// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_ARM) #include "bootstrapper.h" #include "code-stubs.h" #include "regexp-macro-assembler.h" #include "stub-cache.h" namespace v8 { namespace internal { void KeyedLoadFastElementStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { r1, r0 }; descriptor->register_param_count_ = 2; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure); } void TransitionElementsKindStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { r0, r1 }; descriptor->register_param_count_ = 2; descriptor->register_params_ = registers; Address entry = Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry; descriptor->deoptimization_handler_ = FUNCTION_ADDR(entry); } #define __ ACCESS_MASM(masm) static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cond); static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* lhs_not_nan, Label* slow, bool strict); static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cond); static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs); // Check if the operand is a heap number. static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand, Register scratch1, Register scratch2, Label* not_a_heap_number) { __ ldr(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset)); __ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex); __ cmp(scratch1, scratch2); __ b(ne, not_a_heap_number); } void ToNumberStub::Generate(MacroAssembler* masm) { // The ToNumber stub takes one argument in eax. Label check_heap_number, call_builtin; __ JumpIfNotSmi(r0, &check_heap_number); __ Ret(); __ bind(&check_heap_number); EmitCheckForHeapNumber(masm, r0, r1, ip, &call_builtin); __ Ret(); __ bind(&call_builtin); __ push(r0); __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION); } void FastNewClosureStub::Generate(MacroAssembler* masm) { // Create a new closure from the given function info in new // space. Set the context to the current context in cp. Counters* counters = masm->isolate()->counters(); Label gc; // Pop the function info from the stack. __ pop(r3); // Attempt to allocate new JSFunction in new space. __ AllocateInNewSpace(JSFunction::kSize, r0, r1, r2, &gc, TAG_OBJECT); __ IncrementCounter(counters->fast_new_closure_total(), 1, r6, r7); int map_index = (language_mode_ == CLASSIC_MODE) ? Context::FUNCTION_MAP_INDEX : Context::STRICT_MODE_FUNCTION_MAP_INDEX; // Compute the function map in the current native context and set that // as the map of the allocated object. __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ ldr(r2, FieldMemOperand(r2, GlobalObject::kNativeContextOffset)); __ ldr(r5, MemOperand(r2, Context::SlotOffset(map_index))); __ str(r5, FieldMemOperand(r0, HeapObject::kMapOffset)); // Initialize the rest of the function. We don't have to update the // write barrier because the allocated object is in new space. __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex); __ LoadRoot(r5, Heap::kTheHoleValueRootIndex); __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset)); __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset)); __ str(r5, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset)); __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset)); __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset)); __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset)); // Initialize the code pointer in the function to be the one // found in the shared function info object. // But first check if there is an optimized version for our context. Label check_optimized; Label install_unoptimized; if (FLAG_cache_optimized_code) { __ ldr(r1, FieldMemOperand(r3, SharedFunctionInfo::kOptimizedCodeMapOffset)); __ tst(r1, r1); __ b(ne, &check_optimized); } __ bind(&install_unoptimized); __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset)); __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset)); __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset)); // Return result. The argument function info has been popped already. __ Ret(); __ bind(&check_optimized); __ IncrementCounter(counters->fast_new_closure_try_optimized(), 1, r6, r7); // r2 holds native context, r1 points to fixed array of 3-element entries // (native context, optimized code, literals). // The optimized code map must never be empty, so check the first elements. Label install_optimized; // Speculatively move code object into r4. __ ldr(r4, FieldMemOperand(r1, FixedArray::kHeaderSize + kPointerSize)); __ ldr(r5, FieldMemOperand(r1, FixedArray::kHeaderSize)); __ cmp(r2, r5); __ b(eq, &install_optimized); // Iterate through the rest of map backwards. r4 holds an index as a Smi. Label loop; __ ldr(r4, FieldMemOperand(r1, FixedArray::kLengthOffset)); __ bind(&loop); // Do not double check first entry. __ cmp(r4, Operand(Smi::FromInt(SharedFunctionInfo::kEntryLength))); __ b(eq, &install_unoptimized); __ sub(r4, r4, Operand( Smi::FromInt(SharedFunctionInfo::kEntryLength))); // Skip an entry. __ add(r5, r1, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ add(r5, r5, Operand(r4, LSL, kPointerSizeLog2 - kSmiTagSize)); __ ldr(r5, MemOperand(r5)); __ cmp(r2, r5); __ b(ne, &loop); // Hit: fetch the optimized code. __ add(r5, r1, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ add(r5, r5, Operand(r4, LSL, kPointerSizeLog2 - kSmiTagSize)); __ add(r5, r5, Operand(kPointerSize)); __ ldr(r4, MemOperand(r5)); __ bind(&install_optimized); __ IncrementCounter(counters->fast_new_closure_install_optimized(), 1, r6, r7); // TODO(fschneider): Idea: store proper code pointers in the map and either // unmangle them on marking or do nothing as the whole map is discarded on // major GC anyway. __ add(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); __ str(r4, FieldMemOperand(r0, JSFunction::kCodeEntryOffset)); // Now link a function into a list of optimized functions. __ ldr(r4, ContextOperand(r2, Context::OPTIMIZED_FUNCTIONS_LIST)); __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset)); // No need for write barrier as JSFunction (eax) is in the new space. __ str(r0, ContextOperand(r2, Context::OPTIMIZED_FUNCTIONS_LIST)); // Store JSFunction (eax) into edx before issuing write barrier as // it clobbers all the registers passed. __ mov(r4, r0); __ RecordWriteContextSlot( r2, Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST), r4, r1, kLRHasNotBeenSaved, kDontSaveFPRegs); // Return result. The argument function info has been popped already. __ Ret(); // Create a new closure through the slower runtime call. __ bind(&gc); __ LoadRoot(r4, Heap::kFalseValueRootIndex); __ Push(cp, r3, r4); __ TailCallRuntime(Runtime::kNewClosure, 3, 1); } void FastNewContextStub::Generate(MacroAssembler* masm) { // Try to allocate the context in new space. Label gc; int length = slots_ + Context::MIN_CONTEXT_SLOTS; // Attempt to allocate the context in new space. __ AllocateInNewSpace(FixedArray::SizeFor(length), r0, r1, r2, &gc, TAG_OBJECT); // Load the function from the stack. __ ldr(r3, MemOperand(sp, 0)); // Set up the object header. __ LoadRoot(r1, Heap::kFunctionContextMapRootIndex); __ mov(r2, Operand(Smi::FromInt(length))); __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset)); __ str(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); // Set up the fixed slots, copy the global object from the previous context. __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ mov(r1, Operand(Smi::FromInt(0))); __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX))); __ str(cp, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX))); __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX))); __ str(r2, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); // Initialize the rest of the slots to undefined. __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { __ str(r1, MemOperand(r0, Context::SlotOffset(i))); } // Remove the on-stack argument and return. __ mov(cp, r0); __ pop(); __ Ret(); // Need to collect. Call into runtime system. __ bind(&gc); __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1); } void FastNewBlockContextStub::Generate(MacroAssembler* masm) { // Stack layout on entry: // // [sp]: function. // [sp + kPointerSize]: serialized scope info // Try to allocate the context in new space. Label gc; int length = slots_ + Context::MIN_CONTEXT_SLOTS; __ AllocateInNewSpace(FixedArray::SizeFor(length), r0, r1, r2, &gc, TAG_OBJECT); // Load the function from the stack. __ ldr(r3, MemOperand(sp, 0)); // Load the serialized scope info from the stack. __ ldr(r1, MemOperand(sp, 1 * kPointerSize)); // Set up the object header. __ LoadRoot(r2, Heap::kBlockContextMapRootIndex); __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); __ mov(r2, Operand(Smi::FromInt(length))); __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset)); // If this block context is nested in the native context we get a smi // sentinel instead of a function. The block context should get the // canonical empty function of the native context as its closure which // we still have to look up. Label after_sentinel; __ JumpIfNotSmi(r3, &after_sentinel); if (FLAG_debug_code) { const char* message = "Expected 0 as a Smi sentinel"; __ cmp(r3, Operand::Zero()); __ Assert(eq, message); } __ ldr(r3, GlobalObjectOperand()); __ ldr(r3, FieldMemOperand(r3, GlobalObject::kNativeContextOffset)); __ ldr(r3, ContextOperand(r3, Context::CLOSURE_INDEX)); __ bind(&after_sentinel); // Set up the fixed slots, copy the global object from the previous context. __ ldr(r2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX)); __ str(r3, ContextOperand(r0, Context::CLOSURE_INDEX)); __ str(cp, ContextOperand(r0, Context::PREVIOUS_INDEX)); __ str(r1, ContextOperand(r0, Context::EXTENSION_INDEX)); __ str(r2, ContextOperand(r0, Context::GLOBAL_OBJECT_INDEX)); // Initialize the rest of the slots to the hole value. __ LoadRoot(r1, Heap::kTheHoleValueRootIndex); for (int i = 0; i < slots_; i++) { __ str(r1, ContextOperand(r0, i + Context::MIN_CONTEXT_SLOTS)); } // Remove the on-stack argument and return. __ mov(cp, r0); __ add(sp, sp, Operand(2 * kPointerSize)); __ Ret(); // Need to collect. Call into runtime system. __ bind(&gc); __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1); } static void GenerateFastCloneShallowArrayCommon( MacroAssembler* masm, int length, FastCloneShallowArrayStub::Mode mode, AllocationSiteMode allocation_site_mode, Label* fail) { // Registers on entry: // // r3: boilerplate literal array. ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS); // All sizes here are multiples of kPointerSize. int elements_size = 0; if (length > 0) { elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS ? FixedDoubleArray::SizeFor(length) : FixedArray::SizeFor(length); } int size = JSArray::kSize; int allocation_info_start = size; if (allocation_site_mode == TRACK_ALLOCATION_SITE) { size += AllocationSiteInfo::kSize; } size += elements_size; // Allocate both the JS array and the elements array in one big // allocation. This avoids multiple limit checks. AllocationFlags flags = TAG_OBJECT; if (mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS) { flags = static_cast(DOUBLE_ALIGNMENT | flags); } __ AllocateInNewSpace(size, r0, r1, r2, fail, flags); if (allocation_site_mode == TRACK_ALLOCATION_SITE) { __ mov(r2, Operand(Handle(masm->isolate()->heap()-> allocation_site_info_map()))); __ str(r2, FieldMemOperand(r0, allocation_info_start)); __ str(r3, FieldMemOperand(r0, allocation_info_start + kPointerSize)); } // Copy the JS array part. for (int i = 0; i < JSArray::kSize; i += kPointerSize) { if ((i != JSArray::kElementsOffset) || (length == 0)) { __ ldr(r1, FieldMemOperand(r3, i)); __ str(r1, FieldMemOperand(r0, i)); } } if (length > 0) { // Get hold of the elements array of the boilerplate and setup the // elements pointer in the resulting object. __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset)); if (allocation_site_mode == TRACK_ALLOCATION_SITE) { __ add(r2, r0, Operand(JSArray::kSize + AllocationSiteInfo::kSize)); } else { __ add(r2, r0, Operand(JSArray::kSize)); } __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset)); // Copy the elements array. ASSERT((elements_size % kPointerSize) == 0); __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize); } } void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { // Stack layout on entry: // // [sp]: constant elements. // [sp + kPointerSize]: literal index. // [sp + (2 * kPointerSize)]: literals array. // Load boilerplate object into r3 and check if we need to create a // boilerplate. Label slow_case; __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); __ CompareRoot(r3, Heap::kUndefinedValueRootIndex); __ b(eq, &slow_case); FastCloneShallowArrayStub::Mode mode = mode_; if (mode == CLONE_ANY_ELEMENTS) { Label double_elements, check_fast_elements; __ ldr(r0, FieldMemOperand(r3, JSArray::kElementsOffset)); __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); __ CompareRoot(r0, Heap::kFixedCOWArrayMapRootIndex); __ b(ne, &check_fast_elements); GenerateFastCloneShallowArrayCommon(masm, 0, COPY_ON_WRITE_ELEMENTS, allocation_site_mode_, &slow_case); // Return and remove the on-stack parameters. __ add(sp, sp, Operand(3 * kPointerSize)); __ Ret(); __ bind(&check_fast_elements); __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex); __ b(ne, &double_elements); GenerateFastCloneShallowArrayCommon(masm, length_, CLONE_ELEMENTS, allocation_site_mode_, &slow_case); // Return and remove the on-stack parameters. __ add(sp, sp, Operand(3 * kPointerSize)); __ Ret(); __ bind(&double_elements); mode = CLONE_DOUBLE_ELEMENTS; // Fall through to generate the code to handle double elements. } if (FLAG_debug_code) { const char* message; Heap::RootListIndex expected_map_index; if (mode == CLONE_ELEMENTS) { message = "Expected (writable) fixed array"; expected_map_index = Heap::kFixedArrayMapRootIndex; } else if (mode == CLONE_DOUBLE_ELEMENTS) { message = "Expected (writable) fixed double array"; expected_map_index = Heap::kFixedDoubleArrayMapRootIndex; } else { ASSERT(mode == COPY_ON_WRITE_ELEMENTS); message = "Expected copy-on-write fixed array"; expected_map_index = Heap::kFixedCOWArrayMapRootIndex; } __ push(r3); __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset)); __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset)); __ CompareRoot(r3, expected_map_index); __ Assert(eq, message); __ pop(r3); } GenerateFastCloneShallowArrayCommon(masm, length_, mode, allocation_site_mode_, &slow_case); // Return and remove the on-stack parameters. __ add(sp, sp, Operand(3 * kPointerSize)); __ Ret(); __ bind(&slow_case); __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); } void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) { // Stack layout on entry: // // [sp]: object literal flags. // [sp + kPointerSize]: constant properties. // [sp + (2 * kPointerSize)]: literal index. // [sp + (3 * kPointerSize)]: literals array. // Load boilerplate object into r3 and check if we need to create a // boilerplate. Label slow_case; __ ldr(r3, MemOperand(sp, 3 * kPointerSize)); __ ldr(r0, MemOperand(sp, 2 * kPointerSize)); __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); __ CompareRoot(r3, Heap::kUndefinedValueRootIndex); __ b(eq, &slow_case); // Check that the boilerplate contains only fast properties and we can // statically determine the instance size. int size = JSObject::kHeaderSize + length_ * kPointerSize; __ ldr(r0, FieldMemOperand(r3, HeapObject::kMapOffset)); __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceSizeOffset)); __ cmp(r0, Operand(size >> kPointerSizeLog2)); __ b(ne, &slow_case); // Allocate the JS object and copy header together with all in-object // properties from the boilerplate. __ AllocateInNewSpace(size, r0, r1, r2, &slow_case, TAG_OBJECT); for (int i = 0; i < size; i += kPointerSize) { __ ldr(r1, FieldMemOperand(r3, i)); __ str(r1, FieldMemOperand(r0, i)); } // Return and remove the on-stack parameters. __ add(sp, sp, Operand(4 * kPointerSize)); __ Ret(); __ bind(&slow_case); __ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1); } // Takes a Smi and converts to an IEEE 64 bit floating point value in two // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a // scratch register. Destroys the source register. No GC occurs during this // stub so you don't have to set up the frame. class ConvertToDoubleStub : public PlatformCodeStub { public: ConvertToDoubleStub(Register result_reg_1, Register result_reg_2, Register source_reg, Register scratch_reg) : result1_(result_reg_1), result2_(result_reg_2), source_(source_reg), zeros_(scratch_reg) { } private: Register result1_; Register result2_; Register source_; Register zeros_; // Minor key encoding in 16 bits. class ModeBits: public BitField {}; class OpBits: public BitField {}; Major MajorKey() { return ConvertToDouble; } int MinorKey() { // Encode the parameters in a unique 16 bit value. return result1_.code() + (result2_.code() << 4) + (source_.code() << 8) + (zeros_.code() << 12); } void Generate(MacroAssembler* masm); }; void ConvertToDoubleStub::Generate(MacroAssembler* masm) { Register exponent = result1_; Register mantissa = result2_; Label not_special; // Convert from Smi to integer. __ mov(source_, Operand(source_, ASR, kSmiTagSize)); // Move sign bit from source to destination. This works because the sign bit // in the exponent word of the double has the same position and polarity as // the 2's complement sign bit in a Smi. STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC); // Subtract from 0 if source was negative. __ rsb(source_, source_, Operand::Zero(), LeaveCC, ne); // We have -1, 0 or 1, which we treat specially. Register source_ contains // absolute value: it is either equal to 1 (special case of -1 and 1), // greater than 1 (not a special case) or less than 1 (special case of 0). __ cmp(source_, Operand(1)); __ b(gt, ¬_special); // For 1 or -1 we need to or in the 0 exponent (biased to 1023). const uint32_t exponent_word_for_1 = HeapNumber::kExponentBias << HeapNumber::kExponentShift; __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq); // 1, 0 and -1 all have 0 for the second word. __ mov(mantissa, Operand::Zero()); __ Ret(); __ bind(¬_special); // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5. // Gets the wrong answer for 0, but we already checked for that case above. __ CountLeadingZeros(zeros_, source_, mantissa); // Compute exponent and or it into the exponent register. // We use mantissa as a scratch register here. Use a fudge factor to // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts // that fit in the ARM's constant field. int fudge = 0x400; __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge)); __ add(mantissa, mantissa, Operand(fudge)); __ orr(exponent, exponent, Operand(mantissa, LSL, HeapNumber::kExponentShift)); // Shift up the source chopping the top bit off. __ add(zeros_, zeros_, Operand(1)); // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0. __ mov(source_, Operand(source_, LSL, zeros_)); // Compute lower part of fraction (last 12 bits). __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord)); // And the top (top 20 bits). __ orr(exponent, exponent, Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord)); __ Ret(); } void FloatingPointHelper::LoadSmis(MacroAssembler* masm, FloatingPointHelper::Destination destination, Register scratch1, Register scratch2) { if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); __ mov(scratch1, Operand(r0, ASR, kSmiTagSize)); __ vmov(d7.high(), scratch1); __ vcvt_f64_s32(d7, d7.high()); __ mov(scratch1, Operand(r1, ASR, kSmiTagSize)); __ vmov(d6.high(), scratch1); __ vcvt_f64_s32(d6, d6.high()); if (destination == kCoreRegisters) { __ vmov(r2, r3, d7); __ vmov(r0, r1, d6); } } else { ASSERT(destination == kCoreRegisters); // Write Smi from r0 to r3 and r2 in double format. __ mov(scratch1, Operand(r0)); ConvertToDoubleStub stub1(r3, r2, scratch1, scratch2); __ push(lr); __ Call(stub1.GetCode()); // Write Smi from r1 to r1 and r0 in double format. __ mov(scratch1, Operand(r1)); ConvertToDoubleStub stub2(r1, r0, scratch1, scratch2); __ Call(stub2.GetCode()); __ pop(lr); } } void FloatingPointHelper::LoadNumber(MacroAssembler* masm, Destination destination, Register object, DwVfpRegister dst, Register dst1, Register dst2, Register heap_number_map, Register scratch1, Register scratch2, Label* not_number) { __ AssertRootValue(heap_number_map, Heap::kHeapNumberMapRootIndex, "HeapNumberMap register clobbered."); Label is_smi, done; // Smi-check __ UntagAndJumpIfSmi(scratch1, object, &is_smi); // Heap number check __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number); // Handle loading a double from a heap number. if (CpuFeatures::IsSupported(VFP2) && destination == kVFPRegisters) { CpuFeatures::Scope scope(VFP2); // Load the double from tagged HeapNumber to double register. __ sub(scratch1, object, Operand(kHeapObjectTag)); __ vldr(dst, scratch1, HeapNumber::kValueOffset); } else { ASSERT(destination == kCoreRegisters); // Load the double from heap number to dst1 and dst2 in double format. __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset)); } __ jmp(&done); // Handle loading a double from a smi. __ bind(&is_smi); if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); // Convert smi to double using VFP instructions. __ vmov(dst.high(), scratch1); __ vcvt_f64_s32(dst, dst.high()); if (destination == kCoreRegisters) { // Load the converted smi to dst1 and dst2 in double format. __ vmov(dst1, dst2, dst); } } else { ASSERT(destination == kCoreRegisters); // Write smi to dst1 and dst2 double format. __ mov(scratch1, Operand(object)); ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2); __ push(lr); __ Call(stub.GetCode()); __ pop(lr); } __ bind(&done); } void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm, Register object, Register dst, Register heap_number_map, Register scratch1, Register scratch2, Register scratch3, DwVfpRegister double_scratch, Label* not_number) { __ AssertRootValue(heap_number_map, Heap::kHeapNumberMapRootIndex, "HeapNumberMap register clobbered."); Label done; Label not_in_int32_range; __ UntagAndJumpIfSmi(dst, object, &done); __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset)); __ cmp(scratch1, heap_number_map); __ b(ne, not_number); __ ConvertToInt32(object, dst, scratch1, scratch2, double_scratch, ¬_in_int32_range); __ jmp(&done); __ bind(¬_in_int32_range); __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset)); __ EmitOutOfInt32RangeTruncate(dst, scratch1, scratch2, scratch3); __ bind(&done); } void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm, Register int_scratch, Destination destination, DwVfpRegister double_dst, Register dst_mantissa, Register dst_exponent, Register scratch2, SwVfpRegister single_scratch) { ASSERT(!int_scratch.is(scratch2)); ASSERT(!int_scratch.is(dst_mantissa)); ASSERT(!int_scratch.is(dst_exponent)); Label done; if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); __ vmov(single_scratch, int_scratch); __ vcvt_f64_s32(double_dst, single_scratch); if (destination == kCoreRegisters) { __ vmov(dst_mantissa, dst_exponent, double_dst); } } else { Label fewer_than_20_useful_bits; // Expected output: // | dst_exponent | dst_mantissa | // | s | exp | mantissa | // Check for zero. __ cmp(int_scratch, Operand::Zero()); __ mov(dst_exponent, int_scratch); __ mov(dst_mantissa, int_scratch); __ b(eq, &done); // Preload the sign of the value. __ and_(dst_exponent, int_scratch, Operand(HeapNumber::kSignMask), SetCC); // Get the absolute value of the object (as an unsigned integer). __ rsb(int_scratch, int_scratch, Operand::Zero(), SetCC, mi); // Get mantissa[51:20]. // Get the position of the first set bit. __ CountLeadingZeros(dst_mantissa, int_scratch, scratch2); __ rsb(dst_mantissa, dst_mantissa, Operand(31)); // Set the exponent. __ add(scratch2, dst_mantissa, Operand(HeapNumber::kExponentBias)); __ Bfi(dst_exponent, scratch2, scratch2, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // Clear the first non null bit. __ mov(scratch2, Operand(1)); __ bic(int_scratch, int_scratch, Operand(scratch2, LSL, dst_mantissa)); __ cmp(dst_mantissa, Operand(HeapNumber::kMantissaBitsInTopWord)); // Get the number of bits to set in the lower part of the mantissa. __ sub(scratch2, dst_mantissa, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC); __ b(mi, &fewer_than_20_useful_bits); // Set the higher 20 bits of the mantissa. __ orr(dst_exponent, dst_exponent, Operand(int_scratch, LSR, scratch2)); __ rsb(scratch2, scratch2, Operand(32)); __ mov(dst_mantissa, Operand(int_scratch, LSL, scratch2)); __ b(&done); __ bind(&fewer_than_20_useful_bits); __ rsb(scratch2, dst_mantissa, Operand(HeapNumber::kMantissaBitsInTopWord)); __ mov(scratch2, Operand(int_scratch, LSL, scratch2)); __ orr(dst_exponent, dst_exponent, scratch2); // Set dst1 to 0. __ mov(dst_mantissa, Operand::Zero()); } __ bind(&done); } void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm, Register object, Destination destination, DwVfpRegister double_dst, DwVfpRegister double_scratch, Register dst_mantissa, Register dst_exponent, Register heap_number_map, Register scratch1, Register scratch2, SwVfpRegister single_scratch, Label* not_int32) { ASSERT(!scratch1.is(object) && !scratch2.is(object)); ASSERT(!scratch1.is(scratch2)); ASSERT(!heap_number_map.is(object) && !heap_number_map.is(scratch1) && !heap_number_map.is(scratch2)); Label done, obj_is_not_smi; __ JumpIfNotSmi(object, &obj_is_not_smi); __ SmiUntag(scratch1, object); ConvertIntToDouble(masm, scratch1, destination, double_dst, dst_mantissa, dst_exponent, scratch2, single_scratch); __ b(&done); __ bind(&obj_is_not_smi); __ AssertRootValue(heap_number_map, Heap::kHeapNumberMapRootIndex, "HeapNumberMap register clobbered."); __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32); // Load the number. if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); // Load the double value. __ sub(scratch1, object, Operand(kHeapObjectTag)); __ vldr(double_dst, scratch1, HeapNumber::kValueOffset); __ EmitVFPTruncate(kRoundToZero, scratch1, double_dst, scratch2, double_scratch, kCheckForInexactConversion); // Jump to not_int32 if the operation did not succeed. __ b(ne, not_int32); if (destination == kCoreRegisters) { __ vmov(dst_mantissa, dst_exponent, double_dst); } } else { ASSERT(!scratch1.is(object) && !scratch2.is(object)); // Load the double value in the destination registers. bool save_registers = object.is(dst_mantissa) || object.is(dst_exponent); if (save_registers) { // Save both output registers, because the other one probably holds // an important value too. __ Push(dst_exponent, dst_mantissa); } __ Ldrd(dst_mantissa, dst_exponent, FieldMemOperand(object, HeapNumber::kValueOffset)); // Check for 0 and -0. Label zero; __ bic(scratch1, dst_exponent, Operand(HeapNumber::kSignMask)); __ orr(scratch1, scratch1, Operand(dst_mantissa)); __ cmp(scratch1, Operand::Zero()); __ b(eq, &zero); // Check that the value can be exactly represented by a 32-bit integer. // Jump to not_int32 if that's not the case. Label restore_input_and_miss; DoubleIs32BitInteger(masm, dst_exponent, dst_mantissa, scratch1, scratch2, &restore_input_and_miss); // dst_* were trashed. Reload the double value. if (save_registers) { __ Pop(dst_exponent, dst_mantissa); } __ Ldrd(dst_mantissa, dst_exponent, FieldMemOperand(object, HeapNumber::kValueOffset)); __ b(&done); __ bind(&restore_input_and_miss); if (save_registers) { __ Pop(dst_exponent, dst_mantissa); } __ b(not_int32); __ bind(&zero); if (save_registers) { __ Drop(2); } } __ bind(&done); } void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm, Register object, Register dst, Register heap_number_map, Register scratch1, Register scratch2, Register scratch3, DwVfpRegister double_scratch0, DwVfpRegister double_scratch1, Label* not_int32) { ASSERT(!dst.is(object)); ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object)); ASSERT(!scratch1.is(scratch2) && !scratch1.is(scratch3) && !scratch2.is(scratch3)); Label done, maybe_undefined; __ UntagAndJumpIfSmi(dst, object, &done); __ AssertRootValue(heap_number_map, Heap::kHeapNumberMapRootIndex, "HeapNumberMap register clobbered."); __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, &maybe_undefined); // Object is a heap number. // Convert the floating point value to a 32-bit integer. if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); // Load the double value. __ sub(scratch1, object, Operand(kHeapObjectTag)); __ vldr(double_scratch0, scratch1, HeapNumber::kValueOffset); __ EmitVFPTruncate(kRoundToZero, dst, double_scratch0, scratch1, double_scratch1, kCheckForInexactConversion); // Jump to not_int32 if the operation did not succeed. __ b(ne, not_int32); } else { // Load the double value in the destination registers. __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset)); // Check for 0 and -0. __ bic(dst, scratch1, Operand(HeapNumber::kSignMask)); __ orr(dst, scratch2, Operand(dst)); __ cmp(dst, Operand::Zero()); __ b(eq, &done); DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32); // Registers