# Google Cloud Bigquery extract file input plugin for Embulk embulk file input plugin. - embulk : http://www.embulk.org/docs/ - embulk plugins : http://www.embulk.org/plugins/ Read files stored in Google Cloud Storage that extracted from Google Cloud Bigquery's table or query result. ## Overview * **Plugin type**: file input * **Resume supported**: no * **Cleanup supported**: yes ### Detail Read files stored in Google Cloud Storage, that exported from Google Cloud Bigquery's table or query result. Maybe solution for very big data in bigquery. If you set **table** config without **query** config, then just extract table to Google Cloud Storage. If you set **query** config, then query result save to temp table and then extracted that temp table to Google Cloud Storage uri. see : https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.extract ## Usage ### Install plugin ```bash embulk gem install embulk-input-bigquery_extract_files ``` * rubygem url : https://rubygems.org/profiles/jo8937 ## Configuration - **project**: Google Cloud Platform (gcp) project id (string, required) - **json_keyfile**: gcp service account's private key with json (string, required) - **gcs_uri**: bigquery result saved uri. bucket and path names parsed from this uri. (string, required) - **temp_local_path**: extract files download directory in local machine (string, required) - **dataset**: target datasource dataset (string, default: `null`) - **table**: target datasource table. either query or table are required. (string, default: `null`) - **query**: target datasource query. either query or table are required. (string, default: `null`) - **temp_dataset**: if you use **query** param, query result saved here (string, default: `null`) - **temp_table**: if you use **query** param, query result saved here. if not set, plugin generate temp name (string, default: `null`) - **use_legacy_sql**: if you use **query** param, see : https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.useLegacySql (string, default: `false`) - **cache**: if you use **query** param, see : https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.useQueryCache (string, default: `true`) - **create_disposition**: if you use **query** param, see : https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.createDisposition (string, default: `CREATE_IF_NEEDED`) - **write_disposition**: if you use **query** param, see : https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.writeDisposition (string, default: `WRITE_APPEND`) - **file_format**: Table extract file format. see : https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.extract.destinationFormat (string, default: `CSV`) - **compression**: Table extract file compression setting. see : https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.extract.compression (string, default: `GZIP`) - **temp_schema_file_path**: bigquery result schema file for parser. (Optional) (string, default: `null`) - **bigquery_job_wait_second**: bigquery job waiting second. (Optional) (string, default: `600`) - **cleanup_gcs_before_executing**: delete all file in gcs temp path before process start (Optional) (string, default: `true`) - **cleanup_gcs_files**: delete all file in gcs temp path after process end (Optional) (string, default: `false`) - **cleanup_temp_table**: delete query result table after process end (Optional) (string, default: `true`) - **cleanup_local_temp_files**: delete all file in local temp dir (Optional) (string, default: `true`) - **decoders**: embulk java-file-input plugin's default attribute. see : http://www.embulk.org/docs/built-in.html#gzip-decoder-plugin - **parser**: embulk java-file-input plugin's default .attribute see : http://www.embulk.org/docs/built-in.html#csv-parser-plugin ## Example ```yaml in: type: bigquery_extract_files project: googlecloudplatformproject json_keyfile: gcp-service-account-private-key.json dataset: target_dataset #table: target_table query: 'select a,b,c from target_table' gcs_uri: gs://bucket/subdir temp_dataset: temp_dataset temp_local_path: C:\Temp file_format: 'NEWLINE_DELIMITED_JSON' compression: 'GZIP' decoders: - {type: gzip} parser: type: json out: type: stdout ``` ### Advenced Example #### bigquery to mysql with auto-schema I have to batch bigquery table to mysql every day for my job. then, I wan'to get auto-schema for this file input plugin. - see also - https://github.com/jo8937/embulk-parser-csv_with_schema_file - https://github.com/embulk/embulk-output-jdbc/tree/master/embulk-output-mysql this is my best practive for bigquery to mysql batch config. ```yaml in: type: bigquery_extract_files project: my-google-project json_keyfile: /tmp/embulk/google_service_account.json query: 'select * from dataset.t_nitocris' temp_dataset: temp_dataset gcs_uri: gs://bucket/embulktemp/t_nitocris_* temp_local_path: /tmp/embulk/data file_format: 'CSV' compression: 'GZIP' temp_schema_file_path: /tmp/embulk/schema/csv_schema_nitocris.json decoders: - {type: gzip} parser: type: csv_with_schema_file default_timestamp_format: '%Y-%m-%d %H:%M:%S %z' schema_path: /tmp/embulk/schema/csv_schema_nitocris.json out: type: mysql host: host user: user password: password port: 3306 database: MY_DATABASE table: options: {connectTimeout: 0, waitTimeout: 0, enableQueryTimeouts: false, autoReconnect: true} mode: insert_direct retry_limit: 60 retry_wait: 3000 batch_size: 4096000 ``` * bigquery's TIMESTAMP value format is not exactly one format in one CSV export. you can define optional 'columns' param in 'csv_with_schema_file' parser for another format like below. ```yml ... parser: type: csv_with_schema_file default_timestamp_format: '%Y-%m-%d %H:%M:%S %z' schema_path: /tmp/embulk/schema/csv_schema_nitocris.json columns: - {name: Date2, type: timestamp, format: '%Y-%m-%d %H:%M:%S.%N %z'} ``` ## Build ``` $ ./gradlew gem # -t to watch change of files and rebuild continuously ``` # Another choice This plugin useful for file-input type. but maybe so complicated to use. For portable use, see embulk-input-bigquery : https://github.com/medjed/embulk-input-bigquery