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}),$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3550}% $\displaystyle \DP{\overline{\theta}}{t} + \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi} + \overline{w}^* \DP{\overline{\theta}}{z^*} - \overline{Q}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3551}% $\displaystyle \qquad = - \Dinv{\rho_0 a} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \DP{\overline{\theta}}{\phi} + \Dinv{a \cos\phi} \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \DP{\overline{\theta}}{z^*}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3552}% $\displaystyle \qquad \qquad - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi) - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3553}% $\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {a \overline{\DP{\theta}{z^*}}} \right) \DP{\overline{\theta}}{\phi} + \Dinv{a \cos\phi} \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \DP{\overline{\theta}}{z^*}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3554}% $\displaystyle \qquad - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi) - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3556}% $\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {a \overline{\DP{\theta}{z^*}}} \DP{\overline{\theta}}{\phi} \right) + \frac{\overline{v'\theta'}} {a \overline{\DP{\theta}{z^*}}} \DP{}{z^*}\DP{\overline{\theta}}{\phi}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3557}% $\displaystyle \qquad + \Dinv{a \cos\phi} \left[ \DP{}{\phi} \left( \cos \phi \overline{v'\theta'} \right) \frac{1}{\overline{\DP{\theta}{z^*}}} + \cos \phi \overline{v'\theta'} \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1} \right] \DP{\overline{\theta}}{z^*}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3560}% $\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {a \overline{\DP{\theta}{z^*}}} \DP{\overline{\theta}}{\phi} \right) + \frac{\overline{v'\theta'}} {a \overline{\DP{\theta}{z^*}}} \DP{}{z^*}\DP{\overline{\theta}}{\phi} + \Dinv{a} \overline{v'\theta'} \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1} \DP{\overline{\theta}}{z^*} - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3562}% $\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left[ \rho_0 \frac{\overline{v'\theta'}} {a \overline{\DP{\theta}{z^*}}} \DP{\overline{\theta}}{\phi} + \rho_0\overline{w'\theta'} \right] + \frac{\overline{v'\theta'}}{a} \left[ \frac{1} {\overline{\DP{\theta}{z^*}}} \DP{}{z^*}\DP{\overline{\theta}}{\phi} + \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1} \DP{\overline{\theta}}{z^*} \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3564}% $\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left[ \rho_0 \left( \frac{\overline{v'\theta'}} {a \overline{\DP{\theta}{z^*}}} \DP{\overline{\theta}}{\phi} + \overline{w'\theta'} \right) \right] + \frac{\overline{v'\theta'}}{a} \DP{}{\phi} \left( \frac{ \DP{\overline{\theta}}{z^*} } { \overline{\DP{\theta}{z^*}} } \right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3566}% $\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left[ \rho_0 \left( \frac{\overline{v'\theta'}} {a \overline{\DP{\theta}{z^*}}} \DP{\overline{\theta}}{\phi} + \overline{w'\theta'} \right) \right].$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3567}% $\displaystyle \DP{\overline{\theta}}{t} + \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi} + \overline{w}^* \DP{\overline{\theta}}{z^*} - \overline{Q} = - \Dinv{\rho_0} \DP{}{z^*} \left[ \rho_0 \left( \frac{\overline{v'\theta'}} {a \overline{\DP{\theta}{z^*}}} \DP{\overline{\theta}}{\phi} + \overline{w'\theta'} \right) \right].$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3569}% $ v$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3570}% $\displaystyle \DP{}{t} \left[ \overline{v}^* + \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right] + \frac{1}{a} \left[ \overline{v}^* + \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right] \DP{}{\phi} \left[ \overline{v}^* + \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3571}% $\displaystyle \qquad \qquad + \left[ \overline{w}^* - \Dinv{a \cos\phi} \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right] \DP{}{z^*} \left[ \overline{v}^* + \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3572}% $\displaystyle \qquad \qquad + f \overline{u} + \frac{\tan\phi}{a} (\overline{u})^2 + \Dinv{a} \DP{\overline{\Phi}}{\phi} - \overline{Y}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3573}% $\displaystyle \qquad = - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi) - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'}) - \overline{u'^2}\frac{\tan\phi}{a},$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3574}% $\displaystyle f \overline{u} + \frac{\tan\phi}{a} (\overline{u})^2 + \Dinv{a} \DP{\overline{\Phi}}{\phi}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3575}% $\displaystyle \qquad = - \DP{}{t} \left[ \overline{v}^* + \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right] - \frac{1}{a} \left[ \overline{v}^* + \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right] \DP{}{\phi} \left[ \overline{v}^* + \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3576}% $\displaystyle \qquad \qquad - \left[ \overline{w}^* - \Dinv{a \cos\phi} \DP{}{\phi} \left( \cos \phi \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right] \DP{}{z^*} \left[ \overline{v}^* + \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \frac{\overline{v'\theta'}} {\overline{\DP{\theta}{z^*}}} \right) \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3577}% $\displaystyle \qquad \qquad - \Dinv{a\cos\phi} \DP{}{\phi}(\overline{v'^2} \cos \phi) - \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{v' w'}) - \overline{u'^2} \frac{\tan\phi}{a} + \overline{Y}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline3579}% $ G$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay3582}% $\displaystyle \overline{u} \left( f + \frac{\tan\phi}{a} \overline{u} \right) + \Dinv{a} \DP{\overline{\Phi}}{\phi} = G.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \setcounter{equation}{17} \lthtmldisplayA{subequations3584}% \setcounter{equation}{16} \begin{subequations}\begin{align}& \DP{\overline{u}}{t} + \overline{v}^* \left[ \Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f \right] + \overline{w}^*\DP{\overline{u}}{z^*} - \overline{X} = \Dinv{\rho_0 a \cos\phi}\Ddiv\Dvect{F}, \\& \overline{u} \left( f + \overline{u}\frac{\tan\phi}{a} \right) + \Dinv{a}\DP{\overline{\Phi}}{\phi} = G. \end{align} \begin{align} \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0. \end{align} \begin{align} \Dinv{a\cos\phi}&\left[ \DP{}{\phi}(\overline{v}^*\cos\phi)\right] + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w}^*) = 0. \end{align} \begin{align} \DP{\overline{\theta}}{t} + \frac{\overline{v}^*}{a}\DP{\overline{\theta}}{\phi} + \overline{w}^*\DP{\overline{\theta}}{z^*} - \overline{Q} = - \Dinv{\rho_0}\DP{}{z^*} \left[\rho_0 \left( \overline{v'\theta'}\frac{\DP{\overline{\theta}}{\phi}} {a\DP{\overline{\theta}}{z^*}} + \overline{w'\theta'} \right) \right]. \end{align}\end{subequations}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} \end{document}