state after DoubleIs32BitInteger. // dst: mantissa[51:20]. // scratch2: 1 // Shift back the higher bits of the mantissa. __ mov(dst, Operand(dst, LSR, scratch3)); // Set the implicit first bit. __ rsb(scratch3, scratch3, Operand(32)); __ orr(dst, dst, Operand(scratch2, LSL, scratch3)); // Set the sign. __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); __ tst(scratch1, Operand(HeapNumber::kSignMask)); __ rsb(dst, dst, Operand::Zero(), LeaveCC, mi); } __ b(&done); __ bind(&maybe_undefined); __ CompareRoot(object, Heap::kUndefinedValueRootIndex); __ b(ne, not_int32); // |undefined| is truncated to 0. __ mov(dst, Operand(Smi::FromInt(0))); // Fall through. __ bind(&done); } void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm, Register src_exponent, Register src_mantissa, Register dst, Register scratch, Label* not_int32) { // Get exponent alone in scratch. __ Ubfx(scratch, src_exponent, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // Substract the bias from the exponent. __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias), SetCC); // src1: higher (exponent) part of the double value. // src2: lower (mantissa) part of the double value. // scratch: unbiased exponent. // Fast cases. Check for obvious non 32-bit integer values. // Negative exponent cannot yield 32-bit integers. __ b(mi, not_int32); // Exponent greater than 31 cannot yield 32-bit integers. // Also, a positive value with an exponent equal to 31 is outside of the // signed 32-bit integer range. // Another way to put it is that if (exponent - signbit) > 30 then the // number cannot be represented as an int32. Register tmp = dst; __ sub(tmp, scratch, Operand(src_exponent, LSR, 31)); __ cmp(tmp, Operand(30)); __ b(gt, not_int32); // - Bits [21:0] in the mantissa are not null. __ tst(src_mantissa, Operand(0x3fffff)); __ b(ne, not_int32); // Otherwise the exponent needs to be big enough to shift left all the // non zero bits left. So we need the (30 - exponent) last bits of the // 31 higher bits of the mantissa to be null. // Because bits [21:0] are null, we can check instead that the // (32 - exponent) last bits of the 32 higher bits of the mantissa are null. // Get the 32 higher bits of the mantissa in dst. __ Ubfx(dst, src_mantissa, HeapNumber::kMantissaBitsInTopWord, 32 - HeapNumber::kMantissaBitsInTopWord); __ orr(dst, dst, Operand(src_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord)); // Create the mask and test the lower bits (of the higher bits). __ rsb(scratch, scratch, Operand(32)); __ mov(src_mantissa, Operand(1)); __ mov(src_exponent, Operand(src_mantissa, LSL, scratch)); __ sub(src_exponent, src_exponent, Operand(1)); __ tst(dst, src_exponent); __ b(ne, not_int32); } void FloatingPointHelper::CallCCodeForDoubleOperation( MacroAssembler* masm, Token::Value op, Register heap_number_result, Register scratch) { // Using core registers: // r0: Left value (least significant part of mantissa). // r1: Left value (sign, exponent, top of mantissa). // r2: Right value (least significant part of mantissa). // r3: Right value (sign, exponent, top of mantissa). // Assert that heap_number_result is callee-saved. // We currently always use r5 to pass it. ASSERT(heap_number_result.is(r5)); // Push the current return address before the C call. Return will be // through pop(pc) below. __ push(lr); __ PrepareCallCFunction(0, 2, scratch); if (masm->use_eabi_hardfloat()) { CpuFeatures::Scope scope(VFP2); __ vmov(d0, r0, r1); __ vmov(d1, r2, r3); } { AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction( ExternalReference::double_fp_operation(op, masm->isolate()), 0, 2); } // Store answer in the overwritable heap number. Double returned in // registers r0 and r1 or in d0. if (masm->use_eabi_hardfloat()) { CpuFeatures::Scope scope(VFP2); __ vstr(d0, FieldMemOperand(heap_number_result, HeapNumber::kValueOffset)); } else { __ Strd(r0, r1, FieldMemOperand(heap_number_result, HeapNumber::kValueOffset)); } // Place heap_number_result in r0 and return to the pushed return address. __ mov(r0, Operand(heap_number_result)); __ pop(pc); } bool WriteInt32ToHeapNumberStub::IsPregenerated() { // These variants are compiled ahead of time. See next method. if (the_int_.is(r1) && the_heap_number_.is(r0) && scratch_.is(r2)) { return true; } if (the_int_.is(r2) && the_heap_number_.is(r0) && scratch_.is(r3)) { return true; } // Other register combinations are generated as and when they are needed, // so it is unsafe to call them from stubs (we can't generate a stub while // we are generating a stub). return false; } void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime() { WriteInt32ToHeapNumberStub stub1(r1, r0, r2); WriteInt32ToHeapNumberStub stub2(r2, r0, r3); stub1.GetCode()->set_is_pregenerated(true); stub2.GetCode()->set_is_pregenerated(true); } // See comment for class. void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { Label max_negative_int; // the_int_ has the answer which is a signed int32 but not a Smi. // We test for the special value that has a different exponent. This test // has the neat side effect of setting the flags according to the sign. STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); __ cmp(the_int_, Operand(0x80000000u)); __ b(eq, &max_negative_int); // Set up the correct exponent in scratch_. All non-Smi int32s have the same. // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). uint32_t non_smi_exponent = (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; __ mov(scratch_, Operand(non_smi_exponent)); // Set the sign bit in scratch_ if the value was negative. __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs); // Subtract from 0 if the value was negative. __ rsb(the_int_, the_int_, Operand::Zero(), LeaveCC, cs); // We should be masking the implict first digit of the mantissa away here, // but it just ends up combining harmlessly with the last digit of the // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get // the most significant 1 to hit the last bit of the 12 bit sign and exponent. ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0); const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance)); __ str(scratch_, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance)); __ str(scratch_, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); __ Ret(); __ bind(&max_negative_int); // The max negative int32 is stored as a positive number in the mantissa of // a double because it uses a sign bit instead of using two's complement. // The actual mantissa bits stored are all 0 because the implicit most // significant 1 bit is not stored. non_smi_exponent += 1 << HeapNumber::kExponentShift; __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent)); __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); __ mov(ip, Operand::Zero()); __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); __ Ret(); } // Handle the case where the lhs and rhs are the same object. // Equality is almost reflexive (everything but NaN), so this is a test // for "identity and not NaN". static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cond) { Label not_identical; Label heap_number, return_equal; __ cmp(r0, r1); __ b(ne, ¬_identical); // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(), // so we do the second best thing - test it ourselves. // They are both equal and they are not both Smis so both of them are not // Smis. If it's not a heap number, then return equal. if (cond == lt || cond == gt) { __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE); __ b(ge, slow); } else { __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); __ b(eq, &heap_number); // Comparing JS objects with <=, >= is complicated. if (cond != eq) { __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE)); __ b(ge, slow); // Normally here we fall through to return_equal, but undefined is // special: (undefined == undefined) == true, but // (undefined <= undefined) == false! See ECMAScript 11.8.5. if (cond == le || cond == ge) { __ cmp(r4, Operand(ODDBALL_TYPE)); __ b(ne, &return_equal); __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); __ cmp(r0, r2); __ b(ne, &return_equal); if (cond == le) { // undefined <= undefined should fail. __ mov(r0, Operand(GREATER)); } else { // undefined >= undefined should fail. __ mov(r0, Operand(LESS)); } __ Ret(); } } } __ bind(&return_equal); if (cond == lt) { __ mov(r0, Operand(GREATER)); // Things aren't less than themselves. } else if (cond == gt) { __ mov(r0, Operand(LESS)); // Things aren't greater than themselves. } else { __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. } __ Ret(); // For less and greater we don't have to check for NaN since the result of // x < x is false regardless. For the others here is some code to check // for NaN. if (cond != lt && cond != gt) { __ bind(&heap_number); // It is a heap number, so return non-equal if it's NaN and equal if it's // not NaN. // The representation of NaN values has all exponent bits (52..62) set, // and not all mantissa bits (0..51) clear. // Read top bits of double representation (second word of value). __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); // Test that exponent bits are all set. __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // NaNs have all-one exponents so they sign extend to -1. __ cmp(r3, Operand(-1)); __ b(ne, &return_equal); // Shift out flag and all exponent bits, retaining only mantissa. __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord)); // Or with all low-bits of mantissa. __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); __ orr(r0, r3, Operand(r2), SetCC); // For equal we already have the right value in r0: Return zero (equal) // if all bits in mantissa are zero (it's an Infinity) and non-zero if // not (it's a NaN). For <= and >= we need to load r0 with the failing // value if it's a NaN. if (cond != eq) { // All-zero means Infinity means equal. __ Ret(eq); if (cond == le) { __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail. } else { __ mov(r0, Operand(LESS)); // NaN >= NaN should fail. } } __ Ret(); } // No fall through here. __ bind(¬_identical); } // See comment at call site. static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* lhs_not_nan, Label* slow, bool strict) { ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))); Label rhs_is_smi; __ JumpIfSmi(rhs, &rhs_is_smi); // Lhs is a Smi. Check whether the rhs is a heap number. __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE); if (strict) { // If rhs is not a number and lhs is a Smi then strict equality cannot // succeed. Return non-equal // If rhs is r0 then there is already a non zero value in it. if (!rhs.is(r0)) { __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); } __ Ret(ne); } else { // Smi compared non-strictly with a non-Smi non-heap-number. Call // the runtime. __ b(ne, slow); } // Lhs is a smi, rhs is a number. if (CpuFeatures::IsSupported(VFP2)) { // Convert lhs to a double in d7. CpuFeatures::Scope scope(VFP2); __ SmiToDoubleVFPRegister(lhs, d7, r7, s15); // Load the double from rhs, tagged HeapNumber r0, to d6. __ sub(r7, rhs, Operand(kHeapObjectTag)); __ vldr(d6, r7, HeapNumber::kValueOffset); } else { __ push(lr); // Convert lhs to a double in r2, r3. __ mov(r7, Operand(lhs)); ConvertToDoubleStub stub1(r3, r2, r7, r6); __ Call(stub1.GetCode()); // Load rhs to a double in r0, r1. __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset)); __ pop(lr); } // We now have both loaded as doubles but we can skip the lhs nan check // since it's a smi. __ jmp(lhs_not_nan); __ bind(&rhs_is_smi); // Rhs is a smi. Check whether the non-smi lhs is a heap number. __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE); if (strict) { // If lhs is not a number and rhs is a smi then strict equality cannot // succeed. Return non-equal. // If lhs is r0 then there is already a non zero value in it. if (!lhs.is(r0)) { __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); } __ Ret(ne); } else { // Smi compared non-strictly with a non-smi non-heap-number. Call // the runtime. __ b(ne, slow); } // Rhs is a smi, lhs is a heap number. if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); // Load the double from lhs, tagged HeapNumber r1, to d7. __ sub(r7, lhs, Operand(kHeapObjectTag)); __ vldr(d7, r7, HeapNumber::kValueOffset); // Convert rhs to a double in d6 . __ SmiToDoubleVFPRegister(rhs, d6, r7, s13); } else { __ push(lr); // Load lhs to a double in r2, r3. __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset)); // Convert rhs to a double in r0, r1. __ mov(r7, Operand(rhs)); ConvertToDoubleStub stub2(r1, r0, r7, r6); __ Call(stub2.GetCode()); __ pop(lr); } // Fall through to both_loaded_as_doubles. } void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cond) { bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); Register rhs_exponent = exp_first ? r0 : r1; Register lhs_exponent = exp_first ? r2 : r3; Register rhs_mantissa = exp_first ? r1 : r0; Register lhs_mantissa = exp_first ? r3 : r2; Label one_is_nan, neither_is_nan; __ Sbfx(r4, lhs_exponent, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // NaNs have all-one exponents so they sign extend to -1. __ cmp(r4, Operand(-1)); __ b(ne, lhs_not_nan); __ mov(r4, Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), SetCC); __ b(ne, &one_is_nan); __ cmp(lhs_mantissa, Operand::Zero()); __ b(ne, &one_is_nan); __ bind(lhs_not_nan); __ Sbfx(r4, rhs_exponent, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // NaNs have all-one exponents so they sign extend to -1. __ cmp(r4, Operand(-1)); __ b(ne, &neither_is_nan); __ mov(r4, Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), SetCC); __ b(ne, &one_is_nan); __ cmp(rhs_mantissa, Operand::Zero()); __ b(eq, &neither_is_nan); __ bind(&one_is_nan); // NaN comparisons always fail. // Load whatever we need in r0 to make the comparison fail. if (cond == lt || cond == le) { __ mov(r0, Operand(GREATER)); } else { __ mov(r0, Operand(LESS)); } __ Ret(); __ bind(&neither_is_nan); } // See comment at call site. static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cond) { bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); Register rhs_exponent = exp_first ? r0 : r1; Register lhs_exponent = exp_first ? r2 : r3; Register rhs_mantissa = exp_first ? r1 : r0; Register lhs_mantissa = exp_first ? r3 : r2; // r0, r1, r2, r3 have the two doubles. Neither is a NaN. if (cond == eq) { // Doubles are not equal unless they have the same bit pattern. // Exception: 0 and -0. __ cmp(rhs_mantissa, Operand(lhs_mantissa)); __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne); // Return non-zero if the numbers are unequal. __ Ret(ne); __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC); // If exponents are equal then return 0. __ Ret(eq); // Exponents are unequal. The only way we can return that the numbers // are equal is if one is -0 and the other is 0. We already dealt // with the case where both are -0 or both are 0. // We start by seeing if the mantissas (that are equal) or the bottom // 31 bits of the rhs exponent are non-zero. If so we return not // equal. __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC); __ mov(r0, Operand(r4), LeaveCC, ne); __ Ret(ne); // Now they are equal if and only if the lhs exponent is zero in its // low 31 bits. __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize)); __ Ret(); } else { // Call a native function to do a comparison between two non-NaNs. // Call C routine that may not cause GC or other trouble. __ push(lr); __ PrepareCallCFunction(0, 2, r5); if (masm->use_eabi_hardfloat()) { CpuFeatures::Scope scope(VFP2); __ vmov(d0, r0, r1); __ vmov(d1, r2, r3); } AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()), 0, 2); __ pop(pc); // Return. } } // See comment at call site. static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs) { ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))); // If either operand is a JS object or an oddball value, then they are // not equal since their pointers are different. // There is no test for undetectability in strict equality. STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); Label first_non_object; // Get the type of the first operand into r2 and compare it with // FIRST_SPEC_OBJECT_TYPE. __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE); __ b(lt, &first_non_object); // Return non-zero (r0 is not zero) Label return_not_equal; __ bind(&return_not_equal); __ Ret(); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ cmp(r2, Operand(ODDBALL_TYPE)); __ b(eq, &return_not_equal); __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE); __ b(ge, &return_not_equal); // Check for oddballs: true, false, null, undefined. __ cmp(r3, Operand(ODDBALL_TYPE)); __ b(eq, &return_not_equal); // Now that we have the types we might as well check for symbol-symbol. // Ensure that no non-strings have the symbol bit set. STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); STATIC_ASSERT(kSymbolTag != 0); __ and_(r2, r2, Operand(r3)); __ tst(r2, Operand(kIsSymbolMask)); __ b(ne, &return_not_equal); } // See comment at call site. static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs, Register rhs, Label* both_loaded_as_doubles, Label* not_heap_numbers, Label* slow) { ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))); __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE); __ b(ne, not_heap_numbers); __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset)); __ cmp(r2, r3); __ b(ne, slow); // First was a heap number, second wasn't. Go slow case. // Both are heap numbers. Load them up then jump to the code we have // for that. if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); __ sub(r7, rhs, Operand(kHeapObjectTag)); __ vldr(d6, r7, HeapNumber::kValueOffset); __ sub(r7, lhs, Operand(kHeapObjectTag)); __ vldr(d7, r7, HeapNumber::kValueOffset); } else { __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset)); __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset)); } __ jmp(both_loaded_as_doubles); } // Fast negative check for symbol-to-symbol equality. static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm, Register lhs, Register rhs, Label* possible_strings, Label* not_both_strings) { ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))); // r2 is object type of rhs. // Ensure that no non-strings have the symbol bit set. Label object_test; STATIC_ASSERT(kSymbolTag != 0); __ tst(r2, Operand(kIsNotStringMask)); __ b(ne, &object_test); __ tst(r2, Operand(kIsSymbolMask)); __ b(eq, possible_strings); __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE); __ b(ge, not_both_strings); __ tst(r3, Operand(kIsSymbolMask)); __ b(eq, possible_strings); // Both are symbols. We already checked they weren't the same pointer // so they are not equal. __ mov(r0, Operand(NOT_EQUAL)); __ Ret(); __ bind(&object_test); __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE)); __ b(lt, not_both_strings); __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE); __ b(lt, not_both_strings); // If both objects are undetectable, they are equal. Otherwise, they // are not equal, since they are different objects and an object is not // equal to undefined. __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset)); __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset)); __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); __ and_(r0, r2, Operand(r3)); __ and_(r0, r0, Operand(1 << Map::kIsUndetectable)); __ eor(r0, r0, Operand(1 << Map::kIsUndetectable)); __ Ret(); } void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, Register object, Register result, Register scratch1, Register scratch2, Register scratch3, bool object_is_smi, Label* not_found) { // Use of registers. Register result is used as a temporary. Register number_string_cache = result; Register mask = scratch3; // Load the number string cache. __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); // Make the hash mask from the length of the number string cache. It // contains two elements (number and string) for each cache entry. __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); // Divide length by two (length is a smi). __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1)); __ sub(mask, mask, Operand(1)); // Make mask. // Calculate the entry in the number string cache. The hash value in the // number string cache for smis is just the smi value, and the hash for // doubles is the xor of the upper and lower words. See // Heap::GetNumberStringCache. Isolate* isolate = masm->isolate(); Label is_smi; Label load_result_from_cache; if (!object_is_smi) { __ JumpIfSmi(object, &is_smi); if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); __ CheckMap(object, scratch1, Heap::kHeapNumberMapRootIndex, not_found, DONT_DO_SMI_CHECK); STATIC_ASSERT(8 == kDoubleSize); __ add(scratch1, object, Operand(HeapNumber::kValueOffset - kHeapObjectTag)); __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit()); __ eor(scratch1, scratch1, Operand(scratch2)); __ and_(scratch1, scratch1, Operand(mask)); // Calculate address of entry in string cache: each entry consists // of two pointer sized fields. __ add(scratch1, number_string_cache, Operand(scratch1, LSL, kPointerSizeLog2 + 1)); Register probe = mask; __ ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); __ JumpIfSmi(probe, not_found); __ sub(scratch2, object, Operand(kHeapObjectTag)); __ vldr(d0, scratch2, HeapNumber::kValueOffset); __ sub(probe, probe, Operand(kHeapObjectTag)); __ vldr(d1, probe, HeapNumber::kValueOffset); __ VFPCompareAndSetFlags(d0, d1); __ b(ne, not_found); // The cache did not contain this value. __ b(&load_result_from_cache); } else { __ b(not_found); } } __ bind(&is_smi); Register scratch = scratch1; __ and_(scratch, mask, Operand(object, ASR, 1)); // Calculate address of entry in string cache: each entry consists // of two pointer sized fields. __ add(scratch, number_string_cache, Operand(scratch, LSL, kPointerSizeLog2 + 1)); // Check if the entry is the smi we are looking for. Register probe = mask; __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); __ cmp(object, probe); __ b(ne, not_found); // Get the result from the cache. __ bind(&load_result_from_cache); __ ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); __ IncrementCounter(isolate->counters()->number_to_string_native(), 1, scratch1, scratch2); } void NumberToStringStub::Generate(MacroAssembler* masm) { Label runtime; __ ldr(r1, MemOperand(sp, 0)); // Generate code to lookup number in the number string cache. GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime); __ add(sp, sp, Operand(1 * kPointerSize)); __ Ret(); __ bind(&runtime); // Handle number to string in the runtime system if not found in the cache. __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); } static void ICCompareStub_CheckInputType(MacroAssembler* masm, Register input, Register scratch, CompareIC::State expected, Label* fail) { Label ok; if (expected == CompareIC::SMI) { __ JumpIfNotSmi(input, fail); } else if (expected == CompareIC::HEAP_NUMBER) { __ JumpIfSmi(input, &ok); __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, DONT_DO_SMI_CHECK); } // We could be strict about symbol/string here, but as long as // hydrogen doesn't care, the stub doesn't have to care either. __ bind(&ok); } // On entry r1 and r2 are the values to be compared. // On exit r0 is 0, positive or negative to indicate the result of // the comparison. void ICCompareStub::GenerateGeneric(MacroAssembler* masm) { Register lhs = r1; Register rhs = r0; Condition cc = GetCondition(); Label miss; ICCompareStub_CheckInputType(masm, lhs, r2, left_, &miss); ICCompareStub_CheckInputType(masm, rhs, r3, right_, &miss); Label slow; // Call builtin. Label not_smis, both_loaded_as_doubles, lhs_not_nan; Label not_two_smis, smi_done; __ orr(r2, r1, r0); __ JumpIfNotSmi(r2, ¬_two_smis); __ mov(r1, Operand(r1, ASR, 1)); __ sub(r0, r1, Operand(r0, ASR, 1)); __ Ret(); __ bind(¬_two_smis); // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. // Handle the case where the objects are identical. Either returns the answer // or goes to slow. Only falls through if the objects were not identical. EmitIdenticalObjectComparison(masm, &slow, cc); // If either is a Smi (we know that not both are), then they can only // be strictly equal if the other is a HeapNumber. STATIC_ASSERT(kSmiTag == 0); ASSERT_EQ(0, Smi::FromInt(0)); __ and_(r2, lhs, Operand(rhs)); __ JumpIfNotSmi(r2, ¬_smis); // One operand is a smi. EmitSmiNonsmiComparison generates code that can: // 1) Return the answer. // 2) Go to slow. // 3) Fall through to both_loaded_as_doubles. // 4) Jump to lhs_not_nan. // In cases 3 and 4 we have found out we were dealing with a number-number // comparison. If VFP3 is supported the double values of the numbers have // been loaded into d7 and d6. Otherwise, the double values have been loaded // into r0, r1, r2, and r3. EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict()); __ bind(&both_loaded_as_doubles); // The arguments have been converted to doubles and stored in d6 and d7, if // VFP3 is supported, or in r0, r1, r2, and r3. Isolate* isolate = masm->isolate(); if (CpuFeatures::IsSupported(VFP2)) { __ bind(&lhs_not_nan); CpuFeatures::Scope scope(VFP2); Label no_nan; // ARMv7 VFP3 instructions to implement double precision comparison. __ VFPCompareAndSetFlags(d7, d6); Label nan; __ b(vs, &nan); __ mov(r0, Operand(EQUAL), LeaveCC, eq); __ mov(r0, Operand(LESS), LeaveCC, lt); __ mov(r0, Operand(GREATER), LeaveCC, gt); __ Ret(); __ bind(&nan); // If one of the sides was a NaN then the v flag is set. Load r0 with // whatever it takes to make the comparison fail, since comparisons with NaN // always fail. if (cc == lt || cc == le) { __ mov(r0, Operand(GREATER)); } else { __ mov(r0, Operand(LESS)); } __ Ret(); } else { // Checks for NaN in the doubles we have loaded. Can return the answer or // fall through if neither is a NaN. Also binds lhs_not_nan. EmitNanCheck(masm, &lhs_not_nan, cc); // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the // answer. Never falls through. EmitTwoNonNanDoubleComparison(masm, cc); } __ bind(¬_smis); // At this point we know we are dealing with two different objects, // and neither of them is a Smi. The objects are in rhs_ and lhs_. if (strict()) { // This returns non-equal for some object types, or falls through if it // was not lucky. EmitStrictTwoHeapObjectCompare(masm, lhs, rhs); } Label check_for_symbols; Label flat_string_check; // Check for heap-number-heap-number comparison. Can jump to slow case, // or load both doubles into r0, r1, r2, r3 and jump to the code that handles // that case. If the inputs are not doubles then jumps to check_for_symbols. // In this case r2 will contain the type of rhs_. Never falls through. EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles, &check_for_symbols, &flat_string_check); __ bind(&check_for_symbols); // In the strict case the EmitStrictTwoHeapObjectCompare already took care of // symbols. if (cc == eq && !strict()) { // Returns an answer for two symbols or two detectable objects. // Otherwise jumps to string case or not both strings case. // Assumes that r2 is the type of rhs_ on entry. EmitCheckForSymbolsOrObjects(masm, lhs, rhs, &flat_string_check, &slow); } // Check for both being sequential ASCII strings, and inline if that is the // case. __ bind(&flat_string_check); __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs, rhs, r2, r3, &slow); __ IncrementCounter(isolate->counters()->string_compare_native(), 1, r2, r3); if (cc == eq) { StringCompareStub::GenerateFlatAsciiStringEquals(masm, lhs, rhs, r2, r3, r4); } else { StringCompareStub::GenerateCompareFlatAsciiStrings(masm, lhs, rhs, r2, r3, r4, r5); } // Never falls through to here. __ bind(&slow); __ Push(lhs, rhs); // Figure out which native to call and setup the arguments. Builtins::JavaScript native; if (cc == eq) { native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; } else { native = Builtins::COMPARE; int ncr; // NaN compare result if (cc == lt || cc == le) { ncr = GREATER; } else { ASSERT(cc == gt || cc == ge); // remaining cases ncr = LESS; } __ mov(r0, Operand(Smi::FromInt(ncr))); __ push(r0); } // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ InvokeBuiltin(native, JUMP_FUNCTION); __ bind(&miss); GenerateMiss(masm); } // The stub expects its argument in the tos_ register and returns its result in // it, too: zero for false, and a non-zero value for true. void ToBooleanStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. Label patch; const Register map = r9.is(tos_) ? r7 : r9; const Register temp = map; // undefined -> false. CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false); // Boolean -> its value. CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false); CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true); // 'null' -> false. CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false); if (types_.Contains(SMI)) { // Smis: 0 -> false, all other -> true __ tst(tos_, Operand(kSmiTagMask)); // tos_ contains the correct return value already __ Ret(eq); } else if (types_.NeedsMap()) { // If we need a map later and have a Smi -> patch. __ JumpIfSmi(tos_, &patch); } if (types_.NeedsMap()) { __ ldr(map, FieldMemOperand(tos_, HeapObject::kMapOffset)); if (types_.CanBeUndetectable()) { __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset)); __ tst(ip, Operand(1 << Map::kIsUndetectable)); // Undetectable -> false. __ mov(tos_, Operand::Zero(), LeaveCC, ne); __ Ret(ne); } } if (types_.Contains(SPEC_OBJECT)) { // Spec object -> true. __ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE); // tos_ contains the correct non-zero return value already. __ Ret(ge); } if (types_.Contains(STRING)) { // String value -> false iff empty. __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE); __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset), lt); __ Ret(lt); // the string length is OK as the return value } if (types_.Contains(HEAP_NUMBER)) { // Heap number -> false iff +0, -0, or NaN. Label not_heap_number; __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); __ b(ne, ¬_heap_number); if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); __ vldr(d1, FieldMemOperand(tos_, HeapNumber::kValueOffset)); __ VFPCompareAndSetFlags(d1, 0.0); // "tos_" is a register, and contains a non zero value by default. // Hence we only need to overwrite "tos_" with zero to return false for // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true. __ mov(tos_, Operand::Zero(), LeaveCC, eq); // for FP_ZERO __ mov(tos_, Operand::Zero(), LeaveCC, vs); // for FP_NAN } else { Label done, not_nan, not_zero; __ ldr(temp, FieldMemOperand(tos_, HeapNumber::kExponentOffset)); // -0 maps to false: __ bic( temp, temp, Operand(HeapNumber::kSignMask, RelocInfo::NONE32), SetCC); __ b(ne, ¬_zero); // If exponent word is zero then the answer depends on the mantissa word. __ ldr(tos_, FieldMemOperand(tos_, HeapNumber::kMantissaOffset)); __ jmp(&done); // Check for NaN. __ bind(¬_zero); // We already zeroed the sign bit, now shift out the mantissa so we only // have the exponent left. __ mov(temp, Operand(temp, LSR, HeapNumber::kMantissaBitsInTopWord)); unsigned int shifted_exponent_mask = HeapNumber::kExponentMask >> HeapNumber::kMantissaBitsInTopWord; __ cmp(temp, Operand(shifted_exponent_mask, RelocInfo::NONE32)); __ b(ne, ¬_nan); // If exponent is not 0x7ff then it can't be a NaN. // Reload exponent word. __ ldr(temp, FieldMemOperand(tos_, HeapNumber::kExponentOffset)); __ tst(temp, Operand(HeapNumber::kMantissaMask, RelocInfo::NONE32)); // If mantissa is not zero then we have a NaN, so return 0. __ mov(tos_, Operand::Zero(), LeaveCC, ne); __ b(ne, &done); // Load mantissa word. __ ldr(temp, FieldMemOperand(tos_, HeapNumber::kMantissaOffset)); __ cmp(temp, Operand::Zero()); // If mantissa is not zero then we have a NaN, so return 0. __ mov(tos_, Operand::Zero(), LeaveCC, ne); __ b(ne, &done); __ bind(¬_nan); __ mov(tos_, Operand(1, RelocInfo::NONE32)); __ bind(&done); } __ Ret(); __ bind(¬_heap_number); } __ bind(&patch); GenerateTypeTransition(masm); } void ToBooleanStub::CheckOddball(MacroAssembler* masm, Type type, Heap::RootListIndex value, bool result) { if (types_.Contains(type)) { // If we see an expected oddball, return its ToBoolean value tos_. __ LoadRoot(ip, value); __ cmp(tos_, ip); // The value of a root is never NULL, so we can avoid loading a non-null // value into tos_ when we want to return 'true'. if (!result) { __ mov(tos_, Operand::Zero(), LeaveCC, eq); } __ Ret(eq); } } void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) { if (!tos_.is(r3)) { __ mov(r3, Operand(tos_)); } __ mov(r2, Operand(Smi::FromInt(tos_.code()))); __ mov(r1, Operand(Smi::FromInt(types_.ToByte()))); __ Push(r3, r2, r1); // Patch the caller to an appropriate specialized stub and return the // operation result to the caller of the stub. __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()), 3, 1); } void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. __ stm(db_w, sp, kCallerSaved | lr.bit()); const Register scratch = r1; if (save_doubles_ == kSaveFPRegs) { CpuFeatures::Scope scope(VFP2); // Check CPU flags for number of registers, setting the Z condition flag. __ CheckFor32DRegs(scratch); __ sub(sp, sp, Operand(kDoubleSize * DwVfpRegister::kMaxNumRegisters)); for (int i = 0; i < DwVfpRegister::kMaxNumRegisters; i++) { DwVfpRegister reg = DwVfpRegister::from_code(i); __ vstr(reg, MemOperand(sp, i * kDoubleSize), i < 16 ? al : ne); } } const int argument_count = 1; const int fp_argument_count = 0; AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(argument_count, fp_argument_count, scratch); __ mov(r0, Operand(ExternalReference::isolate_address())); __ CallCFunction( ExternalReference::store_buffer_overflow_function(masm->isolate()), argument_count); if (save_doubles_ == kSaveFPRegs) { CpuFeatures::Scope scope(VFP2); // Check CPU flags for number of registers, setting the Z condition flag. __ CheckFor32DRegs(scratch); for (int i = 0; i < DwVfpRegister::kMaxNumRegisters; i++) { DwVfpRegister reg = DwVfpRegister::from_code(i); __ vldr(reg, MemOperand(sp, i * kDoubleSize), i < 16 ? al : ne); } __ add(sp, sp, Operand(kDoubleSize * DwVfpRegister::kMaxNumRegisters)); } __ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0). } void UnaryOpStub::PrintName(StringStream* stream) { const char* op_name = Token::Name(op_); const char* overwrite_name = NULL; // Make g++ happy. switch (mode_) { case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break; case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break; } stream->Add("UnaryOpStub_%s_%s_%s", op_name, overwrite_name, UnaryOpIC::GetName(operand_type_)); } // TODO(svenpanne): Use virtual functions instead of switch. void UnaryOpStub::Generate(MacroAssembler* masm) { switch (operand_type_) { case UnaryOpIC::UNINITIALIZED: GenerateTypeTransition(masm); break; case UnaryOpIC::SMI: GenerateSmiStub(masm); break; case UnaryOpIC::HEAP_NUMBER: GenerateHeapNumberStub(masm); break; case UnaryOpIC::GENERIC: GenerateGenericStub(masm); break; } } void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { __ mov(r3, Operand(r0)); // the operand __ mov(r2, Operand(Smi::FromInt(op_))); __ mov(r1, Operand(Smi::FromInt(mode_))); __ mov(r0, Operand(Smi::FromInt(operand_type_))); __ Push(r3, r2, r1, r0); __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1); } // TODO(svenpanne): Use virtual functions instead of switch. void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) { switch (op_) { case Token::SUB: GenerateSmiStubSub(masm); break; case Token::BIT_NOT: GenerateSmiStubBitNot(masm); break; default: UNREACHABLE(); } } void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) { Label non_smi, slow; GenerateSmiCodeSub(masm, &non_smi, &slow); __ bind(&non_smi); __ bind(&slow); GenerateTypeTransition(masm); } void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) { Label non_smi; GenerateSmiCodeBitNot(masm, &non_smi); __ bind(&non_smi); GenerateTypeTransition(masm); } void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm, Label* non_smi, Label* slow) { __ JumpIfNotSmi(r0, non_smi); // The result of negating zero or the smallest negative smi is not a smi. __ bic(ip, r0, Operand(0x80000000), SetCC); __ b(eq, slow); // Return '0 - value'. __ rsb(r0, r0, Operand::Zero()); __ Ret(); } void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm, Label* non_smi) { __ JumpIfNotSmi(r0, non_smi); // Flip bits and revert inverted smi-tag. __ mvn(r0, Operand(r0)); __ bic(r0, r0, Operand(kSmiTagMask)); __ Ret(); } // TODO(svenpanne): Use virtual functions instead of switch. void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { switch (op_) { case Token::SUB: GenerateHeapNumberStubSub(masm); break; case Token::BIT_NOT: GenerateHeapNumberStubBitNot(masm); break; default: UNREACHABLE(); } } void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) { Label non_smi, slow, call_builtin; GenerateSmiCodeSub(masm, &non_smi, &call_builtin); __ bind(&non_smi); GenerateHeapNumberCodeSub(masm, &slow); __ bind(&slow); GenerateTypeTransition(masm); __ bind(&call_builtin); GenerateGenericCodeFallback(masm); } void UnaryOpStub::GenerateHeapNumberStubBitNot(MacroAssembler* masm) { Label non_smi, slow; GenerateSmiCodeBitNot(masm, &non_smi); __ bind(&non_smi); GenerateHeapNumberCodeBitNot(masm, &slow); __ bind(&slow); GenerateTypeTransition(masm); } void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm, Label* slow) { EmitCheckForHeapNumber(masm, r0, r1, r6, slow); // r0 is a heap number. Get a new heap number in r1. if (mode_ == UNARY_OVERWRITE) { __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); } else { Label slow_allocate_heapnumber, heapnumber_allocated; __ AllocateHeapNumber(r1, r2, r3, r6, &slow_allocate_heapnumber); __ jmp(&heapnumber_allocated); __ bind(&slow_allocate_heapnumber); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(r0); __ CallRuntime(Runtime::kNumberAlloc, 0); __ mov(r1, Operand(r0)); __ pop(r0); } __ bind(&heapnumber_allocated); __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset)); __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset)); __ mov(r0, Operand(r1)); } __ Ret(); } void UnaryOpStub::GenerateHeapNumberCodeBitNot( MacroAssembler* masm, Label* slow) { Label impossible; EmitCheckForHeapNumber(masm, r0, r1, r6, slow); // Convert the heap number is r0 to an untagged integer in r1. __ ConvertToInt32(r0, r1, r2, r3, d0, slow); // Do the bitwise operation and check if the result fits in a smi. Label try_float; __ mvn(r1, Operand(r1)); __ add(r2, r1, Operand(0x40000000), SetCC); __ b(mi, &try_float); // Tag the result as a smi and we're done. __ mov(r0, Operand(r1, LSL, kSmiTagSize)); __ Ret(); // Try to store the result in a heap number. __ bind(&try_float); if (mode_ == UNARY_NO_OVERWRITE) { Label slow_allocate_heapnumber, heapnumber_allocated; // Allocate a new heap number without zapping r0, which we need if it fails. __ AllocateHeapNumber(r2, r3, r4, r6, &slow_allocate_heapnumber); __ jmp(&heapnumber_allocated); __ bind(&slow_allocate_heapnumber); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(r0); // Push the heap number, not the untagged int32. __ CallRuntime(Runtime::kNumberAlloc, 0); __ mov(r2, r0); // Move the new heap number into r2. // Get the heap number into r0, now that the new heap number is in r2. __ pop(r0); } // Convert the heap number in r0 to an untagged integer in r1. // This can't go slow-case because it's the same number we already // converted once again. __ ConvertToInt32(r0, r1, r3, r4, d0, &impossible); __ mvn(r1, Operand(r1)); __ bind(&heapnumber_allocated); __ mov(r0, r2); // Move newly allocated heap number to r0. } if (CpuFeatures::IsSupported(VFP2)) { // Convert the int32 in r1 to the heap number in r0. r2 is corrupted. CpuFeatures::Scope scope(VFP2); __ vmov(s0, r1); __ vcvt_f64_s32(d0, s0); __ sub(r2, r0, Operand(kHeapObjectTag)); __ vstr(d0, r2, HeapNumber::kValueOffset); __ Ret(); } else { // WriteInt32ToHeapNumberStub does not trigger GC, so we do not // have to set up a frame. WriteInt32ToHeapNumberStub stub(r1, r0, r2); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); } __ bind(&impossible); if (FLAG_debug_code) { __ stop("Incorrect assumption in bit-not stub"); } } // TODO(svenpanne): Use virtual functions instead of switch. void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) { switch (op_) { case Token::SUB: GenerateGenericStubSub(masm); break; case Token::BIT_NOT: GenerateGenericStubBitNot(masm); break; default: UNREACHABLE(); } } void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) { Label non_smi, slow; GenerateSmiCodeSub(masm, &non_smi, &slow); __ bind(&non_smi); GenerateHeapNumberCodeSub(masm, &slow); __ bind(&slow); GenerateGenericCodeFallback(masm); } void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) { Label non_smi, slow; GenerateSmiCodeBitNot(masm, &non_smi); __ bind(&non_smi); GenerateHeapNumberCodeBitNot(masm, &slow); __ bind(&slow); GenerateGenericCodeFallback(masm); } void UnaryOpStub::GenerateGenericCodeFallback(MacroAssembler* masm) { // Handle the slow case by jumping to the JavaScript builtin. __ push(r0); switch (op_) { case Token::SUB: __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); break; case Token::BIT_NOT: __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); break; default: UNREACHABLE(); } } void BinaryOpStub::Initialize() { platform_specific_bit_ = CpuFeatures::IsSupported(VFP2); } void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { Label get_result; __ Push(r1, r0); __ mov(r2, Operand(Smi::FromInt(MinorKey()))); __ push(r2); __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kBinaryOp_Patch), masm->isolate()), 3, 1); } void BinaryOpStub::GenerateTypeTransitionWithSavedArgs( MacroAssembler* masm) { UNIMPLEMENTED(); } void BinaryOpStub_GenerateSmiSmiOperation(MacroAssembler* masm, Token::Value op) { Register left = r1; Register right = r0; Register scratch1 = r7; Register scratch2 = r9; ASSERT(right.is(r0)); STATIC_ASSERT(kSmiTag == 0); Label not_smi_result; switch (op) { case Token::ADD: __ add(right, left, Operand(right), SetCC); // Add optimistically. __ Ret(vc); __ sub(right, right, Operand(left)); // Revert optimistic add. break; case Token::SUB: __ sub(right, left, Operand(right), SetCC); // Subtract optimistically. __ Ret(vc); __ sub(right, left, Operand(right)); // Revert optimistic subtract. break; case Token::MUL: // Remove tag from one of the operands. This way the multiplication result // will be a smi if it fits the smi range. __ SmiUntag(ip, right); // Do multiplication // scratch1 = lower 32 bits of ip * left. // scratch2 = higher 32 bits of ip * left. __ smull(scratch1, scratch2, left, ip); // Check for overflowing the smi range - no overflow if higher 33 bits of // the result are identical. __ mov(ip, Operand(scratch1, ASR, 31)); __ cmp(ip, Operand(scratch2)); __ b(ne, ¬_smi_result); // Go slow on zero result to handle -0. __ cmp(scratch1, Operand::Zero()); __ mov(right, Operand(scratch1), LeaveCC, ne); __ Ret(ne); // We need -0 if we were multiplying a negative number with 0 to get 0. // We know one of them was zero. __ add(scratch2, right, Operand(left), SetCC); __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl); __ Ret(pl); // Return smi 0 if the non-zero one was positive. // We fall through here if we multiplied a negative number with 0, because // that would mean we should produce -0. break; case Token::DIV: { Label div_with_sdiv; // Check for 0 divisor. __ cmp(right, Operand::Zero()); __ b(eq, ¬_smi_result); // Check for power of two on the right hand side. __ sub(scratch1, right, Operand(1)); __ tst(scratch1, right); if (CpuFeatures::IsSupported(SUDIV)) { __ b(ne, &div_with_sdiv); // Check for no remainder. __ tst(left, scratch1); __ b(ne, ¬_smi_result); // Check for positive left hand side. __ cmp(left, Operand::Zero()); __ b(mi, &div_with_sdiv); } else { __ b(ne, ¬_smi_result); // Check for positive and no remainder. __ orr(scratch2, scratch1, Operand(0x80000000u)); __ tst(left, scratch2); __ b(ne, ¬_smi_result); } // Perform division by shifting. __ CountLeadingZeros(scratch1, scratch1, scratch2); __ rsb(scratch1, scratch1, Operand(31)); __ mov(right, Operand(left, LSR, scratch1)); __ Ret(); if (CpuFeatures::IsSupported(SUDIV)) { Label result_not_zero; __ bind(&div_with_sdiv); // Do division. __ sdiv(scratch1, left, right); // Check that the remainder is zero. __ mls(scratch2, scratch1, right, left); __ cmp(scratch2, Operand::Zero()); __ b(ne, ¬_smi_result); // Check for negative zero result. __ cmp(scratch1, Operand::Zero()); __ b(ne, &result_not_zero); __ cmp(right, Operand::Zero()); __ b(lt, ¬_smi_result); __ bind(&result_not_zero); // Check for the corner case of dividing the most negative smi by -1. __ cmp(scratch1, Operand(0x40000000)); __ b(eq, ¬_smi_result); // Tag and return the result. __ SmiTag(right, scratch1); __ Ret(); } break; } case Token::MOD: { Label modulo_with_sdiv; if (CpuFeatures::IsSupported(SUDIV)) { // Check for x % 0. __ cmp(right, Operand::Zero()); __ b(eq, ¬_smi_result); // Check for two positive smis. __ orr(scratch1, left, Operand(right)); __ tst(scratch1, Operand(0x80000000u)); __ b(ne, &modulo_with_sdiv); // Check for power of two on the right hand side. __ sub(scratch1, right, Operand(1)); __ tst(scratch1, right); __ b(ne, &modulo_with_sdiv); } else { // Check for two positive smis. __ orr(scratch1, left, Operand(right)); __ tst(scratch1, Operand(0x80000000u)); __ b(ne, ¬_smi_result); // Check for power of two on the right hand side. __ JumpIfNotPowerOfTwoOrZero(right, scratch1, ¬_smi_result); } // Perform modulus by masking (scratch1 contains right - 1). __ and_(right, left, Operand(scratch1)); __ Ret(); if (CpuFeatures::IsSupported(SUDIV)) { __ bind(&modulo_with_sdiv); __ mov(scratch2, right); // Perform modulus with sdiv and mls. __ sdiv(scratch1, left, right); __ mls(right, scratch1, right, left); // Return if the result is not 0. __ cmp(right, Operand::Zero()); __ Ret(ne); // The result is 0, check for -0 case. __ cmp(left, Operand::Zero()); __ Ret(pl); // This is a -0 case, restore the value of right. __ mov(right, scratch2); // We fall through here to not_smi_result to produce -0. } break; } case Token::BIT_OR: __ orr(right, left, Operand(right)); __ Ret(); break; case Token::BIT_AND: __ and_(right, left, Operand(right)); __ Ret(); break; case Token::BIT_XOR: __ eor(right, left, Operand(right)); __ Ret(); break; case Token::SAR: // Remove tags from right operand. __ GetLeastBitsFromSmi(scratch1, right, 5); __ mov(right, Operand(left, ASR, scratch1)); // Smi tag result. __ bic(right, right, Operand(kSmiTagMask)); __ Ret(); break; case Token::SHR: // Remove tags from operands. We can't do this on a 31 bit number // because then the 0s get shifted into bit 30 instead of bit 31. __ SmiUntag(scratch1, left); __ GetLeastBitsFromSmi(scratch2, right, 5); __ mov(scratch1, Operand(scratch1, LSR, scratch2)); // Unsigned shift is not allowed to produce a negative number, so // check the sign bit and the sign bit after Smi tagging. __ tst(scratch1, Operand(0xc0000000)); __ b(ne, ¬_smi_result); // Smi tag result. __ SmiTag(right, scratch1); __ Ret(); break; case Token::SHL: // Remove tags from operands. __ SmiUntag(scratch1, left); __ GetLeastBitsFromSmi(scratch2, right, 5); __ mov(scratch1, Operand(scratch1, LSL, scratch2)); // Check that the signed result fits in a Smi. __ add(scratch2, scratch1, Operand(0x40000000), SetCC); __ b(mi, ¬_smi_result); __ SmiTag(right, scratch1); __ Ret(); break; default: UNREACHABLE(); } __ bind(¬_smi_result); } void BinaryOpStub_GenerateHeapResultAllocation(MacroAssembler* masm, Register result, Register heap_number_map, Register scratch1, Register scratch2, Label* gc_required, OverwriteMode mode); void BinaryOpStub_GenerateFPOperation(MacroAssembler* masm, BinaryOpIC::TypeInfo left_type, BinaryOpIC::TypeInfo right_type, bool smi_operands, Label* not_numbers, Label* gc_required, Label* miss, Token::Value op, OverwriteMode mode) { Register left = r1; Register right = r0; Register scratch1 = r7; Register scratch2 = r9; Register scratch3 = r4; ASSERT(smi_operands || (not_numbers != NULL)); if (smi_operands) { __ AssertSmi(left); __ AssertSmi(right); } if (left_type == BinaryOpIC::SMI) { __ JumpIfNotSmi(left, miss); } if (right_type == BinaryOpIC::SMI) { __ JumpIfNotSmi(right, miss); } Register heap_number_map = r6; __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); switch (op) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: case Token::MOD: { // Load left and right operands into d6 and d7 or r0/r1 and r2/r3 // depending on whether VFP3 is available or not. FloatingPointHelper::Destination destination = CpuFeatures::IsSupported(VFP2) && op != Token::MOD ? FloatingPointHelper::kVFPRegisters : FloatingPointHelper::kCoreRegisters; // Allocate new heap number for result. Register result = r5; BinaryOpStub_GenerateHeapResultAllocation( masm, result, heap_number_map, scratch1, scratch2, gc_required, mode); // Load the operands. if (smi_operands) { FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2); } else { // Load right operand to d7 or r2/r3. if (right_type == BinaryOpIC::INT32) { FloatingPointHelper::LoadNumberAsInt32Double( masm, right, destination, d7, d8, r2, r3, heap_number_map, scratch1, scratch2, s0, miss); } else { Label* fail = (right_type == BinaryOpIC::HEAP_NUMBER) ? miss : not_numbers; FloatingPointHelper::LoadNumber( masm, destination, right, d7, r2, r3, heap_number_map, scratch1, scratch2, fail); } // Load left operand to d6 or r0/r1. This keeps r0/r1 intact if it // jumps to |miss|. if (left_type == BinaryOpIC::INT32) { FloatingPointHelper::LoadNumberAsInt32Double( masm, left, destination, d6, d8, r0, r1, heap_number_map, scratch1, scratch2, s0, miss); } else { Label* fail = (left_type == BinaryOpIC::HEAP_NUMBER) ? miss : not_numbers; FloatingPointHelper::LoadNumber( masm, destination, left, d6, r0, r1, heap_number_map, scratch1, scratch2, fail); } } // Calculate the result. if (destination == FloatingPointHelper::kVFPRegisters) { // Using VFP registers: // d6: Left value // d7: Right value CpuFeatures::Scope scope(VFP2); switch (op) { case Token::ADD: __ vadd(d5, d6, d7); break; case Token::SUB: __ vsub(d5, d6, d7); break; case Token::MUL: __ vmul(d5, d6, d7); break; case Token::DIV: __ vdiv(d5, d6, d7); break; default: UNREACHABLE(); } __ sub(r0, result, Operand(kHeapObjectTag)); __ vstr(d5, r0, HeapNumber::kValueOffset); __ add(r0, r0, Operand(kHeapObjectTag)); __ Ret(); } else { // Call the C function to handle the double operation. FloatingPointHelper::CallCCodeForDoubleOperation(masm, op, result, scratch1); if (FLAG_debug_code) { __ stop("Unreachable code."); } } break; } case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: case Token::SAR: case Token::SHR: case Token::SHL: { if (smi_operands) { __ SmiUntag(r3, left); __ SmiUntag(r2, right); } else { // Convert operands to 32-bit integers. Right in r2 and left in r3. FloatingPointHelper::ConvertNumberToInt32(masm, left, r3, heap_number_map, scratch1, scratch2, scratch3, d0, not_numbers); FloatingPointHelper::ConvertNumberToInt32(masm, right, r2, heap_number_map, scratch1, scratch2, scratch3, d0, not_numbers); } Label result_not_a_smi; switch (op) { case Token::BIT_OR: __ orr(r2, r3, Operand(r2)); break; case Token::BIT_XOR: __ eor(r2, r3, Operand(r2)); break; case Token::BIT_AND: __ and_(r2, r3, Operand(r2)); break; case Token::SAR: // Use only the 5 least significant bits of the shift count. __ GetLeastBitsFromInt32(r2, r2, 5); __ mov(r2, Operand(r3, ASR, r2)); break; case Token::SHR: // Use only the 5 least significant bits of the shift count. __ GetLeastBitsFromInt32(r2, r2, 5); __ mov(r2, Operand(r3, LSR, r2), SetCC); // SHR is special because it is required to produce a positive answer. // The code below for writing into heap numbers isn't capable of // writing the register as an unsigned int so we go to slow case if we // hit this case. if (CpuFeatures::IsSupported(VFP2)) { __ b(mi, &result_not_a_smi); } else { __ b(mi, not_numbers); } break; case Token::SHL: // Use only the 5 least significant bits of the shift count. __ GetLeastBitsFromInt32(r2, r2, 5); __ mov(r2, Operand(r3, LSL, r2)); break; default: UNREACHABLE(); } // Check that the *signed* result fits in a smi. __ add(r3, r2, Operand(0x40000000), SetCC); __ b(mi, &result_not_a_smi); __ SmiTag(r0, r2); __ Ret(); // Allocate new heap number for result. __ bind(&result_not_a_smi); Register result = r5; if (smi_operands) { __ AllocateHeapNumber( result, scratch1, scratch2, heap_number_map, gc_required); } else { BinaryOpStub_GenerateHeapResultAllocation( masm, result, heap_number_map, scratch1, scratch2, gc_required, mode); } // r2: Answer as signed int32. // r5: Heap number to write answer into. // Nothing can go wrong now, so move the heap number to r0, which is the // result. __ mov(r0, Operand(r5)); if (CpuFeatures::IsSupported(VFP2)) { // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As // mentioned above SHR needs to always produce a positive result. CpuFeatures::Scope scope(VFP2); __ vmov(s0, r2); if (op == Token::SHR) { __ vcvt_f64_u32(d0, s0); } else { __ vcvt_f64_s32(d0, s0); } __ sub(r3, r0, Operand(kHeapObjectTag)); __ vstr(d0, r3, HeapNumber::kValueOffset); __ Ret(); } else { // Tail call that writes the int32 in r2 to the heap number in r0, using // r3 as scratch. r0 is preserved and returned. WriteInt32ToHeapNumberStub stub(r2, r0, r3); __ TailCallStub(&stub); } break; } default: UNREACHABLE(); } } // Generate the smi code. If the operation on smis are successful this return is // generated. If the result is not a smi and heap number allocation is not // requested the code falls through. If number allocation is requested but a // heap number cannot be allocated the code jumps to the label gc_required. void BinaryOpStub_GenerateSmiCode( MacroAssembler* masm, Label* use_runtime, Label* gc_required, Token::Value op, BinaryOpStub::SmiCodeGenerateHeapNumberResults allow_heapnumber_results, OverwriteMode mode) { Label not_smis; Register left = r1; Register right = r0; Register scratch1 = r7; // Perform combined smi check on both operands. __ orr(scratch1, left, Operand(right)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(scratch1, ¬_smis); // If the smi-smi operation results in a smi return is generated. BinaryOpStub_GenerateSmiSmiOperation(masm, op); // If heap number results are possible generate the result in an allocated // heap number. if (allow_heapnumber_results == BinaryOpStub::ALLOW_HEAPNUMBER_RESULTS) { BinaryOpStub_GenerateFPOperation( masm, BinaryOpIC::UNINITIALIZED, BinaryOpIC::UNINITIALIZED, true, use_runtime, gc_required, ¬_smis, op, mode); } __ bind(¬_smis); } void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { Label not_smis, call_runtime; if (result_type_ == BinaryOpIC::UNINITIALIZED || result_type_ == BinaryOpIC::SMI) { // Only allow smi results. BinaryOpStub_GenerateSmiCode( masm, &call_runtime, NULL, op_, NO_HEAPNUMBER_RESULTS, mode_); } else { // Allow heap number result and don't make a transition if a heap number // cannot be allocated. BinaryOpStub_GenerateSmiCode( masm, &call_runtime, &call_runtime, op_, ALLOW_HEAPNUMBER_RESULTS, mode_); } // Code falls through if the result is not returned as either a smi or heap // number. GenerateTypeTransition(masm); __ bind(&call_runtime); GenerateRegisterArgsPush(masm); GenerateCallRuntime(masm); } void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) { Label call_runtime; ASSERT(left_type_ == BinaryOpIC::STRING && right_type_ == BinaryOpIC::STRING); ASSERT(op_ == Token::ADD); // If both arguments are strings, call the string add stub. // Otherwise, do a transition. // Registers containing left and right operands respectively. Register left = r1; Register right = r0; // Test if left operand is a string. __ JumpIfSmi(left, &call_runtime); __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE); __ b(ge, &call_runtime); // Test if right operand is a string. __ JumpIfSmi(right, &call_runtime); __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE); __ b(ge, &call_runtime); StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); GenerateRegisterArgsPush(masm); __ TailCallStub(&string_add_stub); __ bind(&call_runtime); GenerateTypeTransition(masm); } void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { ASSERT(Max(left_type_, right_type_) == BinaryOpIC::INT32); Register left = r1; Register right = r0; Register scratch1 = r7; Register scratch2 = r9; DwVfpRegister double_scratch = d0; Register heap_number_result = no_reg; Register heap_number_map = r6; __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); Label call_runtime; // Labels for type transition, used for wrong input or output types. // Both label are currently actually bound to the same position. We use two // different label to differentiate the cause leading to type transition. Label transition; // Smi-smi fast case. Label skip; __ orr(scratch1, left, right); __ JumpIfNotSmi(scratch1, &skip); BinaryOpStub_GenerateSmiSmiOperation(masm, op_); // Fall through if the result is not a smi. __ bind(&skip); switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: case Token::MOD: { // It could be that only SMIs have been seen at either the left // or the right operand. For precise type feedback, patch the IC // again if this changes. if (left_type_ == BinaryOpIC::SMI) { __ JumpIfNotSmi(left, &transition); } if (right_type_ == BinaryOpIC::SMI) { __ JumpIfNotSmi(right, &transition); } // Load both operands and check that they are 32-bit integer. // Jump to type transition if they are not. The registers r0 and r1 (right // and left) are preserved for the runtime call. FloatingPointHelper::Destination destination = (CpuFeatures::IsSupported(VFP2) && op_ != Token::MOD) ? FloatingPointHelper::kVFPRegisters : FloatingPointHelper::kCoreRegisters; FloatingPointHelper::LoadNumberAsInt32Double(masm, right, destination, d7, d8, r2, r3, heap_number_map, scratch1, scratch2, s0, &transition); FloatingPointHelper::LoadNumberAsInt32Double(masm, left, destination, d6, d8, r4, r5, heap_number_map, scratch1, scratch2, s0, &transition); if (destination == FloatingPointHelper::kVFPRegisters) { CpuFeatures::Scope scope(VFP2); Label return_heap_number; switch (op_) { case Token::ADD: __ vadd(d5, d6, d7); break; case Token::SUB: __ vsub(d5, d6, d7); break; case Token::MUL: __ vmul(d5, d6, d7); break; case Token::DIV: __ vdiv(d5, d6, d7); break; default: UNREACHABLE(); } if (op_ != Token::DIV) { // These operations produce an integer result. // Try to return a smi if we can. // Otherwise return a heap number if allowed, or jump to type // transition. __ EmitVFPTruncate(kRoundToZero, scratch1, d5, scratch2, d8); if (result_type_ <= BinaryOpIC::INT32) { // If the ne condition is set, result does // not fit in a 32-bit integer. __ b(ne, &transition); } // Check if the result fits in a smi. __ add(scratch2, scratch1, Operand(0x40000000), SetCC); // If not try to return a heap number. __ b(mi, &return_heap_number); // Check for minus zero. Return heap number for minus zero. Label not_zero; __ cmp(scratch1, Operand::Zero()); __ b(ne, ¬_zero); __ vmov(scratch2, d5.high()); __ tst(scratch2, Operand(HeapNumber::kSignMask)); __ b(ne, &return_heap_number); __ bind(¬_zero); // Tag the result and return. __ SmiTag(r0, scratch1); __ Ret(); } else { // DIV just falls through to allocating a heap number. } __ bind(&return_heap_number); // Return a heap number, or fall through to type transition or runtime // call if we can't. if (result_type_ >= ((op_ == Token::DIV) ? BinaryOpIC::HEAP_NUMBER : BinaryOpIC::INT32)) { // We are using vfp registers so r5 is available. heap_number_result = r5; BinaryOpStub_GenerateHeapResultAllocation(masm, heap_number_result, heap_number_map, scratch1, scratch2, &call_runtime, mode_); __ sub(r0, heap_number_result, Operand(kHeapObjectTag)); __ vstr(d5, r0, HeapNumber::kValueOffset); __ mov(r0, heap_number_result); __ Ret(); } // A DIV operation expecting an integer result falls through // to type transition. } else { // We preserved r0 and r1 to be able to call runtime. // Save the left value on the stack. __ Push(r5, r4); Label pop_and_call_runtime; // Allocate a heap number to store the result. heap_number_result = r5; BinaryOpStub_GenerateHeapResultAllocation(masm, heap_number_result, heap_number_map, scratch1, scratch2, &pop_and_call_runtime, mode_); // Load the left value from the value saved on the stack. __ Pop(r1, r0); // Call the C function to handle the double operation. FloatingPointHelper::CallCCodeForDoubleOperation( masm, op_, heap_number_result, scratch1); if (FLAG_debug_code) { __ stop("Unreachable code."); } __ bind(&pop_and_call_runtime); __ Drop(2); __ b(&call_runtime); } break; } case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: case Token::SAR: case Token::SHR: case Token::SHL: { Label return_heap_number; Register scratch3 = r5; // Convert operands to 32-bit integers. Right in r2 and left in r3. The // registers r0 and r1 (right and left) are preserved for the runtime // call. FloatingPointHelper::LoadNumberAsInt32(masm, left, r3, heap_number_map, scratch1, scratch2, scratch3, d0, d1, &transition); FloatingPointHelper::LoadNumberAsInt32(masm, right, r2, heap_number_map, scratch1, scratch2, scratch3, d0, d1, &transition); // The ECMA-262 standard specifies that, for shift operations, only the // 5 least significant bits of the shift value should be used. switch (op_) { case Token::BIT_OR: __ orr(r2, r3, Operand(r2)); break; case Token::BIT_XOR: __ eor(r2, r3, Operand(r2)); break; case Token::BIT_AND: __ and_(r2, r3, Operand(r2)); break; case Token::SAR: __ and_(r2, r2, Operand(0x1f)); __ mov(r2, Operand(r3, ASR, r2)); break; case Token::SHR: __ and_(r2, r2, Operand(0x1f)); __ mov(r2, Operand(r3, LSR, r2), SetCC); // SHR is special because it is required to produce a positive answer. // We only get a negative result if the shift value (r2) is 0. // This result cannot be respresented as a signed 32-bit integer, try // to return a heap number if we can. // The non vfp2 code does not support this special case, so jump to // runtime if we don't support it. if (CpuFeatures::IsSupported(VFP2)) { __ b(mi, (result_type_ <= BinaryOpIC::INT32) ? &transition : &return_heap_number); } else { __ b(mi, (result_type_ <= BinaryOpIC::INT32) ? &transition : &call_runtime); } break; case Token::SHL: __ and_(r2, r2, Operand(0x1f)); __ mov(r2, Operand(r3, LSL, r2)); break; default: UNREACHABLE(); } // Check if the result fits in a smi. __ add(scratch1, r2, Operand(0x40000000), SetCC); // If not try to return a heap number. (We know the result is an int32.) __ b(mi, &return_heap_number); // Tag the result and return. __ SmiTag(r0, r2); __ Ret(); __ bind(&return_heap_number); heap_number_result = r5; BinaryOpStub_GenerateHeapResultAllocation(masm, heap_number_result, heap_number_map, scratch1, scratch2, &call_runtime, mode_); if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); if (op_ != Token::SHR) { // Convert the result to a floating point value. __ vmov(double_scratch.low(), r2); __ vcvt_f64_s32(double_scratch, double_scratch.low()); } else { // The result must be interpreted as an unsigned 32-bit integer. __ vmov(double_scratch.low(), r2); __ vcvt_f64_u32(double_scratch, double_scratch.low()); } // Store the result. __ sub(r0, heap_number_result, Operand(kHeapObjectTag)); __ vstr(double_scratch, r0, HeapNumber::kValueOffset); __ mov(r0, heap_number_result); __ Ret(); } else { // Tail call that writes the int32 in r2 to the heap number in r0, using // r3 as scratch. r0 is preserved and returned. __ mov(r0, r5); WriteInt32ToHeapNumberStub stub(r2, r0, r3); __ TailCallStub(&stub); } break; } default: UNREACHABLE(); } // We never expect DIV to yield an integer result, so we always generate // type transition code for DIV operations expecting an integer result: the // code will fall through to this type transition. if (transition.is_linked() || ((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) { __ bind(&transition); GenerateTypeTransition(masm); } __ bind(&call_runtime); GenerateRegisterArgsPush(masm); GenerateCallRuntime(masm); } void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) { Label call_runtime; if (op_ == Token::ADD) { // Handle string addition here, because it is the only operation // that does not do a ToNumber conversion on the operands. GenerateAddStrings(masm); } // Convert oddball arguments to numbers. Label check, done; __ CompareRoot(r1, Heap::kUndefinedValueRootIndex); __ b(ne, &check); if (Token::IsBitOp(op_)) { __ mov(r1, Operand(Smi::FromInt(0))); } else { __ LoadRoot(r1, Heap::kNanValueRootIndex); } __ jmp(&done); __ bind(&check); __ CompareRoot(r0, Heap::kUndefinedValueRootIndex); __ b(ne, &done); if (Token::IsBitOp(op_)) { __ mov(r0, Operand(Smi::FromInt(0))); } else { __ LoadRoot(r0, Heap::kNanValueRootIndex); } __ bind(&done); GenerateHeapNumberStub(masm); } void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { Label call_runtime, transition; BinaryOpStub_GenerateFPOperation( masm, left_type_, right_type_, false, &transition, &call_runtime, &transition, op_, mode_); __ bind(&transition); GenerateTypeTransition(masm); __ bind(&call_runtime); GenerateRegisterArgsPush(masm); GenerateCallRuntime(masm); } void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) { Label call_runtime, call_string_add_or_runtime, transition; BinaryOpStub_GenerateSmiCode( masm, &call_runtime, &call_runtime, op_, ALLOW_HEAPNUMBER_RESULTS, mode_); BinaryOpStub_GenerateFPOperation( masm, left_type_, right_type_, false, &call_string_add_or_runtime, &call_runtime, &transition, op_, mode_); __ bind(&transition); GenerateTypeTransition(masm); __ bind(&call_string_add_or_runtime); if (op_ == Token::ADD) { GenerateAddStrings(masm); } __ bind(&call_runtime); GenerateRegisterArgsPush(masm); GenerateCallRuntime(masm); } void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) { ASSERT(op_ == Token::ADD); Label left_not_string, call_runtime; Register left = r1; Register right = r0; // Check if left argument is a string. __ JumpIfSmi(left, &left_not_string); __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE); __ b(ge, &left_not_string); StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB); GenerateRegisterArgsPush(masm); __ TailCallStub(&string_add_left_stub); // Left operand is not a string, test right. __ bind(&left_not_string); __ JumpIfSmi(right, &call_runtime); __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE); __ b(ge, &call_runtime); StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB); GenerateRegisterArgsPush(masm); __ TailCallStub(&string_add_right_stub); // At least one argument is not a string. __ bind(&call_runtime); } void BinaryOpStub_GenerateHeapResultAllocation(MacroAssembler* masm, Register result, Register heap_number_map, Register scratch1, Register scratch2, Label* gc_required, OverwriteMode mode) { // Code below will scratch result if allocation fails. To keep both arguments // intact for the runtime call result cannot be one of these. ASSERT(!result.is(r0) && !result.is(r1)); if (mode == OVERWRITE_LEFT || mode == OVERWRITE_RIGHT) { Label skip_allocation, allocated; Register overwritable_operand = mode == OVERWRITE_LEFT ? r1 : r0; // If the overwritable operand is already an object, we skip the // allocation of a heap number. __ JumpIfNotSmi(overwritable_operand, &skip_allocation); // Allocate a heap number for the result. __ AllocateHeapNumber( result, scratch1, scratch2, heap_number_map, gc_required); __ b(&allocated); __ bind(&skip_allocation); // Use object holding the overwritable operand for result. __ mov(result, Operand(overwritable_operand)); __ bind(&allocated); } else { ASSERT(mode == NO_OVERWRITE); __ AllocateHeapNumber( result, scratch1, scratch2, heap_number_map, gc_required); } } void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { __ Push(r1, r0); } void TranscendentalCacheStub::Generate(MacroAssembler* masm) { // Untagged case: double input in d2, double result goes // into d2. // Tagged case: tagged input on top of stack and in r0, // tagged result (heap number) goes into r0. Label input_not_smi; Label loaded; Label calculate; Label invalid_cache; const Register scratch0 = r9; const Register scratch1 = r7; const Register cache_entry = r0; const bool tagged = (argument_type_ == TAGGED); if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); if (tagged) { // Argument is a number and is on stack and in r0. // Load argument and check if it is a smi. __ JumpIfNotSmi(r0, &input_not_smi); // Input is a smi. Convert to double and load the low and high words // of the double into r2, r3. __ IntegerToDoubleConversionWithVFP3(r0, r3, r2); __ b(&loaded); __ bind(&input_not_smi); // Check if input is a HeapNumber. __ CheckMap(r0, r1, Heap::kHeapNumberMapRootIndex, &calculate, DONT_DO_SMI_CHECK); // Input is a HeapNumber. Load it to a double register and store the // low and high words into r2, r3. __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset)); __ vmov(r2, r3, d0); } else { // Input is untagged double in d2. Output goes to d2. __ vmov(r2, r3, d2); } __ bind(&loaded); // r2 = low 32 bits of double value // r3 = high 32 bits of double value // Compute hash (the shifts are arithmetic): // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); __ eor(r1, r2, Operand(r3)); __ eor(r1, r1, Operand(r1, ASR, 16)); __ eor(r1, r1, Operand(r1, ASR, 8)); ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize)); __ And(r1, r1, Operand(TranscendentalCache::SubCache::kCacheSize - 1)); // r2 = low 32 bits of double value. // r3 = high 32 bits of double value. // r1 = TranscendentalCache::hash(double value). Isolate* isolate = masm->isolate(); ExternalReference cache_array = ExternalReference::transcendental_cache_array_address(isolate); __ mov(cache_entry, Operand(cache_array)); // cache_entry points to cache array. int cache_array_index = type_ * sizeof(isolate->transcendental_cache()->caches_[0]); __ ldr(cache_entry, MemOperand(cache_entry, cache_array_index)); // r0 points to the cache for the type type_. // If NULL, the cache hasn't been initialized yet, so go through runtime. __ cmp(cache_entry, Operand::Zero()); __ b(eq, &invalid_cache); #ifdef DEBUG // Check that the layout of cache elements match expectations. { TranscendentalCache::SubCache::Element test_elem[2]; char* elem_start = reinterpret_cast(&test_elem[0]); char* elem2_start = reinterpret_cast(&test_elem[1]); char* elem_in0 = reinterpret_cast(&(test_elem[0].in[0])); char* elem_in1 = reinterpret_cast(&(test_elem[0].in[1])); char* elem_out = reinterpret_cast(&(test_elem[0].output)); CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. CHECK_EQ(0, elem_in0 - elem_start); CHECK_EQ(kIntSize, elem_in1 - elem_start); CHECK_EQ(2 * kIntSize, elem_out - elem_start); } #endif // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12]. __ add(r1, r1, Operand(r1, LSL, 1)); __ add(cache_entry, cache_entry, Operand(r1, LSL, 2)); // Check if cache matches: Double value is stored in uint32_t[2] array. __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit()); __ cmp(r2, r4); __ cmp(r3, r5, eq); __ b(ne, &calculate); // Cache hit. Load result, cleanup and return. Counters* counters = masm->isolate()->counters(); __ IncrementCounter( counters->transcendental_cache_hit(), 1, scratch0, scratch1); if (tagged) { // Pop input value from stack and load result into r0. __ pop(); __ mov(r0, Operand(r6)); } else { // Load result into d2. __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset)); } __ Ret(); } // if (CpuFeatures::IsSupported(VFP3)) __ bind(&calculate); Counters* counters = masm->isolate()->counters(); __ IncrementCounter( counters->transcendental_cache_miss(), 1, scratch0, scratch1); if (tagged) { __ bind(&invalid_cache); ExternalReference runtime_function = ExternalReference(RuntimeFunction(), masm->isolate()); __ TailCallExternalReference(runtime_function, 1, 1); } else { ASSERT(CpuFeatures::IsSupported(VFP2)); CpuFeatures::Scope scope(VFP2); Label no_update; Label skip_cache; // Call C function to calculate the result and update the cache. // r0: precalculated cache entry address. // r2 and r3: parts of the double value. // Store r0, r2 and r3 on stack for later before calling C function. __ Push(r3, r2, cache_entry); GenerateCallCFunction(masm, scratch0); __ GetCFunctionDoubleResult(d2); // Try to update the cache. If we cannot allocate a // heap number, we return the result without updating. __ Pop(r3, r2, cache_entry); __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update); __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset)); __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit()); __ Ret(); __ bind(&invalid_cache); // The cache is invalid. Call runtime which will recreate the // cache. __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache); __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(r0); __ CallRuntime(RuntimeFunction(), 1); } __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset)); __ Ret(); __ bind(&skip_cache); // Call C function to calculate the result and answer directly // without updating the cache. GenerateCallCFunction(masm, scratch0); __ GetCFunctionDoubleResult(d2); __ bind(&no_update); // We return the value in d2 without adding it to the cache, but // we cause a scavenging GC so that future allocations will succeed. { FrameScope scope(masm, StackFrame::INTERNAL); // Allocate an aligned object larger than a HeapNumber. ASSERT(4 * kPointerSize >= HeapNumber::kSize); __ mov(scratch0, Operand(4 * kPointerSize)); __ push(scratch0); __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace); } __ Ret(); } } void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm, Register scratch) { ASSERT(CpuFeatures::IsEnabled(VFP2)); Isolate* isolate = masm->isolate(); __ push(lr); __ PrepareCallCFunction(0, 1, scratch); if (masm->use_eabi_hardfloat()) { __ vmov(d0, d2); } else { __ vmov(r0, r1, d2); } AllowExternalCallThatCantCauseGC scope(masm); switch (type_) { case TranscendentalCache::SIN: __ CallCFunction(ExternalReference::math_sin_double_function(isolate), 0, 1); break; case TranscendentalCache::COS: __ CallCFunction(ExternalReference::math_cos_double_function(isolate), 0, 1); break; case TranscendentalCache::TAN: __ CallCFunction(ExternalReference::math_tan_double_function(isolate), 0, 1); break; case TranscendentalCache::LOG: __ CallCFunction(ExternalReference::math_log_double_function(isolate), 0, 1); break; default: UNIMPLEMENTED(); break; } __ pop(lr); } Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { switch (type_) { // Add more cases when necessary. case TranscendentalCache::SIN: return Runtime::kMath_sin; case TranscendentalCache::COS: return Runtime::kMath_cos; case TranscendentalCache::TAN: return Runtime::kMath_tan; case TranscendentalCache::LOG: return Runtime::kMath_log; default: UNIMPLEMENTED(); return Runtime::kAbort; } } void StackCheckStub::Generate(MacroAssembler* masm) { __ TailCallRuntime(Runtime::kStackGuard, 0, 1); } void InterruptStub::Generate(MacroAssembler* masm) { __ TailCallRuntime(Runtime::kInterrupt, 0, 1); } void MathPowStub::Generate(MacroAssembler* masm) { CpuFeatures::Scope vfp2_scope(VFP2); const Register base = r1; const Register exponent = r2; const Register heapnumbermap = r5; const Register heapnumber = r0; const DwVfpRegister double_base = d1; const DwVfpRegister double_exponent = d2; const DwVfpRegister double_result = d3; const DwVfpRegister double_scratch = d0; const SwVfpRegister single_scratch = s0; const Register scratch = r9; const Register scratch2 = r7; Label call_runtime, done, int_exponent; if (exponent_type_ == ON_STACK) { Label base_is_smi, unpack_exponent; // The exponent and base are supplied as arguments on the stack. // This can only happen if the stub is called from non-optimized code. // Load input parameters from stack to double registers. __ ldr(base, MemOperand(sp, 1 * kPointerSize)); __ ldr(exponent, MemOperand(sp, 0 * kPointerSize)); __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex); __ UntagAndJumpIfSmi(scratch, base, &base_is_smi); __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset)); __ cmp(scratch, heapnumbermap); __ b(ne, &call_runtime); __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset)); __ jmp(&unpack_exponent); __ bind(&base_is_smi); __ vmov(single_scratch, scratch); __ vcvt_f64_s32(double_base, single_scratch); __ bind(&unpack_exponent); __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset)); __ cmp(scratch, heapnumbermap); __ b(ne, &call_runtime); __ vldr(double_exponent, FieldMemOperand(exponent, HeapNumber::kValueOffset)); } else if (exponent_type_ == TAGGED) { // Base is already in double_base. __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); __ vldr(double_exponent, FieldMemOperand(exponent, HeapNumber::kValueOffset)); } if (exponent_type_ != INTEGER) { Label int_exponent_convert; // Detect integer exponents stored as double. __ vcvt_u32_f64(single_scratch, double_exponent); // We do not check for NaN or Infinity here because comparing numbers on // ARM correctly distinguishes NaNs. We end up calling the built-in. __ vcvt_f64_u32(double_scratch, single_scratch); __ VFPCompareAndSetFlags(double_scratch, double_exponent); __ b(eq, &int_exponent_convert); if (exponent_type_ == ON_STACK) { // Detect square root case. Crankshaft detects constant +/-0.5 at // compile time and uses DoMathPowHalf instead. We then skip this check // for non-constant cases of +/-0.5 as these hardly occur. Label not_plus_half; // Test for 0.5. __ vmov(double_scratch, 0.5, scratch); __ VFPCompareAndSetFlags(double_exponent, double_scratch); __ b(ne, ¬_plus_half); // Calculates square root of base. Check for the special case of // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). __ vmov(double_scratch, -V8_INFINITY, scratch); __ VFPCompareAndSetFlags(double_base, double_scratch); __ vneg(double_result, double_scratch, eq); __ b(eq, &done); // Add +0 to convert -0 to +0. __ vadd(double_scratch, double_base, kDoubleRegZero); __ vsqrt(double_result, double_scratch); __ jmp(&done); __ bind(¬_plus_half); __ vmov(double_scratch, -0.5, scratch); __ VFPCompareAndSetFlags(double_exponent, double_scratch); __ b(ne, &call_runtime); // Calculates square root of base. Check for the special case of // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). __ vmov(double_scratch, -V8_INFINITY, scratch); __ VFPCompareAndSetFlags(double_base, double_scratch); __ vmov(double_result, kDoubleRegZero, eq); __ b(eq, &done); // Add +0 to convert -0 to +0. __ vadd(double_scratch, double_base, kDoubleRegZero); __ vmov(double_result, 1.0, scratch); __ vsqrt(double_scratch, double_scratch); __ vdiv(double_result, double_result, double_scratch); __ jmp(&done); } __ push(lr); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ SetCallCDoubleArguments(double_base, double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(masm->isolate()), 0, 2); } __ pop(lr); __ GetCFunctionDoubleResult(double_result); __ jmp(&done); __ bind(&int_exponent_convert); __ vcvt_u32_f64(single_scratch, double_exponent); __ vmov(scratch, single_scratch); } // Calculate power with integer exponent. __ bind(&int_exponent); // Get two copies of exponent in the registers scratch and exponent. if (exponent_type_ == INTEGER) { __ mov(scratch, exponent); } else { // Exponent has previously been stored into scratch as untagged integer. __ mov(exponent, scratch); } __ vmov(double_scratch, double_base); // Back up base. __ vmov(double_result, 1.0, scratch2); // Get absolute value of exponent. __ cmp(scratch, Operand::Zero()); __ mov(scratch2, Operand::Zero(), LeaveCC, mi); __ sub(scratch, scratch2, scratch, LeaveCC, mi); Label while_true; __ bind(&while_true); __ mov(scratch, Operand(scratch, ASR, 1), SetCC); __ vmul(double_result, double_result, double_scratch, cs); __ vmul(double_scratch, double_scratch, double_scratch, ne); __ b(ne, &while_true); __ cmp(exponent, Operand::Zero()); __ b(ge, &done); __ vmov(double_scratch, 1.0, scratch); __ vdiv(double_result, double_scratch, double_result); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ VFPCompareAndSetFlags(double_result, 0.0); __ b(ne, &done); // double_exponent may not containe the exponent value if the input was a // smi. We set it with exponent value before bailing out. __ vmov(single_scratch, exponent); __ vcvt_f64_s32(double_exponent, single_scratch); // Returning or bailing out. Counters* counters = masm->isolate()->counters(); if (exponent_type_ == ON_STACK) { // The arguments are still on the stack. __ bind(&call_runtime); __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); // The stub is called from non-optimized code, which expects the result // as heap number in exponent. __ bind(&done); __ AllocateHeapNumber( heapnumber, scratch, scratch2, heapnumbermap, &call_runtime); __ vstr(double_result, FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); ASSERT(heapnumber.is(r0)); __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); __ Ret(2); } else { __ push(lr); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ SetCallCDoubleArguments(double_base, double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(masm->isolate()), 0, 2); } __ pop(lr); __ GetCFunctionDoubleResult(double_result); __ bind(&done); __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); __ Ret(); } } bool CEntryStub::NeedsImmovableCode() { return true; } bool CEntryStub::IsPregenerated() { return (!save_doubles_ || ISOLATE->fp_stubs_generated()) && result_size_ == 1; } void CodeStub::GenerateStubsAheadOfTime() { CEntryStub::GenerateAheadOfTime(); WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(); RecordWriteStub::GenerateFixedRegStubsAheadOfTime(); } void CodeStub::GenerateFPStubs() { SaveFPRegsMode mode = CpuFeatures::IsSupported(VFP2) ? kSaveFPRegs : kDontSaveFPRegs; CEntryStub save_doubles(1, mode); StoreBufferOverflowStub stub(mode); // These stubs might already be in the snapshot, detect that and don't // regenerate, which would lead to code stub initialization state being messed // up. Code* save_doubles_code = NULL; Code* store_buffer_overflow_code = NULL; if (!save_doubles.FindCodeInCache(&save_doubles_code, ISOLATE)) { if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope2(VFP2); save_doubles_code = *save_doubles.GetCode(); store_buffer_overflow_code = *stub.GetCode(); } else { save_doubles_code = *save_doubles.GetCode(); store_buffer_overflow_code = *stub.GetCode(); } save_doubles_code->set_is_pregenerated(true); store_buffer_overflow_code->set_is_pregenerated(true); } ISOLATE->set_fp_stubs_generated(true); } void CEntryStub::GenerateAheadOfTime() { CEntryStub stub(1, kDontSaveFPRegs); Handle code = stub.GetCode(); code->set_is_pregenerated(true); } static void JumpIfOOM(MacroAssembler* masm, Register value, Register scratch, Label* oom_label) { STATIC_ASSERT(Failure::OUT_OF_MEMORY_EXCEPTION == 3); STATIC_ASSERT(kFailureTag == 3); __ and_(scratch, value, Operand(0xf)); __ cmp(scratch, Operand(0xf)); __ b(eq, oom_label); } void CEntryStub::GenerateCore(MacroAssembler* masm, Label* throw_normal_exception, Label* throw_termination_exception, Label* throw_out_of_memory_exception, bool do_gc, bool always_allocate) { // r0: result parameter for PerformGC, if any // r4: number of arguments including receiver (C callee-saved) // r5: pointer to builtin function (C callee-saved) // r6: pointer to the first argument (C callee-saved) Isolate* isolate = masm->isolate(); if (do_gc) { // Passing r0. __ PrepareCallCFunction(1, 0, r1); __ CallCFunction(ExternalReference::perform_gc_function(isolate), 1, 0); } ExternalReference scope_depth = ExternalReference::heap_always_allocate_scope_depth(isolate); if (always_allocate) { __ mov(r0, Operand(scope_depth)); __ ldr(r1, MemOperand(r0)); __ add(r1, r1, Operand(1)); __ str(r1, MemOperand(r0)); } // Call C built-in. // r0 = argc, r1 = argv __ mov(r0, Operand(r4)); __ mov(r1, Operand(r6)); #if defined(V8_HOST_ARCH_ARM) int frame_alignment = MacroAssembler::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (FLAG_debug_code) { if (frame_alignment > kPointerSize) { Label alignment_as_expected; ASSERT(IsPowerOf2(frame_alignment)); __ tst(sp, Operand(frame_alignment_mask)); __ b(eq, &alignment_as_expected); // Don't use Check here, as it will call Runtime_Abort re-entering here. __ stop("Unexpected alignment"); __ bind(&alignment_as_expected); } } #endif __ mov(r2, Operand(ExternalReference::isolate_address())); // To let the GC traverse the return address of the exit frames, we need to // know where the return address is. The CEntryStub is unmovable, so // we can store the address on the stack to be able to find it again and // we never have to restore it, because it will not change. // Compute the return address in lr to return to after the jump below. Pc is // already at '+ 8' from the current instruction but return is after three // instructions so add another 4 to pc to get the return address. { // Prevent literal pool emission before return address. Assembler::BlockConstPoolScope block_const_pool(masm); masm->add(lr, pc, Operand(4)); __ str(lr, MemOperand(sp, 0)); masm->Jump(r5); } if (always_allocate) { // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1 // though (contain the result). __ mov(r2, Operand(scope_depth)); __ ldr(r3, MemOperand(r2)); __ sub(r3, r3, Operand(1)); __ str(r3, MemOperand(r2)); } // check for failure result Label failure_returned; STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); // Lower 2 bits of r2 are 0 iff r0 has failure tag. __ add(r2, r0, Operand(1)); __ tst(r2, Operand(kFailureTagMask)); __ b(eq, &failure_returned); // Exit C frame and return. // r0:r1: result // sp: stack pointer // fp: frame pointer // Callee-saved register r4 still holds argc. __ LeaveExitFrame(save_doubles_, r4); __ mov(pc, lr); // check if we should retry or throw exception Label retry; __ bind(&failure_returned); STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); __ b(eq, &retry); // Special handling of out of memory exceptions. JumpIfOOM(masm, r0, ip, throw_out_of_memory_exception); // Retrieve the pending exception and clear the variable. __ mov(r3, Operand(isolate->factory()->the_hole_value())); __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate))); __ ldr(r0, MemOperand(ip)); __ str(r3, MemOperand(ip)); // Special handling of termination exceptions which are uncatchable // by javascript code. __ cmp(r0, Operand(isolate->factory()->termination_exception())); __ b(eq, throw_termination_exception); // Handle normal exception. __ jmp(throw_normal_exception); __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying } void CEntryStub::Generate(MacroAssembler* masm) { // Called from JavaScript; parameters are on stack as if calling JS function // r0: number of arguments including receiver // r1: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) // Result returned in r0 or r0+r1 by default. // NOTE: Invocations of builtins may return failure objects // instead of a proper result. The builtin entry handles // this by performing a garbage collection and retrying the // builtin once. // Compute the argv pointer in a callee-saved register. __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2)); __ sub(r6, r6, Operand(kPointerSize)); // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); __ EnterExitFrame(save_doubles_); // Set up argc and the builtin function in callee-saved registers. __ mov(r4, Operand(r0)); __ mov(r5, Operand(r1)); // r4: number of arguments (C callee-saved) // r5: pointer to builtin function (C callee-saved) // r6: pointer to first argument (C callee-saved) Label throw_normal_exception; Label throw_termination_exception; Label throw_out_of_memory_exception; // Call into the runtime system. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, false, false); // Do space-specific GC and retry runtime call. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, false); // Do full GC and retry runtime call one final time. Failure* failure = Failure::InternalError(); __ mov(r0, Operand(reinterpret_cast(failure))); GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, true); __ bind(&throw_out_of_memory_exception); // Set external caught exception to false. Isolate* isolate = masm->isolate(); ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress, isolate); __ mov(r0, Operand(false, RelocInfo::NONE32)); __ mov(r2, Operand(external_caught)); __ str(r0, MemOperand(r2)); // Set pending exception and r0 to out of memory exception. Label already_have_failure; JumpIfOOM(masm, r0, ip, &already_have_failure); Failure* out_of_memory = Failure::OutOfMemoryException(0x1); __ mov(r0, Operand(reinterpret_cast(out_of_memory))); __ bind(&already_have_failure); __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate))); __ str(r0, MemOperand(r2)); // Fall through to the next label. __ bind(&throw_termination_exception); __ ThrowUncatchable(r0); __ bind(&throw_normal_exception); __ Throw(r0); } void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { // r0: code entry // r1: function // r2: receiver // r3: argc // [sp+0]: argv Label invoke, handler_entry, exit; // Called from C, so do not pop argc and args on exit (preserve sp) // No need to save register-passed args // Save callee-saved registers (incl. cp and fp), sp, and lr __ stm(db_w, sp, kCalleeSaved | lr.bit()); if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); // Save callee-saved vfp registers. __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); // Set up the reserved register for 0.0. __ vmov(kDoubleRegZero, 0.0); } // Get address of argv, see stm above. // r0: code entry // r1: function // r2: receiver // r3: argc // Set up argv in r4. int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize; if (CpuFeatures::IsSupported(VFP2)) { offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize; } __ ldr(r4, MemOperand(sp, offset_to_argv)); // Push a frame with special values setup to mark it as an entry frame. // r0: code entry // r1: function // r2: receiver // r3: argc // r4: argv Isolate* isolate = masm->isolate(); __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used. int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; __ mov(r7, Operand(Smi::FromInt(marker))); __ mov(r6, Operand(Smi::FromInt(marker))); __ mov(r5, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate))); __ ldr(r5, MemOperand(r5)); __ Push(r8, r7, r6, r5); // Set up frame pointer for the frame to be pushed. __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); // If this is the outermost JS call, set js_entry_sp value. Label non_outermost_js; ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate); __ mov(r5, Operand(ExternalReference(js_entry_sp))); __ ldr(r6, MemOperand(r5)); __ cmp(r6, Operand::Zero()); __ b(ne, &non_outermost_js); __ str(fp, MemOperand(r5)); __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); Label cont; __ b(&cont); __ bind(&non_outermost_js); __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME))); __ bind(&cont); __ push(ip); // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ jmp(&invoke); // Block literal pool emission whilst taking the position of the handler // entry. This avoids making the assumption that literal pools are always // emitted after an instruction is emitted, rather than before. { Assembler::BlockConstPoolScope block_const_pool(masm); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. Coming in here the // fp will be invalid because the PushTryHandler below sets it to 0 to // signal the existence of the JSEntry frame. __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate))); } __ str(r0, MemOperand(ip)); __ mov(r0, Operand(reinterpret_cast(Failure::Exception()))); __ b(&exit); // Invoke: Link this frame into the handler chain. There's only one // handler block in this code object, so its index is 0. __ bind(&invoke); // Must preserve r0-r4, r5-r7 are available. __ PushTryHandler(StackHandler::JS_ENTRY, 0); // If an exception not caught by another handler occurs, this handler // returns control to the code after the bl(&invoke) above, which // restores all kCalleeSaved registers (including cp and fp) to their // saved values before returning a failure to C. // Clear any pending exceptions. __ mov(r5, Operand(isolate->factory()->the_hole_value())); __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate))); __ str(r5, MemOperand(ip)); // Invoke the function by calling through JS entry trampoline builtin. // Notice that we cannot store a reference to the trampoline code directly in // this stub, because runtime stubs are not traversed when doing GC. // Expected registers by Builtins::JSEntryTrampoline // r0: code entry // r1: function // r2: receiver // r3: argc // r4: argv if (is_construct) { ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, isolate); __ mov(ip, Operand(construct_entry)); } else { ExternalReference entry(Builtins::kJSEntryTrampoline, isolate); __ mov(ip, Operand(entry)); } __ ldr(ip, MemOperand(ip)); // deref address // Branch and link to JSEntryTrampoline. We don't use the double underscore // macro for the add instruction because we don't want the coverage tool // inserting instructions here after we read the pc. We block literal pool // emission for the same reason. { Assembler::BlockConstPoolScope block_const_pool(masm); __ mov(lr, Operand(pc)); masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); } // Unlink this frame from the handler chain. __ PopTryHandler(); __ bind(&exit); // r0 holds result // Check if the current stack frame is marked as the outermost JS frame. Label non_outermost_js_2; __ pop(r5); __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); __ b(ne, &non_outermost_js_2); __ mov(r6, Operand::Zero()); __ mov(r5, Operand(ExternalReference(js_entry_sp))); __ str(r6, MemOperand(r5)); __ bind(&non_outermost_js_2); // Restore the top frame descriptors from the stack. __ pop(r3); __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate))); __ str(r3, MemOperand(ip)); // Reset the stack to the callee saved registers. __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); // Restore callee-saved registers and return. #ifdef DEBUG if (FLAG_debug_code) { __ mov(lr, Operand(pc)); } #endif if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); // Restore callee-saved vfp registers. __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); } __ ldm(ia_w, sp, kCalleeSaved | pc.bit()); } // Uses registers r0 to r4. // Expected input (depending on whether args are in registers or on the stack): // * object: r0 or at sp + 1 * kPointerSize. // * function: r1 or at sp. // // An inlined call site may have been generated before calling this stub. // In this case the offset to the inline site to patch is passed on the stack, // in the safepoint slot for register r4. // (See LCodeGen::DoInstanceOfKnownGlobal) void InstanceofStub::Generate(MacroAssembler* masm) { // Call site inlining and patching implies arguments in registers. ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck()); // ReturnTrueFalse is only implemented for inlined call sites. ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck()); // Fixed register usage throughout the stub: const Register object = r0; // Object (lhs). Register map = r3; // Map of the object. const Register function = r1; // Function (rhs). const Register prototype = r4; // Prototype of the function. const Register inline_site = r9; const Register scratch = r2; const int32_t kDeltaToLoadBoolResult = 4 * kPointerSize; Label slow, loop, is_instance, is_not_instance, not_js_object; if (!HasArgsInRegisters()) { __ ldr(object, MemOperand(sp, 1 * kPointerSize)); __ ldr(function, MemOperand(sp, 0)); } // Check that the left hand is a JS object and load map. __ JumpIfSmi(object, ¬_js_object); __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); // If there is a call site cache don't look in the global cache, but do the // real lookup and update the call site cache. if (!HasCallSiteInlineCheck()) { Label miss; __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex); __ b(ne, &miss); __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex); __ b(ne, &miss); __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); __ Ret(HasArgsInRegisters() ? 0 : 2); __ bind(&miss); } // Get the prototype of the function. __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true); // Check that the function prototype is a JS object. __ JumpIfSmi(prototype, &slow); __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); // Update the global instanceof or call site inlined cache with the current // map and function. The cached answer will be set when it is known below. if (!HasCallSiteInlineCheck()) { __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); } else { ASSERT(HasArgsInRegisters()); // Patch the (relocated) inlined map check. // The offset was stored in r4 safepoint slot. // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal) __ LoadFromSafepointRegisterSlot(scratch, r4); __ sub(inline_site, lr, scratch); // Get the map location in scratch and patch it. __ GetRelocatedValueLocation(inline_site, scratch); __ ldr(scratch, MemOperand(scratch)); __ str(map, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset)); } // Register mapping: r3 is object map and r4 is function prototype. // Get prototype of object into r2. __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset)); // We don't need map any more. Use it as a scratch register. Register scratch2 = map; map = no_reg; // Loop through the prototype chain looking for the function prototype. __ LoadRoot(scratch2, Heap::kNullValueRootIndex); __ bind(&loop); __ cmp(scratch, Operand(prototype)); __ b(eq, &is_instance); __ cmp(scratch, scratch2); __ b(eq, &is_not_instance); __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset)); __ jmp(&loop); __ bind(&is_instance); if (!HasCallSiteInlineCheck()) { __ mov(r0, Operand(Smi::FromInt(0))); __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); } else { // Patch the call site to return true. __ LoadRoot(r0, Heap::kTrueValueRootIndex); __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); // Get the boolean result location in scratch and patch it. __ GetRelocatedValueLocation(inline_site, scratch); __ str(r0, MemOperand(scratch)); if (!ReturnTrueFalseObject()) { __ mov(r0, Operand(Smi::FromInt(0))); } } __ Ret(HasArgsInRegisters() ? 0 : 2); __ bind(&is_not_instance); if (!HasCallSiteInlineCheck()) { __ mov(r0, Operand(Smi::FromInt(1))); __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); } else { // Patch the call site to return false. __ LoadRoot(r0, Heap::kFalseValueRootIndex); __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); // Get the boolean result location in scratch and patch it. __ GetRelocatedValueLocation(inline_site, scratch); __ str(r0, MemOperand(scratch)); if (!ReturnTrueFalseObject()) { __ mov(r0, Operand(Smi::FromInt(1))); } } __ Ret(HasArgsInRegisters() ? 0 : 2); Label object_not_null, object_not_null_or_smi; __ bind(¬_js_object); // Before null, smi and string value checks, check that the rhs is a function // as for a non-function rhs an exception needs to be thrown. __ JumpIfSmi(function, &slow); __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE); __ b(ne, &slow); // Null is not instance of anything. __ cmp(scratch, Operand(masm->isolate()->factory()->null_value())); __ b(ne, &object_not_null); __ mov(r0, Operand(Smi::FromInt(1))); __ Ret(HasArgsInRegisters() ? 0 : 2); __ bind(&object_not_null); // Smi values are not instances of anything. __ JumpIfNotSmi(object, &object_not_null_or_smi); __ mov(r0, Operand(Smi::FromInt(1))); __ Ret(HasArgsInRegisters() ? 0 : 2); __ bind(&object_not_null_or_smi); // String values are not instances of anything. __ IsObjectJSStringType(object, scratch, &slow); __ mov(r0, Operand(Smi::FromInt(1))); __ Ret(HasArgsInRegisters() ? 0 : 2); // Slow-case. Tail call builtin. __ bind(&slow); if (!ReturnTrueFalseObject()) { if (HasArgsInRegisters()) { __ Push(r0, r1); } __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); } else { { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(r0, r1); __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); } __ cmp(r0, Operand::Zero()); __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq); __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne); __ Ret(HasArgsInRegisters() ? 0 : 2); } } void ArrayLengthStub::Generate(MacroAssembler* masm) { Label miss; Register receiver; if (kind() == Code::KEYED_LOAD_IC) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- __ cmp(r0, Operand(masm->isolate()->factory()->length_symbol())); __ b(ne, &miss); receiver = r1; } else { ASSERT(kind() == Code::LOAD_IC); // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- r0 : receiver // -- sp[0] : receiver // ----------------------------------- receiver = r0; } StubCompiler::GenerateLoadArrayLength(masm, receiver, r3, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, kind()); } void FunctionPrototypeStub::Generate(MacroAssembler* masm) { Label miss; Register receiver; if (kind() == Code::KEYED_LOAD_IC) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- __ cmp(r0, Operand(masm->isolate()->factory()->prototype_symbol())); __ b(ne, &miss); receiver = r1; } else { ASSERT(kind() == Code::LOAD_IC); // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- r0 : receiver // -- sp[0] : receiver // ----------------------------------- receiver = r0; } StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, r3, r4, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, kind()); } void StringLengthStub::Generate(MacroAssembler* masm) { Label miss; Register receiver; if (kind() == Code::KEYED_LOAD_IC) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- __ cmp(r0, Operand(masm->isolate()->factory()->length_symbol())); __ b(ne, &miss); receiver = r1; } else { ASSERT(kind() == Code::LOAD_IC); // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- r0 : receiver // -- sp[0] : receiver // ----------------------------------- receiver = r0; } StubCompiler::GenerateLoadStringLength(masm, receiver, r3, r4, &miss, support_wrapper_); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, kind()); } void StoreArrayLengthStub::Generate(MacroAssembler* masm) { // This accepts as a receiver anything JSArray::SetElementsLength accepts // (currently anything except for external arrays which means anything with // elements of FixedArray type). Value must be a number, but only smis are // accepted as the most common case. Label miss; Register receiver; Register value; if (kind() == Code::KEYED_STORE_IC) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : value // -- r1 : key // -- r2 : receiver // ----------------------------------- __ cmp(r1, Operand(masm->isolate()->factory()->length_symbol())); __ b(ne, &miss); receiver = r2; value = r0; } else { ASSERT(kind() == Code::STORE_IC); // ----------- S t a t e ------------- // -- lr : return address // -- r0 : value // -- r1 : receiver // -- r2 : key // ----------------------------------- receiver = r1; value = r0; } Register scratch = r3; // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, &miss); // Check that the object is a JS array. __ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE); __ b(ne, &miss); // Check that elements are FixedArray. // We rely on StoreIC_ArrayLength below to deal with all types of // fast elements (including COW). __ ldr(scratch, FieldMemOperand(receiver, JSArray::kElementsOffset)); __ CompareObjectType(scratch, scratch, scratch, FIXED_ARRAY_TYPE); __ b(ne, &miss); // Check that the array has fast properties, otherwise the length // property might have been redefined. __ ldr(scratch, FieldMemOperand(receiver, JSArray::kPropertiesOffset)); __ ldr(scratch, FieldMemOperand(scratch, FixedArray::kMapOffset)); __ CompareRoot(scratch, Heap::kHashTableMapRootIndex); __ b(eq, &miss); // Check that value is a smi. __ JumpIfNotSmi(value, &miss); // Prepare tail call to StoreIC_ArrayLength. __ Push(receiver, value); ExternalReference ref = ExternalReference(IC_Utility(IC::kStoreIC_ArrayLength), masm->isolate()); __ TailCallExternalReference(ref, 2, 1); __ bind(&miss); StubCompiler::GenerateStoreMiss(masm, kind()); } Register InstanceofStub::left() { return r0; } Register InstanceofStub::right() { return r1; } void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { // The displacement is the offset of the last parameter (if any) // relative to the frame pointer. const int kDisplacement = StandardFrameConstants::kCallerSPOffset - kPointerSize; // Check that the key is a smi. Label slow; __ JumpIfNotSmi(r1, &slow); // Check if the calling frame is an arguments adaptor frame. Label adaptor; __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ b(eq, &adaptor); // Check index against formal parameters count limit passed in // through register r0. Use unsigned comparison to get negative // check for free. __ cmp(r1, r0); __ b(hs, &slow); // Read the argument from the stack and return it. __ sub(r3, r0, r1); __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); __ ldr(r0, MemOperand(r3, kDisplacement)); __ Jump(lr); // Arguments adaptor case: Check index against actual arguments // limit found in the arguments adaptor frame. Use unsigned // comparison to get negative check for free. __ bind(&adaptor); __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ cmp(r1, r0); __ b(cs, &slow); // Read the argument from the adaptor frame and return it. __ sub(r3, r0, r1); __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); __ ldr(r0, MemOperand(r3, kDisplacement)); __ Jump(lr); // Slow-case: Handle non-smi or out-of-bounds access to arguments // by calling the runtime system. __ bind(&slow); __ push(r1); __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); } void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) { // sp[0] : number of parameters // sp[4] : receiver displacement // sp[8] : function // Check if the calling frame is an arguments adaptor frame. Label runtime; __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset)); __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ b(ne, &runtime); // Patch the arguments.length and the parameters pointer in the current frame. __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ str(r2, MemOperand(sp, 0 * kPointerSize)); __ add(r3, r3, Operand(r2, LSL, 1)); __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); __ str(r3, MemOperand(sp, 1 * kPointerSize)); __ bind(&runtime); __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); } void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) { // Stack layout: // sp[0] : number of parameters (tagged) // sp[4] : address of receiver argument // sp[8] : function // Registers used over whole function: // r6 : allocated object (tagged) // r9 : mapped parameter count (tagged) __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // r1 = parameter count (tagged) // Check if the calling frame is an arguments adaptor frame. Label runtime; Label adaptor_frame, try_allocate; __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset)); __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ b(eq, &adaptor_frame); // No adaptor, parameter count = argument count. __ mov(r2, r1); __ b(&try_allocate); // We have an adaptor frame. Patch the parameters pointer. __ bind(&adaptor_frame); __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ add(r3, r3, Operand(r2, LSL, 1)); __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); __ str(r3, MemOperand(sp, 1 * kPointerSize)); // r1 = parameter count (tagged) // r2 = argument count (tagged) // Compute the mapped parameter count = min(r1, r2) in r1. __ cmp(r1, Operand(r2)); __ mov(r1, Operand(r2), LeaveCC, gt); __ bind(&try_allocate); // Compute the sizes of backing store, parameter map, and arguments object. // 1. Parameter map, has 2 extra words containing context and backing store. const int kParameterMapHeaderSize = FixedArray::kHeaderSize + 2 * kPointerSize; // If there are no mapped parameters, we do not need the parameter_map. __ cmp(r1, Operand(Smi::FromInt(0))); __ mov(r9, Operand::Zero(), LeaveCC, eq); __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne); __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne); // 2. Backing store. __ add(r9, r9, Operand(r2, LSL, 1)); __ add(r9, r9, Operand(FixedArray::kHeaderSize)); // 3. Arguments object. __ add(r9, r9, Operand(Heap::kArgumentsObjectSize)); // Do the allocation of all three objects in one go. __ AllocateInNewSpace(r9, r0, r3, r4, &runtime, TAG_OBJECT); // r0 = address of new object(s) (tagged) // r2 = argument count (tagged) // Get the arguments boilerplate from the current native context into r4. const int kNormalOffset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); const int kAliasedOffset = Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX); __ ldr(r4, MemOperand(r8, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset)); __ cmp(r1, Operand::Zero()); __ ldr(r4, MemOperand(r4, kNormalOffset), eq); __ ldr(r4, MemOperand(r4, kAliasedOffset), ne); // r0 = address of new object (tagged) // r1 = mapped parameter count (tagged) // r2 = argument count (tagged) // r4 = address of boilerplate object (tagged) // Copy the JS object part. for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { __ ldr(r3, FieldMemOperand(r4, i)); __ str(r3, FieldMemOperand(r0, i)); } // Set up the callee in-object property. STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); const int kCalleeOffset = JSObject::kHeaderSize + Heap::kArgumentsCalleeIndex * kPointerSize; __ str(r3, FieldMemOperand(r0, kCalleeOffset)); // Use the length (smi tagged) and set that as an in-object property too. STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); const int kLengthOffset = JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize; __ str(r2, FieldMemOperand(r0, kLengthOffset)); // Set up the elements pointer in the allocated arguments object. // If we allocated a parameter map, r4 will point there, otherwise // it will point to the backing store. __ add(r4, r0, Operand(Heap::kArgumentsObjectSize)); __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); // r0 = address of new object (tagged) // r1 = mapped parameter count (tagged) // r2 = argument count (tagged) // r4 = address of parameter map or backing store (tagged) // Initialize parameter map. If there are no mapped arguments, we're done. Label skip_parameter_map; __ cmp(r1, Operand(Smi::FromInt(0))); // Move backing store address to r3, because it is // expected there when filling in the unmapped arguments. __ mov(r3, r4, LeaveCC, eq); __ b(eq, &skip_parameter_map); __ LoadRoot(r6, Heap::kNonStrictArgumentsElementsMapRootIndex); __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset)); __ add(r6, r1, Operand(Smi::FromInt(2))); __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset)); __ str(r8, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize)); __ add(r6, r4, Operand(r1, LSL, 1)); __ add(r6, r6, Operand(kParameterMapHeaderSize)); __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize)); // Copy the parameter slots and the holes in the arguments. // We need to fill in mapped_parameter_count slots. They index the context, // where parameters are stored in reverse order, at // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 // The mapped parameter thus need to get indices // MIN_CONTEXT_SLOTS+parameter_count-1 .. // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count // We loop from right to left. Label parameters_loop, parameters_test; __ mov(r6, r1); __ ldr(r9, MemOperand(sp, 0 * kPointerSize)); __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS))); __ sub(r9, r9, Operand(r1)); __ LoadRoot(r7, Heap::kTheHoleValueRootIndex); __ add(r3, r4, Operand(r6, LSL, 1)); __ add(r3, r3, Operand(kParameterMapHeaderSize)); // r6 = loop variable (tagged) // r1 = mapping index (tagged) // r3 = address of backing store (tagged) // r4 = address of parameter map (tagged) // r5 = temporary scratch (a.o., for address calculation) // r7 = the hole value __ jmp(¶meters_test); __ bind(¶meters_loop); __ sub(r6, r6, Operand(Smi::FromInt(1))); __ mov(r5, Operand(r6, LSL, 1)); __ add(r5, r5, Operand(kParameterMapHeaderSize - kHeapObjectTag)); __ str(r9, MemOperand(r4, r5)); __ sub(r5, r5, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize)); __ str(r7, MemOperand(r3, r5)); __ add(r9, r9, Operand(Smi::FromInt(1))); __ bind(¶meters_test); __ cmp(r6, Operand(Smi::FromInt(0))); __ b(ne, ¶meters_loop); __ bind(&skip_parameter_map); // r2 = argument count (tagged) // r3 = address of backing store (tagged) // r5 = scratch // Copy arguments header and remaining slots (if there are any). __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex); __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset)); __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset)); Label arguments_loop, arguments_test; __ mov(r9, r1); __ ldr(r4, MemOperand(sp, 1 * kPointerSize)); __ sub(r4, r4, Operand(r9, LSL, 1)); __ jmp(&arguments_test); __ bind(&arguments_loop); __ sub(r4, r4, Operand(kPointerSize)); __ ldr(r6, MemOperand(r4, 0)); __ add(r5, r3, Operand(r9, LSL, 1)); __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize)); __ add(r9, r9, Operand(Smi::FromInt(1))); __ bind(&arguments_test); __ cmp(r9, Operand(r2)); __ b(lt, &arguments_loop); // Return and remove the on-stack parameters. __ add(sp, sp, Operand(3 * kPointerSize)); __ Ret(); // Do the runtime call to allocate the arguments object. // r2 = argument count (tagged) __ bind(&runtime); __ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count. __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); } void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { // sp[0] : number of parameters // sp[4] : receiver displacement // sp[8] : function // Check if the calling frame is an arguments adaptor frame. Label adaptor_frame, try_allocate, runtime; __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ b(eq, &adaptor_frame); // Get the length from the frame. __ ldr(r1, MemOperand(sp, 0)); __ b(&try_allocate); // Patch the arguments.length and the parameters pointer. __ bind(&adaptor_frame); __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ str(r1, MemOperand(sp, 0)); __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); __ str(r3, MemOperand(sp, 1 * kPointerSize)); // Try the new space allocation. Start out with computing the size // of the arguments object and the elements array in words. Label add_arguments_object; __ bind(&try_allocate); __ cmp(r1, Operand::Zero()); __ b(eq, &add_arguments_object); __ mov(r1, Operand(r1, LSR, kSmiTagSize)); __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize)); __ bind(&add_arguments_object); __ add(r1, r1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize)); // Do the allocation of both objects in one go. __ AllocateInNewSpace(r1, r0, r2, r3, &runtime, static_cast(TAG_OBJECT | SIZE_IN_WORDS)); // Get the arguments boilerplate from the current native context. __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset)); __ ldr(r4, MemOperand(r4, Context::SlotOffset( Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX))); // Copy the JS object part. __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize); // Get the length (smi tagged) and set that as an in-object property too. STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize)); // If there are no actual arguments, we're done. Label done; __ cmp(r1, Operand::Zero()); __ b(eq, &done); // Get the parameters pointer from the stack. __ ldr(r2, MemOperand(sp, 1 * kPointerSize)); // Set up the elements pointer in the allocated arguments object and // initialize the header in the elements fixed array. __ add(r4, r0, Operand(Heap::kArgumentsObjectSizeStrict)); __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex); __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset)); __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset)); // Untag the length for the loop. __ mov(r1, Operand(r1, LSR, kSmiTagSize)); // Copy the fixed array slots. Label loop; // Set up r4 to point to the first array slot. __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ bind(&loop); // Pre-decrement r2 with kPointerSize on each iteration. // Pre-decrement in order to skip receiver. __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex)); // Post-increment r4 with kPointerSize on each iteration. __ str(r3, MemOperand(r4, kPointerSize, PostIndex)); __ sub(r1, r1, Operand(1)); __ cmp(r1, Operand::Zero()); __ b(ne, &loop); // Return and remove the on-stack parameters. __ bind(&done); __ add(sp, sp, Operand(3 * kPointerSize)); __ Ret(); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1); } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifdef V8_INTERPRETED_REGEXP __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); #else // V8_INTERPRETED_REGEXP // Stack frame on entry. // sp[0]: last_match_info (expected JSArray) // sp[4]: previous index // sp[8]: subject string // sp[12]: JSRegExp object const int kLastMatchInfoOffset = 0 * kPointerSize; const int kPreviousIndexOffset = 1 * kPointerSize; const int kSubjectOffset = 2 * kPointerSize; const int kJSRegExpOffset = 3 * kPointerSize; Label runtime, invoke_regexp; // Allocation of registers for this function. These are in callee save // registers and will be preserved by the call to the native RegExp code, as // this code is called using the normal C calling convention. When calling // directly from generated code the native RegExp code will not do a GC and // therefore the content of these registers are safe to use after the call. Register subject = r4; Register regexp_data = r5; Register last_match_info_elements = r6; // Ensure that a RegExp stack is allocated. Isolate* isolate = masm->isolate(); ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address(isolate); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(isolate); __ mov(r0, Operand(address_of_regexp_stack_memory_size)); __ ldr(r0, MemOperand(r0, 0)); __ cmp(r0, Operand::Zero()); __ b(eq, &runtime); // Check that the first argument is a JSRegExp object. __ ldr(r0, MemOperand(sp, kJSRegExpOffset)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(r0, &runtime); __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); __ b(ne, &runtime); // Check that the RegExp has been compiled (data contains a fixed array). __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset)); if (FLAG_debug_code) { __ tst(regexp_data, Operand(kSmiTagMask)); __ Check(ne, "Unexpected type for RegExp data, FixedArray expected"); __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE); __ Check(eq, "Unexpected type for RegExp data, FixedArray expected"); } // regexp_data: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); __ b(ne, &runtime); // regexp_data: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ ldr(r2, FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. This // uses the asumption that smis are 2 * their untagged value. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); __ add(r2, r2, Operand(2)); // r2 was a smi. // Check that the static offsets vector buffer is large enough. __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize)); __ b(hi, &runtime); // r2: Number of capture registers // regexp_data: RegExp data (FixedArray) // Check that the second argument is a string. __ ldr(subject, MemOperand(sp, kSubjectOffset)); __ JumpIfSmi(subject, &runtime); Condition is_string = masm->IsObjectStringType(subject, r0); __ b(NegateCondition(is_string), &runtime); // Get the length of the string to r3. __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset)); // r2: Number of capture registers // r3: Length of subject string as a smi // subject: Subject string // regexp_data: RegExp data (FixedArray) // Check that the third argument is a positive smi less than the subject // string length. A negative value will be greater (unsigned comparison). __ ldr(r0, MemOperand(sp, kPreviousIndexOffset)); __ JumpIfNotSmi(r0, &runtime); __ cmp(r3, Operand(r0)); __ b(ls, &runtime); // r2: Number of capture registers // subject: Subject string // regexp_data: RegExp data (FixedArray) // Check that the fourth object is a JSArray object. __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); __ JumpIfSmi(r0, &runtime); __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE); __ b(ne, &runtime); // Check that the JSArray is in fast case. __ ldr(last_match_info_elements, FieldMemOperand(r0, JSArray::kElementsOffset)); __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex); __ b(ne, &runtime); // Check that the last match info has space for the capture registers and the // additional information. __ ldr(r0, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead)); __ cmp(r2, Operand(r0, ASR, kSmiTagSize)); __ b(gt, &runtime); // Reset offset for possibly sliced string. __ mov(r9, Operand::Zero()); // subject: Subject string // regexp_data: RegExp data (FixedArray) // Check the representation and encoding of the subject string. Label seq_string; __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); // First check for flat string. None of the following string type tests will // succeed if subject is not a string or a short external string. __ and_(r1, r0, Operand(kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask), SetCC); STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); __ b(eq, &seq_string); // subject: Subject string // regexp_data: RegExp data (FixedArray) // r1: whether subject is a string and if yes, its string representation // Check for flat cons string or sliced string. // A flat cons string is a cons string where the second part is the empty // string. In that case the subject string is just the first part of the cons // string. Also in this case the first part of the cons string is known to be // a sequential string or an external string. // In the case of a sliced string its offset has to be taken into account. Label cons_string, external_string, check_encoding; STATIC_ASSERT(kConsStringTag < kExternalStringTag); STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); __ cmp(r1, Operand(kExternalStringTag)); __ b(lt, &cons_string); __ b(eq, &external_string); // Catch non-string subject or short external string. STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask)); __ b(ne, &runtime); // String is sliced. __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset)); __ mov(r9, Operand(r9, ASR, kSmiTagSize)); __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); // r9: offset of sliced string, smi-tagged. __ jmp(&check_encoding); // String is a cons string, check whether it is flat. __ bind(&cons_string); __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset)); __ CompareRoot(r0, Heap::kEmptyStringRootIndex); __ b(ne, &runtime); __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); // Is first part of cons or parent of slice a flat string? __ bind(&check_encoding); __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); STATIC_ASSERT(kSeqStringTag == 0); __ tst(r0, Operand(kStringRepresentationMask)); __ b(ne, &external_string); __ bind(&seq_string); // subject: Subject string // regexp_data: RegExp data (FixedArray) // r0: Instance type of subject string STATIC_ASSERT(4 == kOneByteStringTag); STATIC_ASSERT(kTwoByteStringTag == 0); // Find the code object based on the assumptions above. __ and_(r0, r0, Operand(kStringEncodingMask)); __ mov(r3, Operand(r0, ASR, 2), SetCC); __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne); __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq); // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // a smi (code flushing support). __ JumpIfSmi(r7, &runtime); // r3: encoding of subject string (1 if ASCII, 0 if two_byte); // r7: code // subject: Subject string // regexp_data: RegExp data (FixedArray) // Load used arguments before starting to push arguments for call to native // RegExp code to avoid handling changing stack height. __ ldr(r1, MemOperand(sp, kPreviousIndexOffset)); __ mov(r1, Operand(r1, ASR, kSmiTagSize)); // r1: previous index // r3: encoding of subject string (1 if ASCII, 0 if two_byte); // r7: code // subject: Subject string // regexp_data: RegExp data (FixedArray) // All checks done. Now push arguments for native regexp code. __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, r0, r2); // Isolates: note we add an additional parameter here (isolate pointer). const int kRegExpExecuteArguments = 9; const int kParameterRegisters = 4; __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); // Stack pointer now points to cell where return address is to be written. // Arguments are before that on the stack or in registers. // Argument 9 (sp[20]): Pass current isolate address. __ mov(r0, Operand(ExternalReference::isolate_address())); __ str(r0, MemOperand(sp, 5 * kPointerSize)); // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript. __ mov(r0, Operand(1)); __ str(r0, MemOperand(sp, 4 * kPointerSize)); // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area. __ mov(r0, Operand(address_of_regexp_stack_memory_address)); __ ldr(r0, MemOperand(r0, 0)); __ mov(r2, Operand(address_of_regexp_stack_memory_size)); __ ldr(r2, MemOperand(r2, 0)); __ add(r0, r0, Operand(r2)); __ str(r0, MemOperand(sp, 3 * kPointerSize)); // Argument 6: Set the number of capture registers to zero to force global // regexps to behave as non-global. This does not affect non-global regexps. __ mov(r0, Operand::Zero()); __ str(r0, MemOperand(sp, 2 * kPointerSize)); // Argument 5 (sp[4]): static offsets vector buffer. __ mov(r0, Operand(ExternalReference::address_of_static_offsets_vector(isolate))); __ str(r0, MemOperand(sp, 1 * kPointerSize)); // For arguments 4 and 3 get string length, calculate start of string data and // calculate the shift of the index (0 for ASCII and 1 for two byte). __ add(r8, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag)); __ eor(r3, r3, Operand(1)); // Load the length from the original subject string from the previous stack // frame. Therefore we have to use fp, which points exactly to two pointer // sizes below the previous sp. (Because creating a new stack frame pushes // the previous fp onto the stack and moves up sp by 2 * kPointerSize.) __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); // If slice offset is not 0, load the length from the original sliced string. // Argument 4, r3: End of string data // Argument 3, r2: Start of string data // Prepare start and end index of the input. __ add(r9, r8, Operand(r9, LSL, r3)); __ add(r2, r9, Operand(r1, LSL, r3)); __ ldr(r8, FieldMemOperand(subject, String::kLengthOffset)); __ mov(r8, Operand(r8, ASR, kSmiTagSize)); __ add(r3, r9, Operand(r8, LSL, r3)); // Argument 2 (r1): Previous index. // Already there // Argument 1 (r0): Subject string. __ mov(r0, subject); // Locate the code entry and call it. __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag)); DirectCEntryStub stub; stub.GenerateCall(masm, r7); __ LeaveExitFrame(false, no_reg); // r0: result // subject: subject string (callee saved) // regexp_data: RegExp data (callee saved) // last_match_info_elements: Last match info elements (callee saved) // Check the result. Label success; __ cmp(r0, Operand(1)); // We expect exactly one result since we force the called regexp to behave // as non-global. __ b(eq, &success); Label failure; __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE)); __ b(eq, &failure); __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); // If not exception it can only be retry. Handle that in the runtime system. __ b(ne, &runtime); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592): Rerunning the RegExp to get the stack overflow exception. __ mov(r1, Operand(isolate->factory()->the_hole_value())); __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate))); __ ldr(r0, MemOperand(r2, 0)); __ cmp(r0, r1); __ b(eq, &runtime); __ str(r1, MemOperand(r2, 0)); // Clear pending exception. // Check if the exception is a termination. If so, throw as uncatchable. __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex); Label termination_exception; __ b(eq, &termination_exception); __ Throw(r0); __ bind(&termination_exception); __ ThrowUncatchable(r0); __ bind(&failure); // For failure and exception return null. __ mov(r0, Operand(masm->isolate()->factory()->null_value())); __ add(sp, sp, Operand(4 * kPointerSize)); __ Ret(); // Process the result from the native regexp code. __ bind(&success); __ ldr(r1, FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); __ add(r1, r1, Operand(2)); // r1 was a smi. // r1: number of capture registers // r4: subject string // Store the capture count. __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi. __ str(r2, FieldMemOperand(last_match_info_elements, RegExpImpl::kLastCaptureCountOffset)); // Store last subject and last input. __ str(subject, FieldMemOperand(last_match_info_elements, RegExpImpl::kLastSubjectOffset)); __ mov(r2, subject); __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastSubjectOffset, r2, r7, kLRHasNotBeenSaved, kDontSaveFPRegs); __ str(subject, FieldMemOperand(last_match_info_elements, RegExpImpl::kLastInputOffset)); __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastInputOffset, subject, r7, kLRHasNotBeenSaved, kDontSaveFPRegs); // Get the static offsets vector filled by the native regexp code. ExternalReference address_of_static_offsets_vector = ExternalReference::address_of_static_offsets_vector(isolate); __ mov(r2, Operand(address_of_static_offsets_vector)); // r1: number of capture registers // r2: offsets vector Label next_capture, done; // Capture register counter starts from number of capture registers and // counts down until wraping after zero. __ add(r0, last_match_info_elements, Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag)); __ bind(&next_capture); __ sub(r1, r1, Operand(1), SetCC); __ b(mi, &done); // Read the value from the static offsets vector buffer. __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex)); // Store the smi value in the last match info. __ mov(r3, Operand(r3, LSL, kSmiTagSize)); __ str(r3, MemOperand(r0, kPointerSize, PostIndex)); __ jmp(&next_capture); __ bind(&done); // Return last match info. __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); __ add(sp, sp, Operand(4 * kPointerSize)); __ Ret(); // External string. Short external strings have already been ruled out. // r0: scratch __ bind(&external_string); __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ tst(r0, Operand(kIsIndirectStringMask)); __ Assert(eq, "external string expected, but not found"); } __ ldr(subject, FieldMemOperand(subject, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ sub(subject, subject, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); __ jmp(&seq_string); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); #endif // V8_INTERPRETED_REGEXP } void RegExpConstructResultStub::Generate(MacroAssembler* masm) { const int kMaxInlineLength = 100; Label slowcase; Label done; Factory* factory = masm->isolate()->factory(); __ ldr(r1, MemOperand(sp, kPointerSize * 2)); STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); __ JumpIfNotSmi(r1, &slowcase); __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength))); __ b(hi, &slowcase); // Smi-tagging is equivalent to multiplying by 2. // Allocate RegExpResult followed by FixedArray with size in ebx. // JSArray: [Map][empty properties][Elements][Length-smi][index][input] // Elements: [Map][Length][..elements..] // Size of JSArray with two in-object properties and the header of a // FixedArray. int objects_size = (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize; __ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize)); __ add(r2, r5, Operand(objects_size)); __ AllocateInNewSpace( r2, // In: Size, in words. r0, // Out: Start of allocation (tagged). r3, // Scratch register. r4, // Scratch register. &slowcase, static_cast(TAG_OBJECT | SIZE_IN_WORDS)); // r0: Start of allocated area, object-tagged. // r1: Number of elements in array, as smi. // r5: Number of elements, untagged. // Set JSArray map to global.regexp_result_map(). // Set empty properties FixedArray. // Set elements to point to FixedArray allocated right after the JSArray. // Interleave operations for better latency. __ ldr(r2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX)); __ add(r3, r0, Operand(JSRegExpResult::kSize)); __ mov(r4, Operand(factory->empty_fixed_array())); __ ldr(r2, FieldMemOperand(r2, GlobalObject::kNativeContextOffset)); __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX)); __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset)); __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); // Set input, index and length fields from arguments. __ ldr(r1, MemOperand(sp, kPointerSize * 0)); __ ldr(r2, MemOperand(sp, kPointerSize * 1)); __ ldr(r6, MemOperand(sp, kPointerSize * 2)); __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset)); __ str(r2, FieldMemOperand(r0, JSRegExpResult::kIndexOffset)); __ str(r6, FieldMemOperand(r0, JSArray::kLengthOffset)); // Fill out the elements FixedArray. // r0: JSArray, tagged. // r3: FixedArray, tagged. // r5: Number of elements in array, untagged. // Set map. __ mov(r2, Operand(factory->fixed_array_map())); __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset)); // Set FixedArray length. __ mov(r6, Operand(r5, LSL, kSmiTagSize)); __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset)); // Fill contents of fixed-array with undefined. __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); // Fill fixed array elements with undefined. // r0: JSArray, tagged. // r2: undefined. // r3: Start of elements in FixedArray. // r5: Number of elements to fill. Label loop; __ cmp(r5, Operand::Zero()); __ bind(&loop); __ b(le, &done); // Jump if r5 is negative or zero. __ sub(r5, r5, Operand(1), SetCC); __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2)); __ jmp(&loop); __ bind(&done); __ add(sp, sp, Operand(3 * kPointerSize)); __ Ret(); __ bind(&slowcase); __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1); } static void GenerateRecordCallTarget(MacroAssembler* masm) { // Cache the called function in a global property cell. Cache states // are uninitialized, monomorphic (indicated by a JSFunction), and // megamorphic. // r1 : the function to call // r2 : cache cell for call target Label done; ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()), masm->isolate()->heap()->undefined_value()); ASSERT_EQ(*TypeFeedbackCells::UninitializedSentinel(masm->isolate()), masm->isolate()->heap()->the_hole_value()); // Load the cache state into r3. __ ldr(r3, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset)); // A monomorphic cache hit or an already megamorphic state: invoke the // function without changing the state. __ cmp(r3, r1); __ b(eq, &done); __ CompareRoot(r3, Heap::kUndefinedValueRootIndex); __ b(eq, &done); // A monomorphic miss (i.e, here the cache is not uninitialized) goes // megamorphic. __ CompareRoot(r3, Heap::kTheHoleValueRootIndex); // MegamorphicSentinel is an immortal immovable object (undefined) so no // write-barrier is needed. __ LoadRoot(ip, Heap::kUndefinedValueRootIndex, ne); __ str(ip, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset), ne); // An uninitialized cache is patched with the function. __ str(r1, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset), eq); // No need for a write barrier here - cells are rescanned. __ bind(&done); } void CallFunctionStub::Generate(MacroAssembler* masm) { // r1 : the function to call // r2 : cache cell for call target Label slow, non_function; // The receiver might implicitly be the global object. This is // indicated by passing the hole as the receiver to the call // function stub. if (ReceiverMightBeImplicit()) { Label call; // Get the receiver from the stack. // function, receiver [, arguments] __ ldr(r4, MemOperand(sp, argc_ * kPointerSize)); // Call as function is indicated with the hole. __ CompareRoot(r4, Heap::kTheHoleValueRootIndex); __ b(ne, &call); // Patch the receiver on the stack with the global receiver object. __ ldr(r3, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ ldr(r3, FieldMemOperand(r3, GlobalObject::kGlobalReceiverOffset)); __ str(r3, MemOperand(sp, argc_ * kPointerSize)); __ bind(&call); } // Check that the function is really a JavaScript function. // r1: pushed function (to be verified) __ JumpIfSmi(r1, &non_function); // Get the map of the function object. __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE); __ b(ne, &slow); if (RecordCallTarget()) { GenerateRecordCallTarget(masm); } // Fast-case: Invoke the function now. // r1: pushed function ParameterCount actual(argc_); if (ReceiverMightBeImplicit()) { Label call_as_function; __ CompareRoot(r4, Heap::kTheHoleValueRootIndex); __ b(eq, &call_as_function); __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); __ bind(&call_as_function); } __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper(), CALL_AS_FUNCTION); // Slow-case: Non-function called. __ bind(&slow); if (RecordCallTarget()) { // If there is a call target cache, mark it megamorphic in the // non-function case. MegamorphicSentinel is an immortal immovable // object (undefined) so no write barrier is needed. ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()), masm->isolate()->heap()->undefined_value()); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ str(ip, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset)); } // Check for function proxy. __ cmp(r3, Operand(JS_FUNCTION_PROXY_TYPE)); __ b(ne, &non_function); __ push(r1); // put proxy as additional argument __ mov(r0, Operand(argc_ + 1, RelocInfo::NONE32)); __ mov(r2, Operand::Zero()); __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY); __ SetCallKind(r5, CALL_AS_METHOD); { Handle adaptor = masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); __ Jump(adaptor, RelocInfo::CODE_TARGET); } // CALL_NON_FUNCTION expects the non-function callee as receiver (instead // of the original receiver from the call site). __ bind(&non_function); __ str(r1, MemOperand(sp, argc_ * kPointerSize)); __ mov(r0, Operand(argc_)); // Set up the number of arguments. __ mov(r2, Operand::Zero()); __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION); __ SetCallKind(r5, CALL_AS_METHOD); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); } void CallConstructStub::Generate(MacroAssembler* masm) { // r0 : number of arguments // r1 : the function to call // r2 : cache cell for call target Label slow, non_function_call; // Check that the function is not a smi. __ JumpIfSmi(r1, &non_function_call); // Check that the function is a JSFunction. __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE); __ b(ne, &slow); if (RecordCallTarget()) { GenerateRecordCallTarget(masm); } // Jump to the function-specific construct stub. __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kConstructStubOffset)); __ add(pc, r2, Operand(Code::kHeaderSize - kHeapObjectTag)); // r0: number of arguments // r1: called object // r3: object type Label do_call; __ bind(&slow); __ cmp(r3, Operand(JS_FUNCTION_PROXY_TYPE)); __ b(ne, &non_function_call); __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); __ jmp(&do_call); __ bind(&non_function_call); __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); __ bind(&do_call); // Set expected number of arguments to zero (not changing r0). __ mov(r2, Operand::Zero()); __ SetCallKind(r5, CALL_AS_METHOD); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); } // StringCharCodeAtGenerator void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { Label flat_string; Label ascii_string; Label got_char_code; Label sliced_string; // If the receiver is a smi trigger the non-string case. __ JumpIfSmi(object_, receiver_not_string_); // Fetch the instance type of the receiver into result register. __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the non-string case. __ tst(result_, Operand(kIsNotStringMask)); __ b(ne, receiver_not_string_); // If the index is non-smi trigger the non-smi case. __ JumpIfNotSmi(index_, &index_not_smi_); __ bind(&got_smi_index_); // Check for index out of range. __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset)); __ cmp(ip, Operand(index_)); __ b(ls, index_out_of_range_); __ mov(index_, Operand(index_, ASR, kSmiTagSize)); StringCharLoadGenerator::Generate(masm, object_, index_, result_, &call_runtime_); __ mov(result_, Operand(result_, LSL, kSmiTagSize)); __ bind(&exit_); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort("Unexpected fallthrough to CharCodeAt slow case"); // Index is not a smi. __ bind(&index_not_smi_); // If index is a heap number, try converting it to an integer. __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_, DONT_DO_SMI_CHECK); call_helper.BeforeCall(masm); __ push(object_); __ push(index_); // Consumed by runtime conversion function. if (index_flags_ == STRING_INDEX_IS_NUMBER) { __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); } else { ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); // NumberToSmi discards numbers that are not exact integers. __ CallRuntime(Runtime::kNumberToSmi, 1); } // Save the conversion result before the pop instructions below // have a chance to overwrite it. __ Move(index_, r0); __ pop(object_); // Reload the instance type. __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); call_helper.AfterCall(masm); // If index is still not a smi, it must be out of range. __ JumpIfNotSmi(index_, index_out_of_range_); // Otherwise, return to the fast path. __ jmp(&got_smi_index_); // Call runtime. We get here when the receiver is a string and the // index is a number, but the code of getting the actual character // is too complex (e.g., when the string needs to be flattened). __ bind(&call_runtime_); call_helper.BeforeCall(masm); __ mov(index_, Operand(index_, LSL, kSmiTagSize)); __ Push(object_, index_); __ CallRuntime(Runtime::kStringCharCodeAt, 2); __ Move(result_, r0); call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort("Unexpected fallthrough from CharCodeAt slow case"); } // ------------------------------------------------------------------------- // StringCharFromCodeGenerator void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { // Fast case of Heap::LookupSingleCharacterStringFromCode. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiShiftSize == 0); ASSERT(IsPowerOf2(String::kMaxOneByteCharCode + 1)); __ tst(code_, Operand(kSmiTagMask | ((~String::kMaxOneByteCharCode) << kSmiTagSize))); __ b(ne, &slow_case_); __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); // At this point code register contains smi tagged ASCII char code. STATIC_ASSERT(kSmiTag == 0); __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize)); __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); __ b(eq, &slow_case_); __ bind(&exit_); } void StringCharFromCodeGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort("Unexpected fallthrough to CharFromCode slow case"); __ bind(&slow_case_); call_helper.BeforeCall(masm); __ push(code_); __ CallRuntime(Runtime::kCharFromCode, 1); __ Move(result_, r0); call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort("Unexpected fallthrough from CharFromCode slow case"); } // ------------------------------------------------------------------------- // StringCharAtGenerator void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { char_code_at_generator_.GenerateFast(masm); char_from_code_generator_.GenerateFast(masm); } void StringCharAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { char_code_at_generator_.GenerateSlow(masm, call_helper); char_from_code_generator_.GenerateSlow(masm, call_helper); } void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch, bool ascii) { Label loop; Label done; // This loop just copies one character at a time, as it is only used for very // short strings. if (!ascii) { __ add(count, count, Operand(count), SetCC); } else { __ cmp(count, Operand::Zero()); } __ b(eq, &done); __ bind(&loop); __ ldrb(scratch, MemOperand(src, 1, PostIndex)); // Perform sub between load and dependent store to get the load time to // complete. __ sub(count, count, Operand(1), SetCC); __ strb(scratch, MemOperand(dest, 1, PostIndex)); // last iteration. __ b(gt, &loop); __ bind(&done); } enum CopyCharactersFlags { COPY_ASCII = 1, DEST_ALWAYS_ALIGNED = 2 }; void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Register scratch5, int flags) { bool ascii = (flags & COPY_ASCII) != 0; bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0; if (dest_always_aligned && FLAG_debug_code) { // Check that destination is actually word aligned if the flag says // that it is. __ tst(dest, Operand(kPointerAlignmentMask)); __ Check(eq, "Destination of copy not aligned."); } const int kReadAlignment = 4; const int kReadAlignmentMask = kReadAlignment - 1; // Ensure that reading an entire aligned word containing the last character // of a string will not read outside the allocated area (because we pad up // to kObjectAlignment). STATIC_ASSERT(kObjectAlignment >= kReadAlignment); // Assumes word reads and writes are little endian. // Nothing to do for zero characters. Label done; if (!ascii) { __ add(count, count, Operand(count), SetCC); } else { __ cmp(count, Operand::Zero()); } __ b(eq, &done); // Assume that you cannot read (or write) unaligned. Label byte_loop; // Must copy at least eight bytes, otherwise just do it one byte at a time. __ cmp(count, Operand(8)); __ add(count, dest, Operand(count)); Register limit = count; // Read until src equals this. __ b(lt, &byte_loop); if (!dest_always_aligned) { // Align dest by byte copying. Copies between zero and three bytes. __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC); Label dest_aligned; __ b(eq, &dest_aligned); __ cmp(scratch4, Operand(2)); __ ldrb(scratch1, MemOperand(src, 1, PostIndex)); __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le); __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt); __ strb(scratch1, MemOperand(dest, 1, PostIndex)); __ strb(scratch2, MemOperand(dest, 1, PostIndex), le); __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt); __ bind(&dest_aligned); } Label simple_loop; __ sub(scratch4, dest, Operand(src)); __ and_(scratch4, scratch4, Operand(0x03), SetCC); __ b(eq, &simple_loop); // Shift register is number of bits in a source word that // must be combined with bits in the next source word in order // to create a destination word. // Complex loop for src/dst that are not aligned the same way. { Label loop; __ mov(scratch4, Operand(scratch4, LSL, 3)); Register left_shift = scratch4; __ and_(src, src, Operand(~3)); // Round down to load previous word. __ ldr(scratch1, MemOperand(src, 4, PostIndex)); // Store the "shift" most significant bits of scratch in the least // signficant bits (i.e., shift down by (32-shift)). __ rsb(scratch2, left_shift, Operand(32)); Register right_shift = scratch2; __ mov(scratch1, Operand(scratch1, LSR, right_shift)); __ bind(&loop); __ ldr(scratch3, MemOperand(src, 4, PostIndex)); __ sub(scratch5, limit, Operand(dest)); __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift)); __ str(scratch1, MemOperand(dest, 4, PostIndex)); __ mov(scratch1, Operand(scratch3, LSR, right_shift)); // Loop if four or more bytes left to copy. // Compare to eight, because we did the subtract before increasing dst. __ sub(scratch5, scratch5, Operand(8), SetCC); __ b(ge, &loop); } // There is now between zero and three bytes left to copy (negative that // number is in scratch5), and between one and three bytes already read into // scratch1 (eight times that number in scratch4). We may have read past // the end of the string, but because objects are aligned, we have not read // past the end of the object. // Find the minimum of remaining characters to move and preloaded characters // and write those as bytes. __ add(scratch5, scratch5, Operand(4), SetCC); __ b(eq, &done); __ cmp(scratch4, Operand(scratch5, LSL, 3), ne); // Move minimum of bytes read and bytes left to copy to scratch4. __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt); // Between one and three (value in scratch5) characters already read into // scratch ready to write. __ cmp(scratch5, Operand(2)); __ strb(scratch1, MemOperand(dest, 1, PostIndex)); __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge); __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge); __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt); __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt); // Copy any remaining bytes. __ b(&byte_loop); // Simple loop. // Copy words from src to dst, until less than four bytes left. // Both src and dest are word aligned. __ bind(&simple_loop); { Label loop; __ bind(&loop); __ ldr(scratch1, MemOperand(src, 4, PostIndex)); __ sub(scratch3, limit, Operand(dest)); __ str(scratch1, MemOperand(dest, 4, PostIndex)); // Compare to 8, not 4, because we do the substraction before increasing // dest. __ cmp(scratch3, Operand(8)); __ b(ge, &loop); } // Copy bytes from src to dst until dst hits limit. __ bind(&byte_loop); __ cmp(dest, Operand(limit)); __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt); __ b(ge, &done); __ strb(scratch1, MemOperand(dest, 1, PostIndex)); __ b(&byte_loop); __ bind(&done); } void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, Register c1, Register c2, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Register scratch5, Label* not_found) { // Register scratch3 is the general scratch register in this function. Register scratch = scratch3; // Make sure that both characters are not digits as such strings has a // different hash algorithm. Don't try to look for these in the symbol table. Label not_array_index; __ sub(scratch, c1, Operand(static_cast('0'))); __ cmp(scratch, Operand(static_cast('9' - '0'))); __ b(hi, ¬_array_index); __ sub(scratch, c2, Operand(static_cast('0'))); __ cmp(scratch, Operand(static_cast('9' - '0'))); // If check failed combine both characters into single halfword. // This is required by the contract of the method: code at the // not_found branch expects this combination in c1 register __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls); __ b(ls, not_found); __ bind(¬_array_index); // Calculate the two character string hash. Register hash = scratch1; StringHelper::GenerateHashInit(masm, hash, c1); StringHelper::GenerateHashAddCharacter(masm, hash, c2); StringHelper::GenerateHashGetHash(masm, hash); // Collect the two characters in a register. Register chars = c1; __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte)); // chars: two character string, char 1 in byte 0 and char 2 in byte 1. // hash: hash of two character string. // Load symbol table // Load address of first element of the symbol table. Register symbol_table = c2; __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); Register undefined = scratch4; __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); // Calculate capacity mask from the symbol table capacity. Register mask = scratch2; __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset)); __ mov(mask, Operand(mask, ASR, 1)); __ sub(mask, mask, Operand(1)); // Calculate untagged address of the first element of the symbol table. Register first_symbol_table_element = symbol_table; __ add(first_symbol_table_element, symbol_table, Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag)); // Registers // chars: two character string, char 1 in byte 0 and char 2 in byte 1. // hash: hash of two character string // mask: capacity mask // first_symbol_table_element: address of the first element of // the symbol table // undefined: the undefined object // scratch: - // Perform a number of probes in the symbol table. const int kProbes = 4; Label found_in_symbol_table; Label next_probe[kProbes]; Register candidate = scratch5; // Scratch register contains candidate. for (int i = 0; i < kProbes; i++) { // Calculate entry in symbol table. if (i > 0) { __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i))); } else { __ mov(candidate, hash); } __ and_(candidate, candidate, Operand(mask)); // Load the entry from the symble table. STATIC_ASSERT(SymbolTable::kEntrySize == 1); __ ldr(candidate, MemOperand(first_symbol_table_element, candidate, LSL, kPointerSizeLog2)); // If entry is undefined no string with this hash can be found. Label is_string; __ CompareObjectType(candidate, scratch, scratch, ODDBALL_TYPE); __ b(ne, &is_string); __ cmp(undefined, candidate); __ b(eq, not_found); // Must be the hole (deleted entry). if (FLAG_debug_code) { __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(ip, candidate); __ Assert(eq, "oddball in symbol table is not undefined or the hole"); } __ jmp(&next_probe[i]); __ bind(&is_string); // Check that the candidate is a non-external ASCII string. The instance // type is still in the scratch register from the CompareObjectType // operation. __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]); // If length is not 2 the string is not a candidate. __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset)); __ cmp(scratch, Operand(Smi::FromInt(2))); __ b(ne, &next_probe[i]); // Check if the two characters match. // Assumes that word load is little endian. __ ldrh(scratch, FieldMemOperand(candidate, SeqOneByteString::kHeaderSize)); __ cmp(chars, scratch); __ b(eq, &found_in_symbol_table); __ bind(&next_probe[i]); } // No matching 2 character string found by probing. __ jmp(not_found); // Scratch register contains result when we fall through to here. Register result = candidate; __ bind(&found_in_symbol_table); __ Move(r0, result); } void StringHelper::GenerateHashInit(MacroAssembler* masm, Register hash, Register character) { // hash = character + (character << 10); __ LoadRoot(hash, Heap::kHashSeedRootIndex); // Untag smi seed and add the character. __ add(hash, character, Operand(hash, LSR, kSmiTagSize)); // hash += hash << 10; __ add(hash, hash, Operand(hash, LSL, 10)); // hash ^= hash >> 6; __ eor(hash, hash, Operand(hash, LSR, 6)); } void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, Register hash, Register character) { // hash += character; __ add(hash, hash, Operand(character)); // hash += hash << 10; __ add(hash, hash, Operand(hash, LSL, 10)); // hash ^= hash >> 6; __ eor(hash, hash, Operand(hash, LSR, 6)); } void StringHelper::GenerateHashGetHash(MacroAssembler* masm, Register hash) { // hash += hash << 3; __ add(hash, hash, Operand(hash, LSL, 3)); // hash ^= hash >> 11; __ eor(hash, hash, Operand(hash, LSR, 11)); // hash += hash << 15; __ add(hash, hash, Operand(hash, LSL, 15)); __ and_(hash, hash, Operand(String::kHashBitMask), SetCC); // if (hash == 0) hash = 27; __ mov(hash, Operand(StringHasher::kZeroHash), LeaveCC, eq); } void SubStringStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // lr: return address // sp[0]: to // sp[4]: from // sp[8]: string // This stub is called from the native-call %_SubString(...), so // nothing can be assumed about the arguments. It is tested that: // "string" is a sequential string, // both "from" and "to" are smis, and // 0 <= from <= to <= string.length. // If any of these assumptions fail, we call the runtime system. const int kToOffset = 0 * kPointerSize; const int kFromOffset = 1 * kPointerSize; const int kStringOffset = 2 * kPointerSize; __ Ldrd(r2, r3, MemOperand(sp, kToOffset)); STATIC_ASSERT(kFromOffset == kToOffset + 4); STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); // Arithmetic shift right by one un-smi-tags. In this case we rotate right // instead because we bail out on non-smi values: ROR and ASR are equivalent // for smis but they set the flags in a way that's easier to optimize. __ mov(r2, Operand(r2, ROR, 1), SetCC); __ mov(r3, Operand(r3, ROR, 1), SetCC, cc); // If either to or from had the smi tag bit set, then C is set now, and N // has the same value: we rotated by 1, so the bottom bit is now the top bit. // We want to bailout to runtime here if From is negative. In that case, the // next instruction is not executed and we fall through to bailing out to // runtime. // Executed if both r2 and r3 are untagged integers. __ sub(r2, r2, Operand(r3), SetCC, cc); // One of the above un-smis or the above SUB could have set N==1. __ b(mi, &runtime); // Either "from" or "to" is not an smi, or from > to. // Make sure first argument is a string. __ ldr(r0, MemOperand(sp, kStringOffset)); STATIC_ASSERT(kSmiTag == 0); // Do a JumpIfSmi, but fold its jump into the subsequent string test. __ tst(r0, Operand(kSmiTagMask)); Condition is_string = masm->IsObjectStringType(r0, r1, ne); ASSERT(is_string == eq); __ b(NegateCondition(is_string), &runtime); // Short-cut for the case of trivial substring. Label return_r0; // r0: original string // r2: result string length __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset)); __ cmp(r2, Operand(r4, ASR, 1)); // Return original string. __ b(eq, &return_r0); // Longer than original string's length or negative: unsafe arguments. __ b(hi, &runtime); // Shorter than original string's length: an actual substring. // Deal with different string types: update the index if necessary // and put the underlying string into r5. // r0: original string // r1: instance type // r2: length // r3: from index (untagged) Label underlying_unpacked, sliced_string, seq_or_external_string; // If the string is not indirect, it can only be sequential or external. STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); STATIC_ASSERT(kIsIndirectStringMask != 0); __ tst(r1, Operand(kIsIndirectStringMask)); __ b(eq, &seq_or_external_string); __ tst(r1, Operand(kSlicedNotConsMask)); __ b(ne, &sliced_string); // Cons string. Check whether it is flat, then fetch first part. __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset)); __ CompareRoot(r5, Heap::kEmptyStringRootIndex); __ b(ne, &runtime); __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset)); // Update instance type. __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset)); __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked); __ bind(&sliced_string); // Sliced string. Fetch parent and correct start index by offset. __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset)); __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset)); __ add(r3, r3, Operand(r4, ASR, 1)); // Add offset to index. // Update instance type. __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset)); __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked); __ bind(&seq_or_external_string); // Sequential or external string. Just move string to the expected register. __ mov(r5, r0); __ bind(&underlying_unpacked); if (FLAG_string_slices) { Label copy_routine; // r5: underlying subject string // r1: instance type of underlying subject string // r2: length // r3: adjusted start index (untagged) __ cmp(r2, Operand(SlicedString::kMinLength)); // Short slice. Copy instead of slicing. __ b(lt, ©_routine); // Allocate new sliced string. At this point we do not reload the instance // type including the string encoding because we simply rely on the info // provided by the original string. It does not matter if the original // string's encoding is wrong because we always have to recheck encoding of // the newly created string's parent anyways due to externalized strings. Label two_byte_slice, set_slice_header; STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ tst(r1, Operand(kStringEncodingMask)); __ b(eq, &two_byte_slice); __ AllocateAsciiSlicedString(r0, r2, r6, r7, &runtime); __ jmp(&set_slice_header); __ bind(&two_byte_slice); __ AllocateTwoByteSlicedString(r0, r2, r6, r7, &runtime); __ bind(&set_slice_header); __ mov(r3, Operand(r3, LSL, 1)); __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset)); __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset)); __ jmp(&return_r0); __ bind(©_routine); } // r5: underlying subject string // r1: instance type of underlying subject string // r2: length // r3: adjusted start index (untagged) Label two_byte_sequential, sequential_string, allocate_result; STATIC_ASSERT(kExternalStringTag != 0); STATIC_ASSERT(kSeqStringTag == 0); __ tst(r1, Operand(kExternalStringTag)); __ b(eq, &sequential_string); // Handle external string. // Rule out short external strings. STATIC_CHECK(kShortExternalStringTag != 0); __ tst(r1, Operand(kShortExternalStringTag)); __ b(ne, &runtime); __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset)); // r5 already points to the first character of underlying string. __ jmp(&allocate_result); __ bind(&sequential_string); // Locate first character of underlying subject string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ add(r5, r5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); __ bind(&allocate_result); // Sequential acii string. Allocate the result. STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); __ tst(r1, Operand(kStringEncodingMask)); __ b(eq, &two_byte_sequential); // Allocate and copy the resulting ASCII string. __ AllocateAsciiString(r0, r2, r4, r6, r7, &runtime); // Locate first character of substring to copy. __ add(r5, r5, r3); // Locate first character of result. __ add(r1, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); // r0: result string // r1: first character of result string // r2: result string length // r5: first character of substring to copy STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9, COPY_ASCII | DEST_ALWAYS_ALIGNED); __ jmp(&return_r0); // Allocate and copy the resulting two-byte string. __ bind(&two_byte_sequential); __ AllocateTwoByteString(r0, r2, r4, r6, r7, &runtime); // Locate first character of substring to copy. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ add(r5, r5, Operand(r3, LSL, 1)); // Locate first character of result. __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // r0: result string. // r1: first character of result. // r2: result length. // r5: first character of substring to copy. STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); StringHelper::GenerateCopyCharactersLong( masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED); __ bind(&return_r0); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); __ add(sp, sp, Operand(3 * kPointerSize)); __ Ret(); // Just jump to runtime to create the sub string. __ bind(&runtime); __ TailCallRuntime(Runtime::kSubString, 3, 1); } void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3) { Register length = scratch1; // Compare lengths. Label strings_not_equal, check_zero_length; __ ldr(length, FieldMemOperand(left, String::kLengthOffset)); __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ cmp(length, scratch2); __ b(eq, &check_zero_length); __ bind(&strings_not_equal); __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL))); __ Ret(); // Check if the length is zero. Label compare_chars; __ bind(&check_zero_length); STATIC_ASSERT(kSmiTag == 0); __ cmp(length, Operand::Zero()); __ b(ne, &compare_chars); __ mov(r0, Operand(Smi::FromInt(EQUAL))); __ Ret(); // Compare characters. __ bind(&compare_chars); GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2, scratch3, &strings_not_equal); // Characters are equal. __ mov(r0, Operand(Smi::FromInt(EQUAL))); __ Ret(); } void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3, Register scratch4) { Label result_not_equal, compare_lengths; // Find minimum length and length difference. __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ sub(scratch3, scratch1, Operand(scratch2), SetCC); Register length_delta = scratch3; __ mov(scratch1, scratch2, LeaveCC, gt); Register min_length = scratch1; STATIC_ASSERT(kSmiTag == 0); __ cmp(min_length, Operand::Zero()); __ b(eq, &compare_lengths); // Compare loop. GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2, scratch4, &result_not_equal); // Compare lengths - strings up to min-length are equal. __ bind(&compare_lengths); ASSERT(Smi::FromInt(EQUAL) == static_cast(0)); // Use length_delta as result if it's zero. __ mov(r0, Operand(length_delta), SetCC); __ bind(&result_not_equal); // Conditionally update the result based either on length_delta or // the last comparion performed in the loop above. __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt); __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt); __ Ret(); } void StringCompareStub::GenerateAsciiCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch1, Register scratch2, Label* chars_not_equal) { // Change index to run from -length to -1 by adding length to string // start. This means that loop ends when index reaches zero, which // doesn't need an additional compare. __ SmiUntag(length); __ add(scratch1, length, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); __ add(left, left, Operand(scratch1)); __ add(right, right, Operand(scratch1)); __ rsb(length, length, Operand::Zero()); Register index = length; // index = -length; // Compare loop. Label loop; __ bind(&loop); __ ldrb(scratch1, MemOperand(left, index)); __ ldrb(scratch2, MemOperand(right, index)); __ cmp(scratch1, scratch2); __ b(ne, chars_not_equal); __ add(index, index, Operand(1), SetCC); __ b(ne, &loop); } void StringCompareStub::Generate(MacroAssembler* masm) { Label runtime; Counters* counters = masm->isolate()->counters(); // Stack frame on entry. // sp[0]: right string // sp[4]: left string __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1. Label not_same; __ cmp(r0, r1); __ b(ne, ¬_same); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ mov(r0, Operand(Smi::FromInt(EQUAL))); __ IncrementCounter(counters->string_compare_native(), 1, r1, r2); __ add(sp, sp, Operand(2 * kPointerSize)); __ Ret(); __ bind(¬_same); // Check that both objects are sequential ASCII strings. __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime); // Compare flat ASCII strings natively. Remove arguments from stack first. __ IncrementCounter(counters->string_compare_native(), 1, r2, r3); __ add(sp, sp, Operand(2 * kPointerSize)); GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5); // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ bind(&runtime); __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } void StringAddStub::Generate(MacroAssembler* masm) { Label call_runtime, call_builtin; Builtins::JavaScript builtin_id = Builtins::ADD; Counters* counters = masm->isolate()->counters(); // Stack on entry: // sp[0]: second argument (right). // sp[4]: first argument (left). // Load the two arguments. __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument. __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument. // Make sure that both arguments are strings if not known in advance. if (flags_ == NO_STRING_ADD_FLAGS) { __ JumpIfEitherSmi(r0, r1, &call_runtime); // Load instance types. __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); STATIC_ASSERT(kStringTag == 0); // If either is not a string, go to runtime. __ tst(r4, Operand(kIsNotStringMask)); __ tst(r5, Operand(kIsNotStringMask), eq); __ b(ne, &call_runtime); } else { // Here at least one of the arguments is definitely a string. // We convert the one that is not known to be a string. if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) { ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0); GenerateConvertArgument( masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin); builtin_id = Builtins::STRING_ADD_RIGHT; } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) { ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0); GenerateConvertArgument( masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin); builtin_id = Builtins::STRING_ADD_LEFT; } } // Both arguments are strings. // r0: first string // r1: second string // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) { Label strings_not_empty; // Check if either of the strings are empty. In that case return the other. __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset)); __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset)); STATIC_ASSERT(kSmiTag == 0); __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty. __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second. STATIC_ASSERT(kSmiTag == 0); // Else test if second string is empty. __ cmp(r3, Operand(Smi::FromInt(0)), ne); __ b(ne, &strings_not_empty); // If either string was empty, return r0. __ IncrementCounter(counters->string_add_native(), 1, r2, r3); __ add(sp, sp, Operand(2 * kPointerSize)); __ Ret(); __ bind(&strings_not_empty); } __ mov(r2, Operand(r2, ASR, kSmiTagSize)); __ mov(r3, Operand(r3, ASR, kSmiTagSize)); // Both strings are non-empty. // r0: first string // r1: second string // r2: length of first string // r3: length of second string // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) // Look at the length of the result of adding the two strings. Label string_add_flat_result, longer_than_two; // Adding two lengths can't overflow. STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2); __ add(r6, r2, Operand(r3)); // Use the symbol table when adding two one character strings, as it // helps later optimizations to return a symbol here. __ cmp(r6, Operand(2)); __ b(ne, &longer_than_two); // Check that both strings are non-external ASCII strings. if (flags_ != NO_STRING_ADD_FLAGS) { __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); } __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7, &call_runtime); // Get the two characters forming the sub string. __ ldrb(r2, FieldMemOperand(r0, SeqOneByteString::kHeaderSize)); __ ldrb(r3, FieldMemOperand(r1, SeqOneByteString::kHeaderSize)); // Try to lookup two character string in symbol table. If it is not found // just allocate a new one. Label make_two_character_string; StringHelper::GenerateTwoCharacterSymbolTableProbe( masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string); __ IncrementCounter(counters->string_add_native(), 1, r2, r3); __ add(sp, sp, Operand(2 * kPointerSize)); __ Ret(); __ bind(&make_two_character_string); // Resulting string has length 2 and first chars of two strings // are combined into single halfword in r2 register. // So we can fill resulting string without two loops by a single // halfword store instruction (which assumes that processor is // in a little endian mode) __ mov(r6, Operand(2)); __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime); __ strh(r2, FieldMemOperand(r0, SeqOneByteString::kHeaderSize)); __ IncrementCounter(counters->string_add_native(), 1, r2, r3); __ add(sp, sp, Operand(2 * kPointerSize)); __ Ret(); __ bind(&longer_than_two); // Check if resulting string will be flat. __ cmp(r6, Operand(ConsString::kMinLength)); __ b(lt, &string_add_flat_result); // Handle exceptionally long strings in the runtime system. STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0); ASSERT(IsPowerOf2(String::kMaxLength + 1)); // kMaxLength + 1 is representable as shifted literal, kMaxLength is not. __ cmp(r6, Operand(String::kMaxLength + 1)); __ b(hs, &call_runtime); // If result is not supposed to be flat, allocate a cons string object. // If both strings are ASCII the result is an ASCII cons string. if (flags_ != NO_STRING_ADD_FLAGS) { __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); } Label non_ascii, allocated, ascii_data; STATIC_ASSERT(kTwoByteStringTag == 0); __ tst(r4, Operand(kStringEncodingMask)); __ tst(r5, Operand(kStringEncodingMask), ne); __ b(eq, &non_ascii); // Allocate an ASCII cons string. __ bind(&ascii_data); __ AllocateAsciiConsString(r7, r6, r4, r5, &call_runtime); __ bind(&allocated); // Fill the fields of the cons string. __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset)); __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset)); __ mov(r0, Operand(r7)); __ IncrementCounter(counters->string_add_native(), 1, r2, r3); __ add(sp, sp, Operand(2 * kPointerSize)); __ Ret(); __ bind(&non_ascii); // At least one of the strings is two-byte. Check whether it happens // to contain only ASCII characters. // r4: first instance type. // r5: second instance type. __ tst(r4, Operand(kAsciiDataHintMask)); __ tst(r5, Operand(kAsciiDataHintMask), ne); __ b(ne, &ascii_data); __ eor(r4, r4, Operand(r5)); STATIC_ASSERT(kOneByteStringTag != 0 && kAsciiDataHintTag != 0); __ and_(r4, r4, Operand(kOneByteStringTag | kAsciiDataHintTag)); __ cmp(r4, Operand(kOneByteStringTag | kAsciiDataHintTag)); __ b(eq, &ascii_data); // Allocate a two byte cons string. __ AllocateTwoByteConsString(r7, r6, r4, r5, &call_runtime); __ jmp(&allocated); // We cannot encounter sliced strings or cons strings here since: STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength); // Handle creating a flat result from either external or sequential strings. // Locate the first characters' locations. // r0: first string // r1: second string // r2: length of first string // r3: length of second string // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) // r6: sum of lengths. Label first_prepared, second_prepared; __ bind(&string_add_flat_result); if (flags_ != NO_STRING_ADD_FLAGS) { __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); } // Check whether both strings have same encoding __ eor(r7, r4, Operand(r5)); __ tst(r7, Operand(kStringEncodingMask)); __ b(ne, &call_runtime); STATIC_ASSERT(kSeqStringTag == 0); __ tst(r4, Operand(kStringRepresentationMask)); STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize); __ add(r7, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag), LeaveCC, eq); __ b(eq, &first_prepared); // External string: rule out short external string and load string resource. STATIC_ASSERT(kShortExternalStringTag != 0); __ tst(r4, Operand(kShortExternalStringMask)); __ b(ne, &call_runtime); __ ldr(r7, FieldMemOperand(r0, ExternalString::kResourceDataOffset)); __ bind(&first_prepared); STATIC_ASSERT(kSeqStringTag == 0); __ tst(r5, Operand(kStringRepresentationMask)); STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize); __ add(r1, r1, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag), LeaveCC, eq); __ b(eq, &second_prepared); // External string: rule out short external string and load string resource. STATIC_ASSERT(kShortExternalStringTag != 0); __ tst(r5, Operand(kShortExternalStringMask)); __ b(ne, &call_runtime); __ ldr(r1, FieldMemOperand(r1, ExternalString::kResourceDataOffset)); __ bind(&second_prepared); Label non_ascii_string_add_flat_result; // r7: first character of first string // r1: first character of second string // r2: length of first string. // r3: length of second string. // r6: sum of lengths. // Both strings have the same encoding. STATIC_ASSERT(kTwoByteStringTag == 0); __ tst(r5, Operand(kStringEncodingMask)); __ b(eq, &non_ascii_string_add_flat_result); __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime); __ add(r6, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); // r0: result string. // r7: first character of first string. // r1: first character of second string. // r2: length of first string. // r3: length of second string. // r6: first character of result. StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, true); // r6: next character of result. StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true); __ IncrementCounter(counters->string_add_native(), 1, r2, r3); __ add(sp, sp, Operand(2 * kPointerSize)); __ Ret(); __ bind(&non_ascii_string_add_flat_result); __ AllocateTwoByteString(r0, r6, r4, r5, r9, &call_runtime); __ add(r6, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // r0: result string. // r7: first character of first string. // r1: first character of second string. // r2: length of first string. // r3: length of second string. // r6: first character of result. StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, false); // r6: next character of result. StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false); __ IncrementCounter(counters->string_add_native(), 1, r2, r3); __ add(sp, sp, Operand(2 * kPointerSize)); __ Ret(); // Just jump to runtime to add the two strings. __ bind(&call_runtime); __ TailCallRuntime(Runtime::kStringAdd, 2, 1); if (call_builtin.is_linked()) { __ bind(&call_builtin); __ InvokeBuiltin(builtin_id, JUMP_FUNCTION); } } void StringAddStub::GenerateConvertArgument(MacroAssembler* masm, int stack_offset, Register arg, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Label* slow) { // First check if the argument is already a string. Label not_string, done; __ JumpIfSmi(arg, ¬_string); __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE); __ b(lt, &done); // Check the number to string cache. Label not_cached; __ bind(¬_string); // Puts the cached result into scratch1. NumberToStringStub::GenerateLookupNumberStringCache(masm, arg, scratch1, scratch2, scratch3, scratch4, false, ¬_cached); __ mov(arg, scratch1); __ str(arg, MemOperand(sp, stack_offset)); __ jmp(&done); // Check if the argument is a safe string wrapper. __ bind(¬_cached); __ JumpIfSmi(arg, slow); __ CompareObjectType( arg, scratch1, scratch2, JS_VALUE_TYPE); // map -> scratch1. __ b(ne, slow); __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset)); __ and_(scratch2, scratch2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); __ cmp(scratch2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); __ b(ne, slow); __ ldr(arg, FieldMemOperand(arg, JSValue::kValueOffset)); __ str(arg, MemOperand(sp, stack_offset)); __ bind(&done); } void ICCompareStub::GenerateSmis(MacroAssembler* masm) { ASSERT(state_ == CompareIC::SMI); Label miss; __ orr(r2, r1, r0); __ JumpIfNotSmi(r2, &miss); if (GetCondition() == eq) { // For equality we do not care about the sign of the result. __ sub(r0, r0, r1, SetCC); } else { // Untag before subtracting to avoid handling overflow. __ SmiUntag(r1); __ sub(r0, r1, SmiUntagOperand(r0)); } __ Ret(); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { ASSERT(state_ == CompareIC::HEAP_NUMBER); Label generic_stub; Label unordered, maybe_undefined1, maybe_undefined2; Label miss; if (left_ == CompareIC::SMI) { __ JumpIfNotSmi(r1, &miss); } if (right_ == CompareIC::SMI) { __ JumpIfNotSmi(r0, &miss); } // Inlining the double comparison and falling back to the general compare // stub if NaN is involved or VFP2 is unsupported. if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); // Load left and right operand. Label done, left, left_smi, right_smi; __ JumpIfSmi(r0, &right_smi); __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, DONT_DO_SMI_CHECK); __ sub(r2, r0, Operand(kHeapObjectTag)); __ vldr(d1, r2, HeapNumber::kValueOffset); __ b(&left); __ bind(&right_smi); __ SmiUntag(r2, r0); // Can't clobber r0 yet. SwVfpRegister single_scratch = d2.low(); __ vmov(single_scratch, r2); __ vcvt_f64_s32(d1, single_scratch); __ bind(&left); __ JumpIfSmi(r1, &left_smi); __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, DONT_DO_SMI_CHECK); __ sub(r2, r1, Operand(kHeapObjectTag)); __ vldr(d0, r2, HeapNumber::kValueOffset); __ b(&done); __ bind(&left_smi); __ SmiUntag(r2, r1); // Can't clobber r1 yet. single_scratch = d3.low(); __ vmov(single_scratch, r2); __ vcvt_f64_s32(d0, single_scratch); __ bind(&done); // Compare operands. __ VFPCompareAndSetFlags(d0, d1); // Don't base result on status bits when a NaN is involved. __ b(vs, &unordered); // Return a result of -1, 0, or 1, based on status bits. __ mov(r0, Operand(EQUAL), LeaveCC, eq); __ mov(r0, Operand(LESS), LeaveCC, lt); __ mov(r0, Operand(GREATER), LeaveCC, gt); __ Ret(); } __ bind(&unordered); __ bind(&generic_stub); ICCompareStub stub(op_, CompareIC::GENERIC, CompareIC::GENERIC, CompareIC::GENERIC); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); __ bind(&maybe_undefined1); if (Token::IsOrderedRelationalCompareOp(op_)) { __ CompareRoot(r0, Heap::kUndefinedValueRootIndex); __ b(ne, &miss); __ JumpIfSmi(r1, &unordered); __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE); __ b(ne, &maybe_undefined2); __ jmp(&unordered); } __ bind(&maybe_undefined2); if (Token::IsOrderedRelationalCompareOp(op_)) { __ CompareRoot(r1, Heap::kUndefinedValueRootIndex); __ b(eq, &unordered); } __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateSymbols(MacroAssembler* masm) { ASSERT(state_ == CompareIC::SYMBOL); Label miss; // Registers containing left and right operands respectively. Register left = r1; Register right = r0; Register tmp1 = r2; Register tmp2 = r3; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are symbols. __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kSymbolTag != 0); __ and_(tmp1, tmp1, Operand(tmp2)); __ tst(tmp1, Operand(kIsSymbolMask)); __ b(eq, &miss); // Symbols are compared by identity. __ cmp(left, right); // Make sure r0 is non-zero. At this point input operands are // guaranteed to be non-zero. ASSERT(right.is(r0)); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateStrings(MacroAssembler* masm) { ASSERT(state_ == CompareIC::STRING); Label miss; bool equality = Token::IsEqualityOp(op_); // Registers containing left and right operands respectively. Register left = r1; Register right = r0; Register tmp1 = r2; Register tmp2 = r3; Register tmp3 = r4; Register tmp4 = r5; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are strings. This leaves the instance // types loaded in tmp1 and tmp2. __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ orr(tmp3, tmp1, tmp2); __ tst(tmp3, Operand(kIsNotStringMask)); __ b(ne, &miss); // Fast check for identical strings. __ cmp(left, right); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); __ Ret(eq); // Handle not identical strings. // Check that both strings are symbols. If they are, we're done // because we already know they are not identical. if (equality) { ASSERT(GetCondition() == eq); STATIC_ASSERT(kSymbolTag != 0); __ and_(tmp3, tmp1, Operand(tmp2)); __ tst(tmp3, Operand(kIsSymbolMask)); // Make sure r0 is non-zero. At this point input operands are // guaranteed to be non-zero. ASSERT(right.is(r0)); __ Ret(ne); } // Check that both strings are sequential ASCII. Label runtime; __ JumpIfBothInstanceTypesAreNotSequentialAscii( tmp1, tmp2, tmp3, tmp4, &runtime); // Compare flat ASCII strings. Returns when done. if (equality) { StringCompareStub::GenerateFlatAsciiStringEquals( masm, left, right, tmp1, tmp2, tmp3); } else { StringCompareStub::GenerateCompareFlatAsciiStrings( masm, left, right, tmp1, tmp2, tmp3, tmp4); } // Handle more complex cases in runtime. __ bind(&runtime); __ Push(left, right); if (equality) { __ TailCallRuntime(Runtime::kStringEquals, 2, 1); } else { __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateObjects(MacroAssembler* masm) { ASSERT(state_ == CompareIC::OBJECT); Label miss; __ and_(r2, r1, Operand(r0)); __ JumpIfSmi(r2, &miss); __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE); __ b(ne, &miss); __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE); __ b(ne, &miss); ASSERT(GetCondition() == eq); __ sub(r0, r0, Operand(r1)); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) { Label miss; __ and_(r2, r1, Operand(r0)); __ JumpIfSmi(r2, &miss); __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); __ cmp(r2, Operand(known_map_)); __ b(ne, &miss); __ cmp(r3, Operand(known_map_)); __ b(ne, &miss); __ sub(r0, r0, Operand(r1)); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateMiss(MacroAssembler* masm) { { // Call the runtime system in a fresh internal frame. ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate()); FrameScope scope(masm, StackFrame::INTERNAL); __ Push(r1, r0); __ push(lr); __ Push(r1, r0); __ mov(ip, Operand(Smi::FromInt(op_))); __ push(ip); __ CallExternalReference(miss, 3); // Compute the entry point of the rewritten stub. __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); // Restore registers. __ pop(lr); __ pop(r0); __ pop(r1); } __ Jump(r2); } void DirectCEntryStub::Generate(MacroAssembler* masm) { __ ldr(pc, MemOperand(sp, 0)); } void DirectCEntryStub::GenerateCall(MacroAssembler* masm, ExternalReference function) { __ mov(r2, Operand(function)); GenerateCall(masm, r2); } void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) { __ mov(lr, Operand(reinterpret_cast(GetCode().location()), RelocInfo::CODE_TARGET)); // Prevent literal pool emission during calculation of return address. Assembler::BlockConstPoolScope block_const_pool(masm); // Push return address (accessible to GC through exit frame pc). // Note that using pc with str is deprecated. Label start; __ bind(&start); __ add(ip, pc, Operand(Assembler::kInstrSize)); __ str(ip, MemOperand(sp, 0)); __ Jump(target); // Call the C++ function. ASSERT_EQ(Assembler::kInstrSize + Assembler::kPcLoadDelta, masm->SizeOfCodeGeneratedSince(&start)); } void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, Label* miss, Label* done, Register receiver, Register properties, Handle name, Register scratch0) { // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the hole value). for (int i = 0; i < kInlinedProbes; i++) { // scratch0 points to properties hash. // Compute the masked index: (hash + i + i * i) & mask. Register index = scratch0; // Capacity is smi 2^n. __ ldr(index, FieldMemOperand(properties, kCapacityOffset)); __ sub(index, index, Operand(1)); __ and_(index, index, Operand( Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i)))); // Scale the index by multiplying by the entry size. ASSERT(StringDictionary::kEntrySize == 3); __ add(index, index, Operand(index, LSL, 1)); // index *= 3. Register entity_name = scratch0; // Having undefined at this place means the name is not contained. ASSERT_EQ(kSmiTagSize, 1); Register tmp = properties; __ add(tmp, properties, Operand(index, LSL, 1)); __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); ASSERT(!tmp.is(entity_name)); __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); __ cmp(entity_name, tmp); __ b(eq, done); if (i != kInlinedProbes - 1) { // Load the hole ready for use below: __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex); // Stop if found the property. __ cmp(entity_name, Operand(Handle(name))); __ b(eq, miss); Label the_hole; __ cmp(entity_name, tmp); __ b(eq, &the_hole); // Check if the entry name is not a symbol. __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); __ ldrb(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); __ tst(entity_name, Operand(kIsSymbolMask)); __ b(eq, miss); __ bind(&the_hole); // Restore the properties. __ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); } } const int spill_mask = (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() | r2.bit() | r1.bit() | r0.bit()); __ stm(db_w, sp, spill_mask); __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ mov(r1, Operand(Handle(name))); StringDictionaryLookupStub stub(NEGATIVE_LOOKUP); __ CallStub(&stub); __ cmp(r0, Operand::Zero()); __ ldm(ia_w, sp, spill_mask); __ b(eq, done); __ b(ne, miss); } // Probe the string dictionary in the |elements| register. Jump to the // |done| label if a property with the given name is found. Jump to // the |miss| label otherwise. // If lookup was successful |scratch2| will be equal to elements + 4 * index. void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, Label* miss, Label* done, Register elements, Register name, Register scratch1, Register scratch2) { ASSERT(!elements.is(scratch1)); ASSERT(!elements.is(scratch2)); ASSERT(!name.is(scratch1)); ASSERT(!name.is(scratch2)); __ AssertString(name); // Compute the capacity mask. __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset)); __ mov(scratch1, Operand(scratch1, ASR, kSmiTagSize)); // convert smi to int __ sub(scratch1, scratch1, Operand(1)); // Generate an unrolled loop that performs a few probes before // giving up. Measurements done on Gmail indicate that 2 probes // cover ~93% of loads from dictionaries. for (int i = 0; i < kInlinedProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ ldr(scratch2, FieldMemOperand(name, String::kHashFieldOffset)); if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. ASSERT(StringDictionary::GetProbeOffset(i) < 1 << (32 - String::kHashFieldOffset)); __ add(scratch2, scratch2, Operand( StringDictionary::GetProbeOffset(i) << String::kHashShift)); } __ and_(scratch2, scratch1, Operand(scratch2, LSR, String::kHashShift)); // Scale the index by multiplying by the element size. ASSERT(StringDictionary::kEntrySize == 3); // scratch2 = scratch2 * 3. __ add(scratch2, scratch2, Operand(scratch2, LSL, 1)); // Check if the key is identical to the name. __ add(scratch2, elements, Operand(scratch2, LSL, 2)); __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset)); __ cmp(name, Operand(ip)); __ b(eq, done); } const int spill_mask = (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() | r2.bit() | r1.bit() | r0.bit()) & ~(scratch1.bit() | scratch2.bit()); __ stm(db_w, sp, spill_mask); if (name.is(r0)) { ASSERT(!elements.is(r1)); __ Move(r1, name); __ Move(r0, elements); } else { __ Move(r0, elements); __ Move(r1, name); } StringDictionaryLookupStub stub(POSITIVE_LOOKUP); __ CallStub(&stub); __ cmp(r0, Operand::Zero()); __ mov(scratch2, Operand(r2)); __ ldm(ia_w, sp, spill_mask); __ b(ne, done); __ b(eq, miss); } void StringDictionaryLookupStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. // Registers: // result: StringDictionary to probe // r1: key // : StringDictionary to probe. // index_: will hold an index of entry if lookup is successful. // might alias with result_. // Returns: // result_ is zero if lookup failed, non zero otherwise. Register result = r0; Register dictionary = r0; Register key = r1; Register index = r2; Register mask = r3; Register hash = r4; Register undefined = r5; Register entry_key = r6; Label in_dictionary, maybe_in_dictionary, not_in_dictionary; __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset)); __ mov(mask, Operand(mask, ASR, kSmiTagSize)); __ sub(mask, mask, Operand(1)); __ ldr(hash, FieldMemOperand(key, String::kHashFieldOffset)); __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); for (int i = kInlinedProbes; i < kTotalProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. // Capacity is smi 2^n. if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. ASSERT(StringDictionary::GetProbeOffset(i) < 1 << (32 - String::kHashFieldOffset)); __ add(index, hash, Operand( StringDictionary::GetProbeOffset(i) << String::kHashShift)); } else { __ mov(index, Operand(hash)); } __ and_(index, mask, Operand(index, LSR, String::kHashShift)); // Scale the index by multiplying by the entry size. ASSERT(StringDictionary::kEntrySize == 3); __ add(index, index, Operand(index, LSL, 1)); // index *= 3. ASSERT_EQ(kSmiTagSize, 1); __ add(index, dictionary, Operand(index, LSL, 2)); __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset)); // Having undefined at this place means the name is not contained. __ cmp(entry_key, Operand(undefined)); __ b(eq, ¬_in_dictionary); // Stop if found the property. __ cmp(entry_key, Operand(key)); __ b(eq, &in_dictionary); if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { // Check if the entry name is not a symbol. __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); __ ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); __ tst(entry_key, Operand(kIsSymbolMask)); __ b(eq, &maybe_in_dictionary); } } __ bind(&maybe_in_dictionary); // If we are doing negative lookup then probing failure should be // treated as a lookup success. For positive lookup probing failure // should be treated as lookup failure. if (mode_ == POSITIVE_LOOKUP) { __ mov(result, Operand::Zero()); __ Ret(); } __ bind(&in_dictionary); __ mov(result, Operand(1)); __ Ret(); __ bind(¬_in_dictionary); __ mov(result, Operand::Zero()); __ Ret(); } struct AheadOfTimeWriteBarrierStubList { Register object, value, address; RememberedSetAction action; }; #define REG(Name) { kRegister_ ## Name ## _Code } static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = { // Used in RegExpExecStub. { REG(r6), REG(r4), REG(r7), EMIT_REMEMBERED_SET }, { REG(r6), REG(r2), REG(r7), EMIT_REMEMBERED_SET }, // Used in CompileArrayPushCall. // Also used in StoreIC::GenerateNormal via GenerateDictionaryStore. // Also used in KeyedStoreIC::GenerateGeneric. { REG(r3), REG(r4), REG(r5), EMIT_REMEMBERED_SET }, // Used in CompileStoreGlobal. { REG(r4), REG(r1), REG(r2), OMIT_REMEMBERED_SET }, // Used in StoreStubCompiler::CompileStoreField via GenerateStoreField. { REG(r1), REG(r2), REG(r3), EMIT_REMEMBERED_SET }, { REG(r3), REG(r2), REG(r1), EMIT_REMEMBERED_SET }, // Used in KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField. { REG(r2), REG(r1), REG(r3), EMIT_REMEMBERED_SET }, { REG(r3), REG(r1), REG(r2), EMIT_REMEMBERED_SET }, // KeyedStoreStubCompiler::GenerateStoreFastElement. { REG(r3), REG(r2), REG(r4), EMIT_REMEMBERED_SET }, { REG(r2), REG(r3), REG(r4), EMIT_REMEMBERED_SET }, // ElementsTransitionGenerator::GenerateMapChangeElementTransition // and ElementsTransitionGenerator::GenerateSmiToDouble // and ElementsTransitionGenerator::GenerateDoubleToObject { REG(r2), REG(r3), REG(r9), EMIT_REMEMBERED_SET }, { REG(r2), REG(r3), REG(r9), OMIT_REMEMBERED_SET }, // ElementsTransitionGenerator::GenerateDoubleToObject { REG(r6), REG(r2), REG(r0), EMIT_REMEMBERED_SET }, { REG(r2), REG(r6), REG(r9), EMIT_REMEMBERED_SET }, // StoreArrayLiteralElementStub::Generate { REG(r5), REG(r0), REG(r6), EMIT_REMEMBERED_SET }, // FastNewClosureStub::Generate { REG(r2), REG(r4), REG(r1), EMIT_REMEMBERED_SET }, // Null termination. { REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET} }; #undef REG bool RecordWriteStub::IsPregenerated() { for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime; !entry->object.is(no_reg); entry++) { if (object_.is(entry->object) && value_.is(entry->value) && address_.is(entry->address) && remembered_set_action_ == entry->action && save_fp_regs_mode_ == kDontSaveFPRegs) { return true; } } return false; } bool StoreBufferOverflowStub::IsPregenerated() { return save_doubles_ == kDontSaveFPRegs || ISOLATE->fp_stubs_generated(); } void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() { StoreBufferOverflowStub stub1(kDontSaveFPRegs); stub1.GetCode()->set_is_pregenerated(true); } void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() { for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime; !entry->object.is(no_reg); entry++) { RecordWriteStub stub(entry->object, entry->value, entry->address, entry->action, kDontSaveFPRegs); stub.GetCode()->set_is_pregenerated(true); } } bool CodeStub::CanUseFPRegisters() { return CpuFeatures::IsSupported(VFP2); } // Takes the input in 3 registers: address_ value_ and object_. A pointer to // the value has just been written into the object, now this stub makes sure // we keep the GC informed. The word in the object where the value has been // written is in the address register. void RecordWriteStub::Generate(MacroAssembler* masm) { Label skip_to_incremental_noncompacting; Label skip_to_incremental_compacting; // The first two instructions are generated with labels so as to get the // offset fixed up correctly by the bind(Label*) call. We patch it back and // forth between a compare instructions (a nop in this position) and the // real branch when we start and stop incremental heap marking. // See RecordWriteStub::Patch for details. { // Block literal pool emission, as the position of these two instructions // is assumed by the patching code. Assembler::BlockConstPoolScope block_const_pool(masm); __ b(&skip_to_incremental_noncompacting); __ b(&skip_to_incremental_compacting); } if (remembered_set_action_ == EMIT_REMEMBERED_SET) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } __ Ret(); __ bind(&skip_to_incremental_noncompacting); GenerateIncremental(masm, INCREMENTAL); __ bind(&skip_to_incremental_compacting); GenerateIncremental(masm, INCREMENTAL_COMPACTION); // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. // Will be checked in IncrementalMarking::ActivateGeneratedStub. ASSERT(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12)); ASSERT(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12)); PatchBranchIntoNop(masm, 0); PatchBranchIntoNop(masm, Assembler::kInstrSize); } void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { regs_.Save(masm); if (remembered_set_action_ == EMIT_REMEMBERED_SET) { Label dont_need_remembered_set; __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0)); __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. regs_.scratch0(), &dont_need_remembered_set); __ CheckPageFlag(regs_.object(), regs_.scratch0(), 1 << MemoryChunk::SCAN_ON_SCAVENGE, ne, &dont_need_remembered_set); // First notify the incremental marker if necessary, then update the // remembered set. CheckNeedsToInformIncrementalMarker( masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm, mode); regs_.Restore(masm); __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); __ bind(&dont_need_remembered_set); } CheckNeedsToInformIncrementalMarker( masm, kReturnOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm, mode); regs_.Restore(masm); __ Ret(); } void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) { regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_); int argument_count = 3; __ PrepareCallCFunction(argument_count, regs_.scratch0()); Register address = r0.is(regs_.address()) ? regs_.scratch0() : regs_.address(); ASSERT(!address.is(regs_.object())); ASSERT(!address.is(r0)); __ Move(address, regs_.address()); __ Move(r0, regs_.object()); __ Move(r1, address); __ mov(r2, Operand(ExternalReference::isolate_address())); AllowExternalCallThatCantCauseGC scope(masm); if (mode == INCREMENTAL_COMPACTION) { __ CallCFunction( ExternalReference::incremental_evacuation_record_write_function( masm->isolate()), argument_count); } else { ASSERT(mode == INCREMENTAL); __ CallCFunction( ExternalReference::incremental_marking_record_write_function( masm->isolate()), argument_count); } regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_); } void RecordWriteStub::CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode) { Label on_black; Label need_incremental; Label need_incremental_pop_scratch; __ and_(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask)); __ ldr(regs_.scratch1(), MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset)); __ sub(regs_.scratch1(), regs_.scratch1(), Operand(1), SetCC); __ str(regs_.scratch1(), MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset)); __ b(mi, &need_incremental); // Let's look at the color of the object: If it is not black we don't have // to inform the incremental marker. __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&on_black); // Get the value from the slot. __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0)); if (mode == INCREMENTAL_COMPACTION) { Label ensure_not_white; __ CheckPageFlag(regs_.scratch0(), // Contains value. regs_.scratch1(), // Scratch. MemoryChunk::kEvacuationCandidateMask, eq, &ensure_not_white); __ CheckPageFlag(regs_.object(), regs_.scratch1(), // Scratch. MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq, &need_incremental); __ bind(&ensure_not_white); } // We need extra registers for this, so we push the object and the address // register temporarily. __ Push(regs_.object(), regs_.address()); __ EnsureNotWhite(regs_.scratch0(), // The value. regs_.scratch1(), // Scratch. regs_.object(), // Scratch. regs_.address(), // Scratch. &need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); __ bind(&need_incremental); // Fall through when we need to inform the incremental marker. } void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : element value to store // -- r1 : array literal // -- r2 : map of array literal // -- r3 : element index as smi // -- r4 : array literal index in function as smi // ----------------------------------- Label element_done; Label double_elements; Label smi_element; Label slow_elements; Label fast_elements; __ CheckFastElements(r2, r5, &double_elements); // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS __ JumpIfSmi(r0, &smi_element); __ CheckFastSmiElements(r2, r5, &fast_elements); // Store into the array literal requires a elements transition. Call into // the runtime. __ bind(&slow_elements); // call. __ Push(r1, r3, r0); __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset)); __ Push(r5, r4); __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object. __ bind(&fast_elements); __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset)); __ add(r6, r5, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ str(r0, MemOperand(r6, 0)); // Update the write barrier for the array store. __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Ret(); // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS, // and value is Smi. __ bind(&smi_element); __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset)); __ add(r6, r5, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize)); __ Ret(); // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS. __ bind(&double_elements); __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset)); __ StoreNumberToDoubleElements(r0, r3, // Overwrites all regs after this. r5, r6, r7, r9, r2, &slow_elements); __ Ret(); } void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { ASSERT(!Serializer::enabled()); bool save_fp_regs = CpuFeatures::IsSupported(VFP2); CEntryStub ces(1, save_fp_regs ? kSaveFPRegs : kDontSaveFPRegs); __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); int parameter_count_offset = StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; __ ldr(r1, MemOperand(fp, parameter_count_offset)); masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); __ mov(r1, Operand(r1, LSL, kPointerSizeLog2)); __ add(sp, sp, r1); __ Ret(); } void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { if (entry_hook_ != NULL) { PredictableCodeSizeScope predictable(masm, 4 * Assembler::kInstrSize); ProfileEntryHookStub stub; __ push(lr); __ CallStub(&stub); __ pop(lr); } } void ProfileEntryHookStub::Generate(MacroAssembler* masm) { // The entry hook is a "push lr" instruction, followed by a call. const int32_t kReturnAddressDistanceFromFunctionStart = 3 * Assembler::kInstrSize; // Save live volatile registers. __ Push(lr, r5, r1); const int32_t kNumSavedRegs = 3; // Compute the function's address for the first argument. __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart)); // The caller's return address is above the saved temporaries. // Grab that for the second argument to the hook. __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize)); // Align the stack if necessary. int frame_alignment = masm->ActivationFrameAlignment(); if (frame_alignment > kPointerSize) { __ mov(r5, sp); ASSERT(IsPowerOf2(frame_alignment)); __ and_(sp, sp, Operand(-frame_alignment)); } #if defined(V8_HOST_ARCH_ARM) __ mov(ip, Operand(reinterpret_cast(&entry_hook_))); __ ldr(ip, MemOperand(ip)); #else // Under the simulator we need to indirect the entry hook through a // trampoline function at a known address. Address trampoline_address = reinterpret_cast
( reinterpret_cast(EntryHookTrampoline)); ApiFunction dispatcher(trampoline_address); __ mov(ip, Operand(ExternalReference(&dispatcher, ExternalReference::BUILTIN_CALL, masm->isolate()))); #endif __ Call(ip); // Restore the stack pointer if needed. if (frame_alignment > kPointerSize) { __ mov(sp, r5); } __ Pop(lr, r5, r1); __ Ret(); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM