# WARNING ABOUT GENERATED CODE
#
# This file is generated. See the contributing guide for more information:
# https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
#
# WARNING ABOUT GENERATED CODE
require 'seahorse/client/plugins/content_length.rb'
require 'aws-sdk-core/plugins/credentials_configuration.rb'
require 'aws-sdk-core/plugins/logging.rb'
require 'aws-sdk-core/plugins/param_converter.rb'
require 'aws-sdk-core/plugins/param_validator.rb'
require 'aws-sdk-core/plugins/user_agent.rb'
require 'aws-sdk-core/plugins/helpful_socket_errors.rb'
require 'aws-sdk-core/plugins/retry_errors.rb'
require 'aws-sdk-core/plugins/global_configuration.rb'
require 'aws-sdk-core/plugins/regional_endpoint.rb'
require 'aws-sdk-core/plugins/response_paging.rb'
require 'aws-sdk-core/plugins/stub_responses.rb'
require 'aws-sdk-core/plugins/idempotency_token.rb'
require 'aws-sdk-core/plugins/jsonvalue_converter.rb'
require 'aws-sdk-core/plugins/signature_v4.rb'
require 'aws-sdk-core/plugins/protocols/json_rpc.rb'
Aws::Plugins::GlobalConfiguration.add_identifier(:rekognition)
module Aws::Rekognition
class Client < Seahorse::Client::Base
include Aws::ClientStubs
@identifier = :rekognition
set_api(ClientApi::API)
add_plugin(Seahorse::Client::Plugins::ContentLength)
add_plugin(Aws::Plugins::CredentialsConfiguration)
add_plugin(Aws::Plugins::Logging)
add_plugin(Aws::Plugins::ParamConverter)
add_plugin(Aws::Plugins::ParamValidator)
add_plugin(Aws::Plugins::UserAgent)
add_plugin(Aws::Plugins::HelpfulSocketErrors)
add_plugin(Aws::Plugins::RetryErrors)
add_plugin(Aws::Plugins::GlobalConfiguration)
add_plugin(Aws::Plugins::RegionalEndpoint)
add_plugin(Aws::Plugins::ResponsePaging)
add_plugin(Aws::Plugins::StubResponses)
add_plugin(Aws::Plugins::IdempotencyToken)
add_plugin(Aws::Plugins::JsonvalueConverter)
add_plugin(Aws::Plugins::SignatureV4)
add_plugin(Aws::Plugins::Protocols::JsonRpc)
# @option options [required, Aws::CredentialProvider] :credentials
# Your AWS credentials. This can be an instance of any one of the
# following classes:
#
# * `Aws::Credentials` - Used for configuring static, non-refreshing
# credentials.
#
# * `Aws::InstanceProfileCredentials` - Used for loading credentials
# from an EC2 IMDS on an EC2 instance.
#
# * `Aws::SharedCredentials` - Used for loading credentials from a
# shared file, such as `~/.aws/config`.
#
# * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
#
# When `:credentials` are not configured directly, the following
# locations will be searched for credentials:
#
# * `Aws.config[:credentials]`
# * The `:access_key_id`, `:secret_access_key`, and `:session_token` options.
# * ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY']
# * `~/.aws/credentials`
# * `~/.aws/config`
# * EC2 IMDS instance profile - When used by default, the timeouts are
# very aggressive. Construct and pass an instance of
# `Aws::InstanceProfileCredentails` to enable retries and extended
# timeouts.
#
# @option options [required, String] :region
# The AWS region to connect to. The configured `:region` is
# used to determine the service `:endpoint`. When not passed,
# a default `:region` is search for in the following locations:
#
# * `Aws.config[:region]`
# * `ENV['AWS_REGION']`
# * `ENV['AMAZON_REGION']`
# * `ENV['AWS_DEFAULT_REGION']`
# * `~/.aws/credentials`
# * `~/.aws/config`
#
# @option options [String] :access_key_id
#
# @option options [Boolean] :convert_params (true)
# When `true`, an attempt is made to coerce request parameters into
# the required types.
#
# @option options [String] :endpoint
# The client endpoint is normally constructed from the `:region`
# option. You should only configure an `:endpoint` when connecting
# to test endpoints. This should be avalid HTTP(S) URI.
#
# @option options [Aws::Log::Formatter] :log_formatter (Aws::Log::Formatter.default)
# The log formatter.
#
# @option options [Symbol] :log_level (:info)
# The log level to send messages to the `:logger` at.
#
# @option options [Logger] :logger
# The Logger instance to send log messages to. If this option
# is not set, logging will be disabled.
#
# @option options [String] :profile ("default")
# Used when loading credentials from the shared credentials file
# at HOME/.aws/credentials. When not specified, 'default' is used.
#
# @option options [Float] :retry_base_delay (0.3)
# The base delay in seconds used by the default backoff function.
#
# @option options [Symbol] :retry_jitter (:none)
# A delay randomiser function used by the default backoff function. Some predefined functions can be referenced by name - :none, :equal, :full, otherwise a Proc that takes and returns a number.
#
# @see https://www.awsarchitectureblog.com/2015/03/backoff.html
#
# @option options [Integer] :retry_limit (3)
# The maximum number of times to retry failed requests. Only
# ~ 500 level server errors and certain ~ 400 level client errors
# are retried. Generally, these are throttling errors, data
# checksum errors, networking errors, timeout errors and auth
# errors from expired credentials.
#
# @option options [Integer] :retry_max_delay (0)
# The maximum number of seconds to delay between retries (0 for no limit) used by the default backoff function.
#
# @option options [String] :secret_access_key
#
# @option options [String] :session_token
#
# @option options [Boolean] :simple_json (false)
# Disables request parameter conversion, validation, and formatting.
# Also disable response data type conversions. This option is useful
# when you want to ensure the highest level of performance by
# avoiding overhead of walking request parameters and response data
# structures.
#
# When `:simple_json` is enabled, the request parameters hash must
# be formatted exactly as the DynamoDB API expects.
#
# @option options [Boolean] :stub_responses (false)
# Causes the client to return stubbed responses. By default
# fake responses are generated and returned. You can specify
# the response data to return or errors to raise by calling
# {ClientStubs#stub_responses}. See {ClientStubs} for more information.
#
# ** Please note ** When response stubbing is enabled, no HTTP
# requests are made, and retries are disabled.
#
# @option options [Boolean] :validate_params (true)
# When `true`, request parameters are validated before
# sending the request.
#
def initialize(*args)
super
end
# @!group API Operations
# Compares a face in the *source* input image with each of the 100
# largest faces detected in the *target* input image.
#
# If the source image contains multiple faces, the service detects the
# largest face and compares it with each face detected in the target
# image.
#
#
#
# You pass the input and target images either as base64-encoded image
# bytes or as a references to images in an Amazon S3 bucket. If you use
# the Amazon CLI to call Amazon Rekognition operations, passing image
# bytes is not supported. The image must be either a PNG or JPEG
# formatted file.
#
# In response, the operation returns an array of face matches ordered by
# similarity score in descending order. For each face match, the
# response provides a bounding box of the face, facial landmarks, pose
# details (pitch, role, and yaw), quality (brightness and sharpness),
# and confidence value (indicating the level of confidence that the
# bounding box contains a face). The response also provides a similarity
# score, which indicates how closely the faces match.
#
# By default, only faces with a similarity score of greater than or
# equal to 80% are returned in the response. You can change this value
# by specifying the `SimilarityThreshold` parameter.
#
#
#
# `CompareFaces` also returns an array of faces that don't match the
# source image. For each face, it returns a bounding box, confidence
# value, landmarks, pose details, and quality. The response also returns
# information about the face in the source image, including the bounding
# box of the face and confidence value.
#
# If the image doesn't contain Exif metadata, `CompareFaces` returns
# orientation information for the source and target images. Use these
# values to display the images with the correct image orientation.
#
# If no faces are detected in the source or target images,
# `CompareFaces` returns an `InvalidParameterException` error.
#
# This is a stateless API operation. That is, data returned by this
# operation doesn't persist.
#
#
#
# For an example, see Comparing Faces in Images in the Amazon
# Rekognition Developer Guide.
#
# This operation requires permissions to perform the
# `rekognition:CompareFaces` action.
#
# @option params [required, Types::Image] :source_image
# The input image as base64-encoded bytes or an S3 object. If you use
# the AWS CLI to call Amazon Rekognition operations, passing
# base64-encoded image bytes is not supported.
#
# @option params [required, Types::Image] :target_image
# The target image as base64-encoded bytes or an S3 object. If you use
# the AWS CLI to call Amazon Rekognition operations, passing
# base64-encoded image bytes is not supported.
#
# @option params [Float] :similarity_threshold
# The minimum level of confidence in the face matches that a match must
# meet to be included in the `FaceMatches` array.
#
# @return [Types::CompareFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::CompareFacesResponse#source_image_face #source_image_face} => Types::ComparedSourceImageFace
# * {Types::CompareFacesResponse#face_matches #face_matches} => Array<Types::CompareFacesMatch>
# * {Types::CompareFacesResponse#unmatched_faces #unmatched_faces} => Array<Types::ComparedFace>
# * {Types::CompareFacesResponse#source_image_orientation_correction #source_image_orientation_correction} => String
# * {Types::CompareFacesResponse#target_image_orientation_correction #target_image_orientation_correction} => String
#
#
# @example Example: To compare two images
#
# # This operation compares the largest face detected in the source image with each face detected in the target image.
#
# resp = client.compare_faces({
# similarity_threshold: 90,
# source_image: {
# s3_object: {
# bucket: "mybucket",
# name: "mysourceimage",
# },
# },
# target_image: {
# s3_object: {
# bucket: "mybucket",
# name: "mytargetimage",
# },
# },
# })
#
# resp.to_h outputs the following:
# {
# face_matches: [
# {
# face: {
# bounding_box: {
# height: 0.33481481671333313,
# left: 0.31888890266418457,
# top: 0.4933333396911621,
# width: 0.25,
# },
# confidence: 99.9991226196289,
# },
# similarity: 100,
# },
# ],
# source_image_face: {
# bounding_box: {
# height: 0.33481481671333313,
# left: 0.31888890266418457,
# top: 0.4933333396911621,
# width: 0.25,
# },
# confidence: 99.9991226196289,
# },
# }
#
# @example Request syntax with placeholder values
#
# resp = client.compare_faces({
# source_image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# target_image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# similarity_threshold: 1.0,
# })
#
# @example Response structure
#
# resp.source_image_face.bounding_box.width #=> Float
# resp.source_image_face.bounding_box.height #=> Float
# resp.source_image_face.bounding_box.left #=> Float
# resp.source_image_face.bounding_box.top #=> Float
# resp.source_image_face.confidence #=> Float
# resp.face_matches #=> Array
# resp.face_matches[0].similarity #=> Float
# resp.face_matches[0].face.bounding_box.width #=> Float
# resp.face_matches[0].face.bounding_box.height #=> Float
# resp.face_matches[0].face.bounding_box.left #=> Float
# resp.face_matches[0].face.bounding_box.top #=> Float
# resp.face_matches[0].face.confidence #=> Float
# resp.face_matches[0].face.landmarks #=> Array
# resp.face_matches[0].face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil"
# resp.face_matches[0].face.landmarks[0].x #=> Float
# resp.face_matches[0].face.landmarks[0].y #=> Float
# resp.face_matches[0].face.pose.roll #=> Float
# resp.face_matches[0].face.pose.yaw #=> Float
# resp.face_matches[0].face.pose.pitch #=> Float
# resp.face_matches[0].face.quality.brightness #=> Float
# resp.face_matches[0].face.quality.sharpness #=> Float
# resp.unmatched_faces #=> Array
# resp.unmatched_faces[0].bounding_box.width #=> Float
# resp.unmatched_faces[0].bounding_box.height #=> Float
# resp.unmatched_faces[0].bounding_box.left #=> Float
# resp.unmatched_faces[0].bounding_box.top #=> Float
# resp.unmatched_faces[0].confidence #=> Float
# resp.unmatched_faces[0].landmarks #=> Array
# resp.unmatched_faces[0].landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil"
# resp.unmatched_faces[0].landmarks[0].x #=> Float
# resp.unmatched_faces[0].landmarks[0].y #=> Float
# resp.unmatched_faces[0].pose.roll #=> Float
# resp.unmatched_faces[0].pose.yaw #=> Float
# resp.unmatched_faces[0].pose.pitch #=> Float
# resp.unmatched_faces[0].quality.brightness #=> Float
# resp.unmatched_faces[0].quality.sharpness #=> Float
# resp.source_image_orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270"
# resp.target_image_orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270"
#
# @overload compare_faces(params = {})
# @param [Hash] params ({})
def compare_faces(params = {}, options = {})
req = build_request(:compare_faces, params)
req.send_request(options)
end
# Creates a collection in an AWS Region. You can add faces to the
# collection using the operation.
#
# For example, you might create collections, one for each of your
# application users. A user can then index faces using the `IndexFaces`
# operation and persist results in a specific collection. Then, a user
# can search the collection for faces in the user-specific container.
#
# Collection names are case-sensitive.
#
#
#
# This operation requires permissions to perform the
# `rekognition:CreateCollection` action.
#
# @option params [required, String] :collection_id
# ID for the collection that you are creating.
#
# @return [Types::CreateCollectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::CreateCollectionResponse#status_code #status_code} => Integer
# * {Types::CreateCollectionResponse#collection_arn #collection_arn} => String
# * {Types::CreateCollectionResponse#face_model_version #face_model_version} => String
#
#
# @example Example: To create a collection
#
# # This operation creates a Rekognition collection for storing image data.
#
# resp = client.create_collection({
# collection_id: "myphotos",
# })
#
# resp.to_h outputs the following:
# {
# collection_arn: "aws:rekognition:us-west-2:123456789012:collection/myphotos",
# status_code: 200,
# }
#
# @example Request syntax with placeholder values
#
# resp = client.create_collection({
# collection_id: "CollectionId", # required
# })
#
# @example Response structure
#
# resp.status_code #=> Integer
# resp.collection_arn #=> String
# resp.face_model_version #=> String
#
# @overload create_collection(params = {})
# @param [Hash] params ({})
def create_collection(params = {}, options = {})
req = build_request(:create_collection, params)
req.send_request(options)
end
# Creates an Amazon Rekognition stream processor that you can use to
# detect and recognize faces in a streaming video.
#
# Amazon Rekognition Video is a consumer of live video from Amazon
# Kinesis Video Streams. Amazon Rekognition Video sends analysis results
# to Amazon Kinesis Data Streams.
#
# You provide as input a Kinesis video stream (`Input`) and a Kinesis
# data stream (`Output`) stream. You also specify the face recognition
# criteria in `Settings`. For example, the collection containing faces
# that you want to recognize. Use `Name` to assign an identifier for the
# stream processor. You use `Name` to manage the stream processor. For
# example, you can start processing the source video by calling with the
# `Name` field.
#
# After you have finished analyzing a streaming video, use to stop
# processing. You can delete the stream processor by calling .
#
# @option params [required, Types::StreamProcessorInput] :input
# Kinesis video stream stream that provides the source streaming video.
# If you are using the AWS CLI, the parameter name is
# `StreamProcessorInput`.
#
# @option params [required, Types::StreamProcessorOutput] :output
# Kinesis data stream stream to which Amazon Rekognition Video puts the
# analysis results. If you are using the AWS CLI, the parameter name is
# `StreamProcessorOutput`.
#
# @option params [required, String] :name
# An identifier you assign to the stream processor. You can use `Name`
# to manage the stream processor. For example, you can get the current
# status of the stream processor by calling . `Name` is idempotent.
#
# @option params [required, Types::StreamProcessorSettings] :settings
# Face recognition input parameters to be used by the stream processor.
# Includes the collection to use for face recognition and the face
# attributes to detect.
#
# @option params [required, String] :role_arn
# ARN of the IAM role that allows access to the stream processor.
#
# @return [Types::CreateStreamProcessorResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::CreateStreamProcessorResponse#stream_processor_arn #stream_processor_arn} => String
#
# @example Request syntax with placeholder values
#
# resp = client.create_stream_processor({
# input: { # required
# kinesis_video_stream: {
# arn: "KinesisVideoArn",
# },
# },
# output: { # required
# kinesis_data_stream: {
# arn: "KinesisDataArn",
# },
# },
# name: "StreamProcessorName", # required
# settings: { # required
# face_search: {
# collection_id: "CollectionId",
# face_match_threshold: 1.0,
# },
# },
# role_arn: "RoleArn", # required
# })
#
# @example Response structure
#
# resp.stream_processor_arn #=> String
#
# @overload create_stream_processor(params = {})
# @param [Hash] params ({})
def create_stream_processor(params = {}, options = {})
req = build_request(:create_stream_processor, params)
req.send_request(options)
end
# Deletes the specified collection. Note that this operation removes all
# faces in the collection. For an example, see
# delete-collection-procedure.
#
# This operation requires permissions to perform the
# `rekognition:DeleteCollection` action.
#
# @option params [required, String] :collection_id
# ID of the collection to delete.
#
# @return [Types::DeleteCollectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DeleteCollectionResponse#status_code #status_code} => Integer
#
#
# @example Example: To delete a collection
#
# # This operation deletes a Rekognition collection.
#
# resp = client.delete_collection({
# collection_id: "myphotos",
# })
#
# resp.to_h outputs the following:
# {
# status_code: 200,
# }
#
# @example Request syntax with placeholder values
#
# resp = client.delete_collection({
# collection_id: "CollectionId", # required
# })
#
# @example Response structure
#
# resp.status_code #=> Integer
#
# @overload delete_collection(params = {})
# @param [Hash] params ({})
def delete_collection(params = {}, options = {})
req = build_request(:delete_collection, params)
req.send_request(options)
end
# Deletes faces from a collection. You specify a collection ID and an
# array of face IDs to remove from the collection.
#
# This operation requires permissions to perform the
# `rekognition:DeleteFaces` action.
#
# @option params [required, String] :collection_id
# Collection from which to remove the specific faces.
#
# @option params [required, Array] :face_ids
# An array of face IDs to delete.
#
# @return [Types::DeleteFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DeleteFacesResponse#deleted_faces #deleted_faces} => Array<String>
#
#
# @example Example: To delete a face
#
# # This operation deletes one or more faces from a Rekognition collection.
#
# resp = client.delete_faces({
# collection_id: "myphotos",
# face_ids: [
# "ff43d742-0c13-5d16-a3e8-03d3f58e980b",
# ],
# })
#
# resp.to_h outputs the following:
# {
# deleted_faces: [
# "ff43d742-0c13-5d16-a3e8-03d3f58e980b",
# ],
# }
#
# @example Request syntax with placeholder values
#
# resp = client.delete_faces({
# collection_id: "CollectionId", # required
# face_ids: ["FaceId"], # required
# })
#
# @example Response structure
#
# resp.deleted_faces #=> Array
# resp.deleted_faces[0] #=> String
#
# @overload delete_faces(params = {})
# @param [Hash] params ({})
def delete_faces(params = {}, options = {})
req = build_request(:delete_faces, params)
req.send_request(options)
end
# Deletes the stream processor identified by `Name`. You assign the
# value for `Name` when you create the stream processor with . You might
# not be able to use the same name for a stream processor for a few
# seconds after calling `DeleteStreamProcessor`.
#
# @option params [required, String] :name
# The name of the stream processor you want to delete.
#
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
#
# @example Request syntax with placeholder values
#
# resp = client.delete_stream_processor({
# name: "StreamProcessorName", # required
# })
#
# @overload delete_stream_processor(params = {})
# @param [Hash] params ({})
def delete_stream_processor(params = {}, options = {})
req = build_request(:delete_stream_processor, params)
req.send_request(options)
end
# Describes the specified collection. You can use `DescribeCollection`
# to get information, such as the number of faces indexed into a
# collection and the version of the model used by the collection for
# face detection.
#
# For more information, see Describing a Collection in the Amazon
# Rekognition Developer Guide.
#
# @option params [required, String] :collection_id
# The ID of the collection to describe.
#
# @return [Types::DescribeCollectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DescribeCollectionResponse#face_count #face_count} => Integer
# * {Types::DescribeCollectionResponse#face_model_version #face_model_version} => String
# * {Types::DescribeCollectionResponse#collection_arn #collection_arn} => String
# * {Types::DescribeCollectionResponse#creation_timestamp #creation_timestamp} => Time
#
# @example Request syntax with placeholder values
#
# resp = client.describe_collection({
# collection_id: "CollectionId", # required
# })
#
# @example Response structure
#
# resp.face_count #=> Integer
# resp.face_model_version #=> String
# resp.collection_arn #=> String
# resp.creation_timestamp #=> Time
#
# @overload describe_collection(params = {})
# @param [Hash] params ({})
def describe_collection(params = {}, options = {})
req = build_request(:describe_collection, params)
req.send_request(options)
end
# Provides information about a stream processor created by . You can get
# information about the input and output streams, the input parameters
# for the face recognition being performed, and the current status of
# the stream processor.
#
# @option params [required, String] :name
# Name of the stream processor for which you want information.
#
# @return [Types::DescribeStreamProcessorResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DescribeStreamProcessorResponse#name #name} => String
# * {Types::DescribeStreamProcessorResponse#stream_processor_arn #stream_processor_arn} => String
# * {Types::DescribeStreamProcessorResponse#status #status} => String
# * {Types::DescribeStreamProcessorResponse#status_message #status_message} => String
# * {Types::DescribeStreamProcessorResponse#creation_timestamp #creation_timestamp} => Time
# * {Types::DescribeStreamProcessorResponse#last_update_timestamp #last_update_timestamp} => Time
# * {Types::DescribeStreamProcessorResponse#input #input} => Types::StreamProcessorInput
# * {Types::DescribeStreamProcessorResponse#output #output} => Types::StreamProcessorOutput
# * {Types::DescribeStreamProcessorResponse#role_arn #role_arn} => String
# * {Types::DescribeStreamProcessorResponse#settings #settings} => Types::StreamProcessorSettings
#
# @example Request syntax with placeholder values
#
# resp = client.describe_stream_processor({
# name: "StreamProcessorName", # required
# })
#
# @example Response structure
#
# resp.name #=> String
# resp.stream_processor_arn #=> String
# resp.status #=> String, one of "STOPPED", "STARTING", "RUNNING", "FAILED", "STOPPING"
# resp.status_message #=> String
# resp.creation_timestamp #=> Time
# resp.last_update_timestamp #=> Time
# resp.input.kinesis_video_stream.arn #=> String
# resp.output.kinesis_data_stream.arn #=> String
# resp.role_arn #=> String
# resp.settings.face_search.collection_id #=> String
# resp.settings.face_search.face_match_threshold #=> Float
#
# @overload describe_stream_processor(params = {})
# @param [Hash] params ({})
def describe_stream_processor(params = {}, options = {})
req = build_request(:describe_stream_processor, params)
req.send_request(options)
end
# Detects faces within an image that is provided as input.
#
# `DetectFaces` detects the 100 largest faces in the image. For each
# face detected, the operation returns face details including a bounding
# box of the face, a confidence value (that the bounding box contains a
# face), and a fixed set of attributes such as facial landmarks (for
# example, coordinates of eye and mouth), gender, presence of beard,
# sunglasses, etc.
#
# The face-detection algorithm is most effective on frontal faces. For
# non-frontal or obscured faces, the algorithm may not detect the faces
# or might detect faces with lower confidence.
#
# You pass the input image either as base64-encoded image bytes or as a
# reference to an image in an Amazon S3 bucket. If you use the Amazon
# CLI to call Amazon Rekognition operations, passing image bytes is not
# supported. The image must be either a PNG or JPEG formatted file.
#
# This is a stateless API operation. That is, the operation does not
# persist any data.
#
#
#
# This operation requires permissions to perform the
# `rekognition:DetectFaces` action.
#
# @option params [required, Types::Image] :image
# The input image as base64-encoded bytes or an S3 object. If you use
# the AWS CLI to call Amazon Rekognition operations, passing
# base64-encoded image bytes is not supported.
#
# @option params [Array] :attributes
# An array of facial attributes you want to be returned. This can be the
# default list of attributes or all attributes. If you don't specify a
# value for `Attributes` or if you specify `["DEFAULT"]`, the API
# returns the following subset of facial attributes: `BoundingBox`,
# `Confidence`, `Pose`, `Quality` and `Landmarks`. If you provide
# `["ALL"]`, all facial attributes are returned but the operation will
# take longer to complete.
#
# If you provide both, `["ALL", "DEFAULT"]`, the service uses a logical
# AND operator to determine which attributes to return (in this case,
# all attributes).
#
# @return [Types::DetectFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DetectFacesResponse#face_details #face_details} => Array<Types::FaceDetail>
# * {Types::DetectFacesResponse#orientation_correction #orientation_correction} => String
#
#
# @example Example: To detect faces in an image
#
# # This operation detects faces in an image stored in an AWS S3 bucket.
#
# resp = client.detect_faces({
# image: {
# s3_object: {
# bucket: "mybucket",
# name: "myphoto",
# },
# },
# })
#
# resp.to_h outputs the following:
# {
# face_details: [
# {
# bounding_box: {
# height: 0.18000000715255737,
# left: 0.5555555820465088,
# top: 0.33666667342185974,
# width: 0.23999999463558197,
# },
# confidence: 100,
# landmarks: [
# {
# type: "eyeLeft",
# x: 0.6394737362861633,
# y: 0.40819624066352844,
# },
# {
# type: "eyeRight",
# x: 0.7266660928726196,
# y: 0.41039225459098816,
# },
# {
# type: "eyeRight",
# x: 0.6912462115287781,
# y: 0.44240960478782654,
# },
# {
# type: "mouthDown",
# x: 0.6306198239326477,
# y: 0.46700039505958557,
# },
# {
# type: "mouthUp",
# x: 0.7215608954429626,
# y: 0.47114261984825134,
# },
# ],
# pose: {
# pitch: 4.050806522369385,
# roll: 0.9950747489929199,
# yaw: 13.693790435791016,
# },
# quality: {
# brightness: 37.60169982910156,
# sharpness: 80,
# },
# },
# ],
# orientation_correction: "ROTATE_0",
# }
#
# @example Request syntax with placeholder values
#
# resp = client.detect_faces({
# image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# attributes: ["DEFAULT"], # accepts DEFAULT, ALL
# })
#
# @example Response structure
#
# resp.face_details #=> Array
# resp.face_details[0].bounding_box.width #=> Float
# resp.face_details[0].bounding_box.height #=> Float
# resp.face_details[0].bounding_box.left #=> Float
# resp.face_details[0].bounding_box.top #=> Float
# resp.face_details[0].age_range.low #=> Integer
# resp.face_details[0].age_range.high #=> Integer
# resp.face_details[0].smile.value #=> Boolean
# resp.face_details[0].smile.confidence #=> Float
# resp.face_details[0].eyeglasses.value #=> Boolean
# resp.face_details[0].eyeglasses.confidence #=> Float
# resp.face_details[0].sunglasses.value #=> Boolean
# resp.face_details[0].sunglasses.confidence #=> Float
# resp.face_details[0].gender.value #=> String, one of "Male", "Female"
# resp.face_details[0].gender.confidence #=> Float
# resp.face_details[0].beard.value #=> Boolean
# resp.face_details[0].beard.confidence #=> Float
# resp.face_details[0].mustache.value #=> Boolean
# resp.face_details[0].mustache.confidence #=> Float
# resp.face_details[0].eyes_open.value #=> Boolean
# resp.face_details[0].eyes_open.confidence #=> Float
# resp.face_details[0].mouth_open.value #=> Boolean
# resp.face_details[0].mouth_open.confidence #=> Float
# resp.face_details[0].emotions #=> Array
# resp.face_details[0].emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN"
# resp.face_details[0].emotions[0].confidence #=> Float
# resp.face_details[0].landmarks #=> Array
# resp.face_details[0].landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil"
# resp.face_details[0].landmarks[0].x #=> Float
# resp.face_details[0].landmarks[0].y #=> Float
# resp.face_details[0].pose.roll #=> Float
# resp.face_details[0].pose.yaw #=> Float
# resp.face_details[0].pose.pitch #=> Float
# resp.face_details[0].quality.brightness #=> Float
# resp.face_details[0].quality.sharpness #=> Float
# resp.face_details[0].confidence #=> Float
# resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270"
#
# @overload detect_faces(params = {})
# @param [Hash] params ({})
def detect_faces(params = {}, options = {})
req = build_request(:detect_faces, params)
req.send_request(options)
end
# Detects instances of real-world entities within an image (JPEG or PNG)
# provided as input. This includes objects like flower, tree, and table;
# events like wedding, graduation, and birthday party; and concepts like
# landscape, evening, and nature.
#
# For an example, see Analyzing Images Stored in an Amazon S3 Bucket in
# the Amazon Rekognition Developer Guide.
#
# `DetectLabels` does not support the detection of activities. However,
# activity detection is supported for label detection in videos. For
# more information, see StartLabelDetection in the Amazon Rekognition
# Developer Guide.
#
#
#
# You pass the input image as base64-encoded image bytes or as a
# reference to an image in an Amazon S3 bucket. If you use the Amazon
# CLI to call Amazon Rekognition operations, passing image bytes is not
# supported. The image must be either a PNG or JPEG formatted file.
#
# For each object, scene, and concept the API returns one or more
# labels. Each label provides the object name, and the level of
# confidence that the image contains the object. For example, suppose
# the input image has a lighthouse, the sea, and a rock. The response
# will include all three labels, one for each object.
#
# `\{Name: lighthouse, Confidence: 98.4629\}`
#
# `\{Name: rock,Confidence: 79.2097\}`
#
# ` \{Name: sea,Confidence: 75.061\}`
#
# In the preceding example, the operation returns one label for each of
# the three objects. The operation can also return multiple labels for
# the same object in the image. For example, if the input image shows a
# flower (for example, a tulip), the operation might return the
# following three labels.
#
# `\{Name: flower,Confidence: 99.0562\}`
#
# `\{Name: plant,Confidence: 99.0562\}`
#
# `\{Name: tulip,Confidence: 99.0562\}`
#
# In this example, the detection algorithm more precisely identifies the
# flower as a tulip.
#
# In response, the API returns an array of labels. In addition, the
# response also includes the orientation correction. Optionally, you can
# specify `MinConfidence` to control the confidence threshold for the
# labels returned. The default is 50%. You can also add the `MaxLabels`
# parameter to limit the number of labels returned.
#
# If the object detected is a person, the operation doesn't provide the
# same facial details that the DetectFaces operation provides.
#
#
#
# This is a stateless API operation. That is, the operation does not
# persist any data.
#
# This operation requires permissions to perform the
# `rekognition:DetectLabels` action.
#
# @option params [required, Types::Image] :image
# The input image as base64-encoded bytes or an S3 object. If you use
# the AWS CLI to call Amazon Rekognition operations, passing
# base64-encoded image bytes is not supported.
#
# @option params [Integer] :max_labels
# Maximum number of labels you want the service to return in the
# response. The service returns the specified number of highest
# confidence labels.
#
# @option params [Float] :min_confidence
# Specifies the minimum confidence level for the labels to return.
# Amazon Rekognition doesn't return any labels with confidence lower
# than this specified value.
#
# If `MinConfidence` is not specified, the operation returns labels with
# a confidence values greater than or equal to 50 percent.
#
# @return [Types::DetectLabelsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DetectLabelsResponse#labels #labels} => Array<Types::Label>
# * {Types::DetectLabelsResponse#orientation_correction #orientation_correction} => String
#
#
# @example Example: To detect labels
#
# # This operation detects labels in the supplied image
#
# resp = client.detect_labels({
# image: {
# s3_object: {
# bucket: "mybucket",
# name: "myphoto",
# },
# },
# max_labels: 123,
# min_confidence: 70,
# })
#
# resp.to_h outputs the following:
# {
# labels: [
# {
# confidence: 99.25072479248047,
# name: "People",
# },
# {
# confidence: 99.25074005126953,
# name: "Person",
# },
# ],
# }
#
# @example Request syntax with placeholder values
#
# resp = client.detect_labels({
# image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# max_labels: 1,
# min_confidence: 1.0,
# })
#
# @example Response structure
#
# resp.labels #=> Array
# resp.labels[0].name #=> String
# resp.labels[0].confidence #=> Float
# resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270"
#
# @overload detect_labels(params = {})
# @param [Hash] params ({})
def detect_labels(params = {}, options = {})
req = build_request(:detect_labels, params)
req.send_request(options)
end
# Detects explicit or suggestive adult content in a specified JPEG or
# PNG format image. Use `DetectModerationLabels` to moderate images
# depending on your requirements. For example, you might want to filter
# images that contain nudity, but not images containing suggestive
# content.
#
# To filter images, use the labels returned by `DetectModerationLabels`
# to determine which types of content are appropriate.
#
# For information about moderation labels, see Detecting Unsafe Content
# in the Amazon Rekognition Developer Guide.
#
# You pass the input image either as base64-encoded image bytes or as a
# reference to an image in an Amazon S3 bucket. If you use the Amazon
# CLI to call Amazon Rekognition operations, passing image bytes is not
# supported. The image must be either a PNG or JPEG formatted file.
#
# @option params [required, Types::Image] :image
# The input image as base64-encoded bytes or an S3 object. If you use
# the AWS CLI to call Amazon Rekognition operations, passing
# base64-encoded image bytes is not supported.
#
# @option params [Float] :min_confidence
# Specifies the minimum confidence level for the labels to return.
# Amazon Rekognition doesn't return any labels with a confidence level
# lower than this specified value.
#
# If you don't specify `MinConfidence`, the operation returns labels
# with confidence values greater than or equal to 50 percent.
#
# @return [Types::DetectModerationLabelsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DetectModerationLabelsResponse#moderation_labels #moderation_labels} => Array<Types::ModerationLabel>
#
# @example Request syntax with placeholder values
#
# resp = client.detect_moderation_labels({
# image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# min_confidence: 1.0,
# })
#
# @example Response structure
#
# resp.moderation_labels #=> Array
# resp.moderation_labels[0].confidence #=> Float
# resp.moderation_labels[0].name #=> String
# resp.moderation_labels[0].parent_name #=> String
#
# @overload detect_moderation_labels(params = {})
# @param [Hash] params ({})
def detect_moderation_labels(params = {}, options = {})
req = build_request(:detect_moderation_labels, params)
req.send_request(options)
end
# Detects text in the input image and converts it into machine-readable
# text.
#
# Pass the input image as base64-encoded image bytes or as a reference
# to an image in an Amazon S3 bucket. If you use the AWS CLI to call
# Amazon Rekognition operations, you must pass it as a reference to an
# image in an Amazon S3 bucket. For the AWS CLI, passing image bytes is
# not supported. The image must be either a .png or .jpeg formatted
# file.
#
# The `DetectText` operation returns text in an array of elements,
# `TextDetections`. Each `TextDetection` element provides information
# about a single word or line of text that was detected in the image.
#
# A word is one or more ISO basic latin script characters that are not
# separated by spaces. `DetectText` can detect up to 50 words in an
# image.
#
# A line is a string of equally spaced words. A line isn't necessarily
# a complete sentence. For example, a driver's license number is
# detected as a line. A line ends when there is no aligned text after
# it. Also, a line ends when there is a large gap between words,
# relative to the length of the words. This means, depending on the gap
# between words, Amazon Rekognition may detect multiple lines in text
# aligned in the same direction. Periods don't represent the end of a
# line. If a sentence spans multiple lines, the `DetectText` operation
# returns multiple lines.
#
# To determine whether a `TextDetection` element is a line of text or a
# word, use the `TextDetection` object `Type` field.
#
# To be detected, text must be within +/- 90 degrees orientation of the
# horizontal axis.
#
# For more information, see DetectText in the Amazon Rekognition
# Developer Guide.
#
# @option params [required, Types::Image] :image
# The input image as base64-encoded bytes or an Amazon S3 object. If you
# use the AWS CLI to call Amazon Rekognition operations, you can't pass
# image bytes.
#
# @return [Types::DetectTextResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DetectTextResponse#text_detections #text_detections} => Array<Types::TextDetection>
#
# @example Request syntax with placeholder values
#
# resp = client.detect_text({
# image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# })
#
# @example Response structure
#
# resp.text_detections #=> Array
# resp.text_detections[0].detected_text #=> String
# resp.text_detections[0].type #=> String, one of "LINE", "WORD"
# resp.text_detections[0].id #=> Integer
# resp.text_detections[0].parent_id #=> Integer
# resp.text_detections[0].confidence #=> Float
# resp.text_detections[0].geometry.bounding_box.width #=> Float
# resp.text_detections[0].geometry.bounding_box.height #=> Float
# resp.text_detections[0].geometry.bounding_box.left #=> Float
# resp.text_detections[0].geometry.bounding_box.top #=> Float
# resp.text_detections[0].geometry.polygon #=> Array
# resp.text_detections[0].geometry.polygon[0].x #=> Float
# resp.text_detections[0].geometry.polygon[0].y #=> Float
#
# @overload detect_text(params = {})
# @param [Hash] params ({})
def detect_text(params = {}, options = {})
req = build_request(:detect_text, params)
req.send_request(options)
end
# Gets the name and additional information about a celebrity based on
# his or her Rekognition ID. The additional information is returned as
# an array of URLs. If there is no additional information about the
# celebrity, this list is empty.
#
# For more information, see Recognizing Celebrities in an Image in the
# Amazon Rekognition Developer Guide.
#
# This operation requires permissions to perform the
# `rekognition:GetCelebrityInfo` action.
#
# @option params [required, String] :id
# The ID for the celebrity. You get the celebrity ID from a call to the
# operation, which recognizes celebrities in an image.
#
# @return [Types::GetCelebrityInfoResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::GetCelebrityInfoResponse#urls #urls} => Array<String>
# * {Types::GetCelebrityInfoResponse#name #name} => String
#
# @example Request syntax with placeholder values
#
# resp = client.get_celebrity_info({
# id: "RekognitionUniqueId", # required
# })
#
# @example Response structure
#
# resp.urls #=> Array
# resp.urls[0] #=> String
# resp.name #=> String
#
# @overload get_celebrity_info(params = {})
# @param [Hash] params ({})
def get_celebrity_info(params = {}, options = {})
req = build_request(:get_celebrity_info, params)
req.send_request(options)
end
# Gets the celebrity recognition results for a Amazon Rekognition Video
# analysis started by .
#
# Celebrity recognition in a video is an asynchronous operation.
# Analysis is started by a call to which returns a job identifier
# (`JobId`). When the celebrity recognition operation finishes, Amazon
# Rekognition Video publishes a completion status to the Amazon Simple
# Notification Service topic registered in the initial call to
# `StartCelebrityRecognition`. To get the results of the celebrity
# recognition analysis, first check that the status value published to
# the Amazon SNS topic is `SUCCEEDED`. If so, call
# `GetCelebrityDetection` and pass the job identifier (`JobId`) from the
# initial call to `StartCelebrityDetection`.
#
# For more information, see Working With Stored Videos in the Amazon
# Rekognition Developer Guide.
#
# `GetCelebrityRecognition` returns detected celebrities and the time(s)
# they are detected in an array (`Celebrities`) of objects. Each
# `CelebrityRecognition` contains information about the celebrity in a
# object and the time, `Timestamp`, the celebrity was detected.
#
# `GetCelebrityRecognition` only returns the default facial attributes
# (`BoundingBox`, `Confidence`, `Landmarks`, `Pose`, and `Quality`). The
# other facial attributes listed in the `Face` object of the following
# response syntax are not returned. For more information, see FaceDetail
# in the Amazon Rekognition Developer Guide.
#
#
#
# By default, the `Celebrities` array is sorted by time (milliseconds
# from the start of the video). You can also sort the array by celebrity
# by specifying the value `ID` in the `SortBy` input parameter.
#
# The `CelebrityDetail` object includes the celebrity identifer and
# additional information urls. If you don't store the additional
# information urls, you can get them later by calling with the celebrity
# identifer.
#
# No information is returned for faces not recognized as celebrities.
#
# Use MaxResults parameter to limit the number of labels returned. If
# there are more results than specified in `MaxResults`, the value of
# `NextToken` in the operation response contains a pagination token for
# getting the next set of results. To get the next page of results, call
# `GetCelebrityDetection` and populate the `NextToken` request parameter
# with the token value returned from the previous call to
# `GetCelebrityRecognition`.
#
# @option params [required, String] :job_id
# Job identifier for the required celebrity recognition analysis. You
# can get the job identifer from a call to `StartCelebrityRecognition`.
#
# @option params [Integer] :max_results
# Maximum number of results to return per paginated call. The largest
# value you can specify is 1000. If you specify a value greater than
# 1000, a maximum of 1000 results is returned. The default value is
# 1000.
#
# @option params [String] :next_token
# If the previous response was incomplete (because there is more
# recognized celebrities to retrieve), Amazon Rekognition Video returns
# a pagination token in the response. You can use this pagination token
# to retrieve the next set of celebrities.
#
# @option params [String] :sort_by
# Sort to use for celebrities returned in `Celebrities` field. Specify
# `ID` to sort by the celebrity identifier, specify `TIMESTAMP` to sort
# by the time the celebrity was recognized.
#
# @return [Types::GetCelebrityRecognitionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::GetCelebrityRecognitionResponse#job_status #job_status} => String
# * {Types::GetCelebrityRecognitionResponse#status_message #status_message} => String
# * {Types::GetCelebrityRecognitionResponse#video_metadata #video_metadata} => Types::VideoMetadata
# * {Types::GetCelebrityRecognitionResponse#next_token #next_token} => String
# * {Types::GetCelebrityRecognitionResponse#celebrities #celebrities} => Array<Types::CelebrityRecognition>
#
# @example Request syntax with placeholder values
#
# resp = client.get_celebrity_recognition({
# job_id: "JobId", # required
# max_results: 1,
# next_token: "PaginationToken",
# sort_by: "ID", # accepts ID, TIMESTAMP
# })
#
# @example Response structure
#
# resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED"
# resp.status_message #=> String
# resp.video_metadata.codec #=> String
# resp.video_metadata.duration_millis #=> Integer
# resp.video_metadata.format #=> String
# resp.video_metadata.frame_rate #=> Float
# resp.video_metadata.frame_height #=> Integer
# resp.video_metadata.frame_width #=> Integer
# resp.next_token #=> String
# resp.celebrities #=> Array
# resp.celebrities[0].timestamp #=> Integer
# resp.celebrities[0].celebrity.urls #=> Array
# resp.celebrities[0].celebrity.urls[0] #=> String
# resp.celebrities[0].celebrity.name #=> String
# resp.celebrities[0].celebrity.id #=> String
# resp.celebrities[0].celebrity.confidence #=> Float
# resp.celebrities[0].celebrity.bounding_box.width #=> Float
# resp.celebrities[0].celebrity.bounding_box.height #=> Float
# resp.celebrities[0].celebrity.bounding_box.left #=> Float
# resp.celebrities[0].celebrity.bounding_box.top #=> Float
# resp.celebrities[0].celebrity.face.bounding_box.width #=> Float
# resp.celebrities[0].celebrity.face.bounding_box.height #=> Float
# resp.celebrities[0].celebrity.face.bounding_box.left #=> Float
# resp.celebrities[0].celebrity.face.bounding_box.top #=> Float
# resp.celebrities[0].celebrity.face.age_range.low #=> Integer
# resp.celebrities[0].celebrity.face.age_range.high #=> Integer
# resp.celebrities[0].celebrity.face.smile.value #=> Boolean
# resp.celebrities[0].celebrity.face.smile.confidence #=> Float
# resp.celebrities[0].celebrity.face.eyeglasses.value #=> Boolean
# resp.celebrities[0].celebrity.face.eyeglasses.confidence #=> Float
# resp.celebrities[0].celebrity.face.sunglasses.value #=> Boolean
# resp.celebrities[0].celebrity.face.sunglasses.confidence #=> Float
# resp.celebrities[0].celebrity.face.gender.value #=> String, one of "Male", "Female"
# resp.celebrities[0].celebrity.face.gender.confidence #=> Float
# resp.celebrities[0].celebrity.face.beard.value #=> Boolean
# resp.celebrities[0].celebrity.face.beard.confidence #=> Float
# resp.celebrities[0].celebrity.face.mustache.value #=> Boolean
# resp.celebrities[0].celebrity.face.mustache.confidence #=> Float
# resp.celebrities[0].celebrity.face.eyes_open.value #=> Boolean
# resp.celebrities[0].celebrity.face.eyes_open.confidence #=> Float
# resp.celebrities[0].celebrity.face.mouth_open.value #=> Boolean
# resp.celebrities[0].celebrity.face.mouth_open.confidence #=> Float
# resp.celebrities[0].celebrity.face.emotions #=> Array
# resp.celebrities[0].celebrity.face.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN"
# resp.celebrities[0].celebrity.face.emotions[0].confidence #=> Float
# resp.celebrities[0].celebrity.face.landmarks #=> Array
# resp.celebrities[0].celebrity.face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil"
# resp.celebrities[0].celebrity.face.landmarks[0].x #=> Float
# resp.celebrities[0].celebrity.face.landmarks[0].y #=> Float
# resp.celebrities[0].celebrity.face.pose.roll #=> Float
# resp.celebrities[0].celebrity.face.pose.yaw #=> Float
# resp.celebrities[0].celebrity.face.pose.pitch #=> Float
# resp.celebrities[0].celebrity.face.quality.brightness #=> Float
# resp.celebrities[0].celebrity.face.quality.sharpness #=> Float
# resp.celebrities[0].celebrity.face.confidence #=> Float
#
# @overload get_celebrity_recognition(params = {})
# @param [Hash] params ({})
def get_celebrity_recognition(params = {}, options = {})
req = build_request(:get_celebrity_recognition, params)
req.send_request(options)
end
# Gets the content moderation analysis results for a Amazon Rekognition
# Video analysis started by .
#
# Content moderation analysis of a video is an asynchronous operation.
# You start analysis by calling . which returns a job identifier
# (`JobId`). When analysis finishes, Amazon Rekognition Video publishes
# a completion status to the Amazon Simple Notification Service topic
# registered in the initial call to `StartContentModeration`. To get the
# results of the content moderation analysis, first check that the
# status value published to the Amazon SNS topic is `SUCCEEDED`. If so,
# call `GetCelebrityDetection` and pass the job identifier (`JobId`)
# from the initial call to `StartCelebrityDetection`.
#
# For more information, see Working with Stored Videos in the Amazon
# Rekognition Devlopers Guide.
#
# `GetContentModeration` returns detected content moderation labels, and
# the time they are detected, in an array, `ModerationLabels`, of
# objects.
#
# By default, the moderated labels are returned sorted by time, in
# milliseconds from the start of the video. You can also sort them by
# moderated label by specifying `NAME` for the `SortBy` input parameter.
#
# Since video analysis can return a large number of results, use the
# `MaxResults` parameter to limit the number of labels returned in a
# single call to `GetContentModeration`. If there are more results than
# specified in `MaxResults`, the value of `NextToken` in the operation
# response contains a pagination token for getting the next set of
# results. To get the next page of results, call `GetContentModeration`
# and populate the `NextToken` request parameter with the value of
# `NextToken` returned from the previous call to `GetContentModeration`.
#
# For more information, see Detecting Unsafe Content in the Amazon
# Rekognition Developer Guide.
#
# @option params [required, String] :job_id
# The identifier for the content moderation job. Use `JobId` to identify
# the job in a subsequent call to `GetContentModeration`.
#
# @option params [Integer] :max_results
# Maximum number of results to return per paginated call. The largest
# value you can specify is 1000. If you specify a value greater than
# 1000, a maximum of 1000 results is returned. The default value is
# 1000.
#
# @option params [String] :next_token
# If the previous response was incomplete (because there is more data to
# retrieve), Amazon Rekognition returns a pagination token in the
# response. You can use this pagination token to retrieve the next set
# of content moderation labels.
#
# @option params [String] :sort_by
# Sort to use for elements in the `ModerationLabelDetections` array. Use
# `TIMESTAMP` to sort array elements by the time labels are detected.
# Use `NAME` to alphabetically group elements for a label together.
# Within each label group, the array element are sorted by detection
# confidence. The default sort is by `TIMESTAMP`.
#
# @return [Types::GetContentModerationResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::GetContentModerationResponse#job_status #job_status} => String
# * {Types::GetContentModerationResponse#status_message #status_message} => String
# * {Types::GetContentModerationResponse#video_metadata #video_metadata} => Types::VideoMetadata
# * {Types::GetContentModerationResponse#moderation_labels #moderation_labels} => Array<Types::ContentModerationDetection>
# * {Types::GetContentModerationResponse#next_token #next_token} => String
#
# @example Request syntax with placeholder values
#
# resp = client.get_content_moderation({
# job_id: "JobId", # required
# max_results: 1,
# next_token: "PaginationToken",
# sort_by: "NAME", # accepts NAME, TIMESTAMP
# })
#
# @example Response structure
#
# resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED"
# resp.status_message #=> String
# resp.video_metadata.codec #=> String
# resp.video_metadata.duration_millis #=> Integer
# resp.video_metadata.format #=> String
# resp.video_metadata.frame_rate #=> Float
# resp.video_metadata.frame_height #=> Integer
# resp.video_metadata.frame_width #=> Integer
# resp.moderation_labels #=> Array
# resp.moderation_labels[0].timestamp #=> Integer
# resp.moderation_labels[0].moderation_label.confidence #=> Float
# resp.moderation_labels[0].moderation_label.name #=> String
# resp.moderation_labels[0].moderation_label.parent_name #=> String
# resp.next_token #=> String
#
# @overload get_content_moderation(params = {})
# @param [Hash] params ({})
def get_content_moderation(params = {}, options = {})
req = build_request(:get_content_moderation, params)
req.send_request(options)
end
# Gets face detection results for a Amazon Rekognition Video analysis
# started by .
#
# Face detection with Amazon Rekognition Video is an asynchronous
# operation. You start face detection by calling which returns a job
# identifier (`JobId`). When the face detection operation finishes,
# Amazon Rekognition Video publishes a completion status to the Amazon
# Simple Notification Service topic registered in the initial call to
# `StartFaceDetection`. To get the results of the face detection
# operation, first check that the status value published to the Amazon
# SNS topic is `SUCCEEDED`. If so, call and pass the job identifier
# (`JobId`) from the initial call to `StartFaceDetection`.
#
# `GetFaceDetection` returns an array of detected faces (`Faces`) sorted
# by the time the faces were detected.
#
# Use MaxResults parameter to limit the number of labels returned. If
# there are more results than specified in `MaxResults`, the value of
# `NextToken` in the operation response contains a pagination token for
# getting the next set of results. To get the next page of results, call
# `GetFaceDetection` and populate the `NextToken` request parameter with
# the token value returned from the previous call to `GetFaceDetection`.
#
# @option params [required, String] :job_id
# Unique identifier for the face detection job. The `JobId` is returned
# from `StartFaceDetection`.
#
# @option params [Integer] :max_results
# Maximum number of results to return per paginated call. The largest
# value you can specify is 1000. If you specify a value greater than
# 1000, a maximum of 1000 results is returned. The default value is
# 1000.
#
# @option params [String] :next_token
# If the previous response was incomplete (because there are more faces
# to retrieve), Amazon Rekognition Video returns a pagination token in
# the response. You can use this pagination token to retrieve the next
# set of faces.
#
# @return [Types::GetFaceDetectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::GetFaceDetectionResponse#job_status #job_status} => String
# * {Types::GetFaceDetectionResponse#status_message #status_message} => String
# * {Types::GetFaceDetectionResponse#video_metadata #video_metadata} => Types::VideoMetadata
# * {Types::GetFaceDetectionResponse#next_token #next_token} => String
# * {Types::GetFaceDetectionResponse#faces #faces} => Array<Types::FaceDetection>
#
# @example Request syntax with placeholder values
#
# resp = client.get_face_detection({
# job_id: "JobId", # required
# max_results: 1,
# next_token: "PaginationToken",
# })
#
# @example Response structure
#
# resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED"
# resp.status_message #=> String
# resp.video_metadata.codec #=> String
# resp.video_metadata.duration_millis #=> Integer
# resp.video_metadata.format #=> String
# resp.video_metadata.frame_rate #=> Float
# resp.video_metadata.frame_height #=> Integer
# resp.video_metadata.frame_width #=> Integer
# resp.next_token #=> String
# resp.faces #=> Array
# resp.faces[0].timestamp #=> Integer
# resp.faces[0].face.bounding_box.width #=> Float
# resp.faces[0].face.bounding_box.height #=> Float
# resp.faces[0].face.bounding_box.left #=> Float
# resp.faces[0].face.bounding_box.top #=> Float
# resp.faces[0].face.age_range.low #=> Integer
# resp.faces[0].face.age_range.high #=> Integer
# resp.faces[0].face.smile.value #=> Boolean
# resp.faces[0].face.smile.confidence #=> Float
# resp.faces[0].face.eyeglasses.value #=> Boolean
# resp.faces[0].face.eyeglasses.confidence #=> Float
# resp.faces[0].face.sunglasses.value #=> Boolean
# resp.faces[0].face.sunglasses.confidence #=> Float
# resp.faces[0].face.gender.value #=> String, one of "Male", "Female"
# resp.faces[0].face.gender.confidence #=> Float
# resp.faces[0].face.beard.value #=> Boolean
# resp.faces[0].face.beard.confidence #=> Float
# resp.faces[0].face.mustache.value #=> Boolean
# resp.faces[0].face.mustache.confidence #=> Float
# resp.faces[0].face.eyes_open.value #=> Boolean
# resp.faces[0].face.eyes_open.confidence #=> Float
# resp.faces[0].face.mouth_open.value #=> Boolean
# resp.faces[0].face.mouth_open.confidence #=> Float
# resp.faces[0].face.emotions #=> Array
# resp.faces[0].face.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN"
# resp.faces[0].face.emotions[0].confidence #=> Float
# resp.faces[0].face.landmarks #=> Array
# resp.faces[0].face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil"
# resp.faces[0].face.landmarks[0].x #=> Float
# resp.faces[0].face.landmarks[0].y #=> Float
# resp.faces[0].face.pose.roll #=> Float
# resp.faces[0].face.pose.yaw #=> Float
# resp.faces[0].face.pose.pitch #=> Float
# resp.faces[0].face.quality.brightness #=> Float
# resp.faces[0].face.quality.sharpness #=> Float
# resp.faces[0].face.confidence #=> Float
#
# @overload get_face_detection(params = {})
# @param [Hash] params ({})
def get_face_detection(params = {}, options = {})
req = build_request(:get_face_detection, params)
req.send_request(options)
end
# Gets the face search results for Amazon Rekognition Video face search
# started by . The search returns faces in a collection that match the
# faces of persons detected in a video. It also includes the time(s)
# that faces are matched in the video.
#
# Face search in a video is an asynchronous operation. You start face
# search by calling to which returns a job identifier (`JobId`). When
# the search operation finishes, Amazon Rekognition Video publishes a
# completion status to the Amazon Simple Notification Service topic
# registered in the initial call to `StartFaceSearch`. To get the search
# results, first check that the status value published to the Amazon SNS
# topic is `SUCCEEDED`. If so, call `GetFaceSearch` and pass the job
# identifier (`JobId`) from the initial call to `StartFaceSearch`.
#
# For more information, see Searching Faces in a Collection in the
# Amazon Rekognition Developer Guide.
#
# The search results are retured in an array, `Persons`, of objects.
# Each`PersonMatch` element contains details about the matching faces in
# the input collection, person information (facial attributes, bounding
# boxes, and person identifer) for the matched person, and the time the
# person was matched in the video.
#
# `GetFaceSearch` only returns the default facial attributes
# (`BoundingBox`, `Confidence`, `Landmarks`, `Pose`, and `Quality`). The
# other facial attributes listed in the `Face` object of the following
# response syntax are not returned. For more information, see FaceDetail
# in the Amazon Rekognition Developer Guide.
#
#
#
# By default, the `Persons` array is sorted by the time, in milliseconds
# from the start of the video, persons are matched. You can also sort by
# persons by specifying `INDEX` for the `SORTBY` input parameter.
#
# @option params [required, String] :job_id
# The job identifer for the search request. You get the job identifier
# from an initial call to `StartFaceSearch`.
#
# @option params [Integer] :max_results
# Maximum number of results to return per paginated call. The largest
# value you can specify is 1000. If you specify a value greater than
# 1000, a maximum of 1000 results is returned. The default value is
# 1000.
#
# @option params [String] :next_token
# If the previous response was incomplete (because there is more search
# results to retrieve), Amazon Rekognition Video returns a pagination
# token in the response. You can use this pagination token to retrieve
# the next set of search results.
#
# @option params [String] :sort_by
# Sort to use for grouping faces in the response. Use `TIMESTAMP` to
# group faces by the time that they are recognized. Use `INDEX` to sort
# by recognized faces.
#
# @return [Types::GetFaceSearchResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::GetFaceSearchResponse#job_status #job_status} => String
# * {Types::GetFaceSearchResponse#status_message #status_message} => String
# * {Types::GetFaceSearchResponse#next_token #next_token} => String
# * {Types::GetFaceSearchResponse#video_metadata #video_metadata} => Types::VideoMetadata
# * {Types::GetFaceSearchResponse#persons #persons} => Array<Types::PersonMatch>
#
# @example Request syntax with placeholder values
#
# resp = client.get_face_search({
# job_id: "JobId", # required
# max_results: 1,
# next_token: "PaginationToken",
# sort_by: "INDEX", # accepts INDEX, TIMESTAMP
# })
#
# @example Response structure
#
# resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED"
# resp.status_message #=> String
# resp.next_token #=> String
# resp.video_metadata.codec #=> String
# resp.video_metadata.duration_millis #=> Integer
# resp.video_metadata.format #=> String
# resp.video_metadata.frame_rate #=> Float
# resp.video_metadata.frame_height #=> Integer
# resp.video_metadata.frame_width #=> Integer
# resp.persons #=> Array
# resp.persons[0].timestamp #=> Integer
# resp.persons[0].person.index #=> Integer
# resp.persons[0].person.bounding_box.width #=> Float
# resp.persons[0].person.bounding_box.height #=> Float
# resp.persons[0].person.bounding_box.left #=> Float
# resp.persons[0].person.bounding_box.top #=> Float
# resp.persons[0].person.face.bounding_box.width #=> Float
# resp.persons[0].person.face.bounding_box.height #=> Float
# resp.persons[0].person.face.bounding_box.left #=> Float
# resp.persons[0].person.face.bounding_box.top #=> Float
# resp.persons[0].person.face.age_range.low #=> Integer
# resp.persons[0].person.face.age_range.high #=> Integer
# resp.persons[0].person.face.smile.value #=> Boolean
# resp.persons[0].person.face.smile.confidence #=> Float
# resp.persons[0].person.face.eyeglasses.value #=> Boolean
# resp.persons[0].person.face.eyeglasses.confidence #=> Float
# resp.persons[0].person.face.sunglasses.value #=> Boolean
# resp.persons[0].person.face.sunglasses.confidence #=> Float
# resp.persons[0].person.face.gender.value #=> String, one of "Male", "Female"
# resp.persons[0].person.face.gender.confidence #=> Float
# resp.persons[0].person.face.beard.value #=> Boolean
# resp.persons[0].person.face.beard.confidence #=> Float
# resp.persons[0].person.face.mustache.value #=> Boolean
# resp.persons[0].person.face.mustache.confidence #=> Float
# resp.persons[0].person.face.eyes_open.value #=> Boolean
# resp.persons[0].person.face.eyes_open.confidence #=> Float
# resp.persons[0].person.face.mouth_open.value #=> Boolean
# resp.persons[0].person.face.mouth_open.confidence #=> Float
# resp.persons[0].person.face.emotions #=> Array
# resp.persons[0].person.face.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN"
# resp.persons[0].person.face.emotions[0].confidence #=> Float
# resp.persons[0].person.face.landmarks #=> Array
# resp.persons[0].person.face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil"
# resp.persons[0].person.face.landmarks[0].x #=> Float
# resp.persons[0].person.face.landmarks[0].y #=> Float
# resp.persons[0].person.face.pose.roll #=> Float
# resp.persons[0].person.face.pose.yaw #=> Float
# resp.persons[0].person.face.pose.pitch #=> Float
# resp.persons[0].person.face.quality.brightness #=> Float
# resp.persons[0].person.face.quality.sharpness #=> Float
# resp.persons[0].person.face.confidence #=> Float
# resp.persons[0].face_matches #=> Array
# resp.persons[0].face_matches[0].similarity #=> Float
# resp.persons[0].face_matches[0].face.face_id #=> String
# resp.persons[0].face_matches[0].face.bounding_box.width #=> Float
# resp.persons[0].face_matches[0].face.bounding_box.height #=> Float
# resp.persons[0].face_matches[0].face.bounding_box.left #=> Float
# resp.persons[0].face_matches[0].face.bounding_box.top #=> Float
# resp.persons[0].face_matches[0].face.image_id #=> String
# resp.persons[0].face_matches[0].face.external_image_id #=> String
# resp.persons[0].face_matches[0].face.confidence #=> Float
#
# @overload get_face_search(params = {})
# @param [Hash] params ({})
def get_face_search(params = {}, options = {})
req = build_request(:get_face_search, params)
req.send_request(options)
end
# Gets the label detection results of a Amazon Rekognition Video
# analysis started by .
#
# The label detection operation is started by a call to which returns a
# job identifier (`JobId`). When the label detection operation finishes,
# Amazon Rekognition publishes a completion status to the Amazon Simple
# Notification Service topic registered in the initial call to
# `StartlabelDetection`. To get the results of the label detection
# operation, first check that the status value published to the Amazon
# SNS topic is `SUCCEEDED`. If so, call and pass the job identifier
# (`JobId`) from the initial call to `StartLabelDetection`.
#
# `GetLabelDetection` returns an array of detected labels (`Labels`)
# sorted by the time the labels were detected. You can also sort by the
# label name by specifying `NAME` for the `SortBy` input parameter.
#
# The labels returned include the label name, the percentage confidence
# in the accuracy of the detected label, and the time the label was
# detected in the video.
#
# Use MaxResults parameter to limit the number of labels returned. If
# there are more results than specified in `MaxResults`, the value of
# `NextToken` in the operation response contains a pagination token for
# getting the next set of results. To get the next page of results, call
# `GetlabelDetection` and populate the `NextToken` request parameter
# with the token value returned from the previous call to
# `GetLabelDetection`.
#
# @option params [required, String] :job_id
# Job identifier for the label detection operation for which you want
# results returned. You get the job identifer from an initial call to
# `StartlabelDetection`.
#
# @option params [Integer] :max_results
# Maximum number of results to return per paginated call. The largest
# value you can specify is 1000. If you specify a value greater than
# 1000, a maximum of 1000 results is returned. The default value is
# 1000.
#
# @option params [String] :next_token
# If the previous response was incomplete (because there are more labels
# to retrieve), Amazon Rekognition Video returns a pagination token in
# the response. You can use this pagination token to retrieve the next
# set of labels.
#
# @option params [String] :sort_by
# Sort to use for elements in the `Labels` array. Use `TIMESTAMP` to
# sort array elements by the time labels are detected. Use `NAME` to
# alphabetically group elements for a label together. Within each label
# group, the array element are sorted by detection confidence. The
# default sort is by `TIMESTAMP`.
#
# @return [Types::GetLabelDetectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::GetLabelDetectionResponse#job_status #job_status} => String
# * {Types::GetLabelDetectionResponse#status_message #status_message} => String
# * {Types::GetLabelDetectionResponse#video_metadata #video_metadata} => Types::VideoMetadata
# * {Types::GetLabelDetectionResponse#next_token #next_token} => String
# * {Types::GetLabelDetectionResponse#labels #labels} => Array<Types::LabelDetection>
#
# @example Request syntax with placeholder values
#
# resp = client.get_label_detection({
# job_id: "JobId", # required
# max_results: 1,
# next_token: "PaginationToken",
# sort_by: "NAME", # accepts NAME, TIMESTAMP
# })
#
# @example Response structure
#
# resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED"
# resp.status_message #=> String
# resp.video_metadata.codec #=> String
# resp.video_metadata.duration_millis #=> Integer
# resp.video_metadata.format #=> String
# resp.video_metadata.frame_rate #=> Float
# resp.video_metadata.frame_height #=> Integer
# resp.video_metadata.frame_width #=> Integer
# resp.next_token #=> String
# resp.labels #=> Array
# resp.labels[0].timestamp #=> Integer
# resp.labels[0].label.name #=> String
# resp.labels[0].label.confidence #=> Float
#
# @overload get_label_detection(params = {})
# @param [Hash] params ({})
def get_label_detection(params = {}, options = {})
req = build_request(:get_label_detection, params)
req.send_request(options)
end
# Gets the person tracking results of a Amazon Rekognition Video
# analysis started by .
#
# The person detection operation is started by a call to
# `StartPersonTracking` which returns a job identifier (`JobId`). When
# the person detection operation finishes, Amazon Rekognition Video
# publishes a completion status to the Amazon Simple Notification
# Service topic registered in the initial call to `StartPersonTracking`.
#
# To get the results of the person tracking operation, first check that
# the status value published to the Amazon SNS topic is `SUCCEEDED`. If
# so, call and pass the job identifier (`JobId`) from the initial call
# to `StartPersonTracking`.
#
# `GetPersonTracking` returns an array, `Persons`, of tracked persons
# and the time(s) they were tracked in the video.
#
# `GetPersonTracking` only returns the default facial attributes
# (`BoundingBox`, `Confidence`, `Landmarks`, `Pose`, and `Quality`). The
# other facial attributes listed in the `Face` object of the following
# response syntax are not returned.
#
# For more information, see FaceDetail in the Amazon Rekognition
# Developer Guide.
#
#
#
# By default, the array is sorted by the time(s) a person is tracked in
# the video. You can sort by tracked persons by specifying `INDEX` for
# the `SortBy` input parameter.
#
# Use the `MaxResults` parameter to limit the number of items returned.
# If there are more results than specified in `MaxResults`, the value of
# `NextToken` in the operation response contains a pagination token for
# getting the next set of results. To get the next page of results, call
# `GetPersonTracking` and populate the `NextToken` request parameter
# with the token value returned from the previous call to
# `GetPersonTracking`.
#
# @option params [required, String] :job_id
# The identifier for a job that tracks persons in a video. You get the
# `JobId` from a call to `StartPersonTracking`.
#
# @option params [Integer] :max_results
# Maximum number of results to return per paginated call. The largest
# value you can specify is 1000. If you specify a value greater than
# 1000, a maximum of 1000 results is returned. The default value is
# 1000.
#
# @option params [String] :next_token
# If the previous response was incomplete (because there are more
# persons to retrieve), Amazon Rekognition Video returns a pagination
# token in the response. You can use this pagination token to retrieve
# the next set of persons.
#
# @option params [String] :sort_by
# Sort to use for elements in the `Persons` array. Use `TIMESTAMP` to
# sort array elements by the time persons are detected. Use `INDEX` to
# sort by the tracked persons. If you sort by `INDEX`, the array
# elements for each person are sorted by detection confidence. The
# default sort is by `TIMESTAMP`.
#
# @return [Types::GetPersonTrackingResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::GetPersonTrackingResponse#job_status #job_status} => String
# * {Types::GetPersonTrackingResponse#status_message #status_message} => String
# * {Types::GetPersonTrackingResponse#video_metadata #video_metadata} => Types::VideoMetadata
# * {Types::GetPersonTrackingResponse#next_token #next_token} => String
# * {Types::GetPersonTrackingResponse#persons #persons} => Array<Types::PersonDetection>
#
# @example Request syntax with placeholder values
#
# resp = client.get_person_tracking({
# job_id: "JobId", # required
# max_results: 1,
# next_token: "PaginationToken",
# sort_by: "INDEX", # accepts INDEX, TIMESTAMP
# })
#
# @example Response structure
#
# resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED"
# resp.status_message #=> String
# resp.video_metadata.codec #=> String
# resp.video_metadata.duration_millis #=> Integer
# resp.video_metadata.format #=> String
# resp.video_metadata.frame_rate #=> Float
# resp.video_metadata.frame_height #=> Integer
# resp.video_metadata.frame_width #=> Integer
# resp.next_token #=> String
# resp.persons #=> Array
# resp.persons[0].timestamp #=> Integer
# resp.persons[0].person.index #=> Integer
# resp.persons[0].person.bounding_box.width #=> Float
# resp.persons[0].person.bounding_box.height #=> Float
# resp.persons[0].person.bounding_box.left #=> Float
# resp.persons[0].person.bounding_box.top #=> Float
# resp.persons[0].person.face.bounding_box.width #=> Float
# resp.persons[0].person.face.bounding_box.height #=> Float
# resp.persons[0].person.face.bounding_box.left #=> Float
# resp.persons[0].person.face.bounding_box.top #=> Float
# resp.persons[0].person.face.age_range.low #=> Integer
# resp.persons[0].person.face.age_range.high #=> Integer
# resp.persons[0].person.face.smile.value #=> Boolean
# resp.persons[0].person.face.smile.confidence #=> Float
# resp.persons[0].person.face.eyeglasses.value #=> Boolean
# resp.persons[0].person.face.eyeglasses.confidence #=> Float
# resp.persons[0].person.face.sunglasses.value #=> Boolean
# resp.persons[0].person.face.sunglasses.confidence #=> Float
# resp.persons[0].person.face.gender.value #=> String, one of "Male", "Female"
# resp.persons[0].person.face.gender.confidence #=> Float
# resp.persons[0].person.face.beard.value #=> Boolean
# resp.persons[0].person.face.beard.confidence #=> Float
# resp.persons[0].person.face.mustache.value #=> Boolean
# resp.persons[0].person.face.mustache.confidence #=> Float
# resp.persons[0].person.face.eyes_open.value #=> Boolean
# resp.persons[0].person.face.eyes_open.confidence #=> Float
# resp.persons[0].person.face.mouth_open.value #=> Boolean
# resp.persons[0].person.face.mouth_open.confidence #=> Float
# resp.persons[0].person.face.emotions #=> Array
# resp.persons[0].person.face.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN"
# resp.persons[0].person.face.emotions[0].confidence #=> Float
# resp.persons[0].person.face.landmarks #=> Array
# resp.persons[0].person.face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil"
# resp.persons[0].person.face.landmarks[0].x #=> Float
# resp.persons[0].person.face.landmarks[0].y #=> Float
# resp.persons[0].person.face.pose.roll #=> Float
# resp.persons[0].person.face.pose.yaw #=> Float
# resp.persons[0].person.face.pose.pitch #=> Float
# resp.persons[0].person.face.quality.brightness #=> Float
# resp.persons[0].person.face.quality.sharpness #=> Float
# resp.persons[0].person.face.confidence #=> Float
#
# @overload get_person_tracking(params = {})
# @param [Hash] params ({})
def get_person_tracking(params = {}, options = {})
req = build_request(:get_person_tracking, params)
req.send_request(options)
end
# Detects faces in the input image and adds them to the specified
# collection.
#
# Amazon Rekognition does not save the actual faces detected. Instead,
# the underlying detection algorithm first detects the faces in the
# input image, and for each face extracts facial features into a feature
# vector, and stores it in the back-end database. Amazon Rekognition
# uses feature vectors when performing face match and search operations
# using the and operations.
#
# To get the number of faces in a collection, call .
#
# If you are using version 1.0 of the face detection model, `IndexFaces`
# indexes the 15 largest faces in the input image. Later versions of the
# face detection model index the 100 largest faces in the input image.
# To determine which version of the model you are using, call and supply
# the collection ID. You also get the model version from the value of
# `FaceModelVersion` in the response from `IndexFaces`.
#
# For more information, see Model Versioning in the Amazon Rekognition
# Developer Guide.
#
# If you provide the optional `ExternalImageID` for the input image you
# provided, Amazon Rekognition associates this ID with all faces that it
# detects. When you call the operation, the response returns the
# external ID. You can use this external image ID to create a
# client-side index to associate the faces with each image. You can then
# use the index to find all faces in an image.
#
# In response, the operation returns an array of metadata for all
# detected faces. This includes, the bounding box of the detected face,
# confidence value (indicating the bounding box contains a face), a face
# ID assigned by the service for each face that is detected and stored,
# and an image ID assigned by the service for the input image. If you
# request all facial attributes (using the `detectionAttributes`
# parameter, Amazon Rekognition returns detailed facial attributes such
# as facial landmarks (for example, location of eye and mouth) and other
# facial attributes such gender. If you provide the same image, specify
# the same collection, and use the same external ID in the `IndexFaces`
# operation, Amazon Rekognition doesn't save duplicate face metadata.
#
# For more information, see Adding Faces to a Collection in the Amazon
# Rekognition Developer Guide.
#
# The input image is passed either as base64-encoded image bytes or as a
# reference to an image in an Amazon S3 bucket. If you use the Amazon
# CLI to call Amazon Rekognition operations, passing image bytes is not
# supported. The image must be either a PNG or JPEG formatted file.
#
# This operation requires permissions to perform the
# `rekognition:IndexFaces` action.
#
# @option params [required, String] :collection_id
# The ID of an existing collection to which you want to add the faces
# that are detected in the input images.
#
# @option params [required, Types::Image] :image
# The input image as base64-encoded bytes or an S3 object. If you use
# the AWS CLI to call Amazon Rekognition operations, passing
# base64-encoded image bytes is not supported.
#
# @option params [String] :external_image_id
# ID you want to assign to all the faces detected in the image.
#
# @option params [Array] :detection_attributes
# An array of facial attributes that you want to be returned. This can
# be the default list of attributes or all attributes. If you don't
# specify a value for `Attributes` or if you specify `["DEFAULT"]`, the
# API returns the following subset of facial attributes: `BoundingBox`,
# `Confidence`, `Pose`, `Quality` and `Landmarks`. If you provide
# `["ALL"]`, all facial attributes are returned but the operation will
# take longer to complete.
#
# If you provide both, `["ALL", "DEFAULT"]`, the service uses a logical
# AND operator to determine which attributes to return (in this case,
# all attributes).
#
# @return [Types::IndexFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::IndexFacesResponse#face_records #face_records} => Array<Types::FaceRecord>
# * {Types::IndexFacesResponse#orientation_correction #orientation_correction} => String
# * {Types::IndexFacesResponse#face_model_version #face_model_version} => String
#
#
# @example Example: To add a face to a collection
#
# # This operation detects faces in an image and adds them to the specified Rekognition collection.
#
# resp = client.index_faces({
# collection_id: "myphotos",
# detection_attributes: [
# ],
# external_image_id: "myphotoid",
# image: {
# s3_object: {
# bucket: "mybucket",
# name: "myphoto",
# },
# },
# })
#
# resp.to_h outputs the following:
# {
# face_records: [
# {
# face: {
# bounding_box: {
# height: 0.33481481671333313,
# left: 0.31888890266418457,
# top: 0.4933333396911621,
# width: 0.25,
# },
# confidence: 99.9991226196289,
# face_id: "ff43d742-0c13-5d16-a3e8-03d3f58e980b",
# image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1",
# },
# face_detail: {
# bounding_box: {
# height: 0.33481481671333313,
# left: 0.31888890266418457,
# top: 0.4933333396911621,
# width: 0.25,
# },
# confidence: 99.9991226196289,
# landmarks: [
# {
# type: "eyeLeft",
# x: 0.3976764678955078,
# y: 0.6248345971107483,
# },
# {
# type: "eyeRight",
# x: 0.4810936450958252,
# y: 0.6317117214202881,
# },
# {
# type: "noseLeft",
# x: 0.41986238956451416,
# y: 0.7111940383911133,
# },
# {
# type: "mouthDown",
# x: 0.40525302290916443,
# y: 0.7497701048851013,
# },
# {
# type: "mouthUp",
# x: 0.4753248989582062,
# y: 0.7558549642562866,
# },
# ],
# pose: {
# pitch: -9.713645935058594,
# roll: 4.707281112670898,
# yaw: -24.438663482666016,
# },
# quality: {
# brightness: 29.23358917236328,
# sharpness: 80,
# },
# },
# },
# {
# face: {
# bounding_box: {
# height: 0.32592591643333435,
# left: 0.5144444704055786,
# top: 0.15111111104488373,
# width: 0.24444444477558136,
# },
# confidence: 99.99950408935547,
# face_id: "8be04dba-4e58-520d-850e-9eae4af70eb2",
# image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1",
# },
# face_detail: {
# bounding_box: {
# height: 0.32592591643333435,
# left: 0.5144444704055786,
# top: 0.15111111104488373,
# width: 0.24444444477558136,
# },
# confidence: 99.99950408935547,
# landmarks: [
# {
# type: "eyeLeft",
# x: 0.6006892323493958,
# y: 0.290842205286026,
# },
# {
# type: "eyeRight",
# x: 0.6808141469955444,
# y: 0.29609042406082153,
# },
# {
# type: "noseLeft",
# x: 0.6395332217216492,
# y: 0.3522595763206482,
# },
# {
# type: "mouthDown",
# x: 0.5892083048820496,
# y: 0.38689887523651123,
# },
# {
# type: "mouthUp",
# x: 0.674560010433197,
# y: 0.394125759601593,
# },
# ],
# pose: {
# pitch: -4.683138370513916,
# roll: 2.1029529571533203,
# yaw: 6.716655254364014,
# },
# quality: {
# brightness: 34.951698303222656,
# sharpness: 160,
# },
# },
# },
# ],
# orientation_correction: "ROTATE_0",
# }
#
# @example Request syntax with placeholder values
#
# resp = client.index_faces({
# collection_id: "CollectionId", # required
# image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# external_image_id: "ExternalImageId",
# detection_attributes: ["DEFAULT"], # accepts DEFAULT, ALL
# })
#
# @example Response structure
#
# resp.face_records #=> Array
# resp.face_records[0].face.face_id #=> String
# resp.face_records[0].face.bounding_box.width #=> Float
# resp.face_records[0].face.bounding_box.height #=> Float
# resp.face_records[0].face.bounding_box.left #=> Float
# resp.face_records[0].face.bounding_box.top #=> Float
# resp.face_records[0].face.image_id #=> String
# resp.face_records[0].face.external_image_id #=> String
# resp.face_records[0].face.confidence #=> Float
# resp.face_records[0].face_detail.bounding_box.width #=> Float
# resp.face_records[0].face_detail.bounding_box.height #=> Float
# resp.face_records[0].face_detail.bounding_box.left #=> Float
# resp.face_records[0].face_detail.bounding_box.top #=> Float
# resp.face_records[0].face_detail.age_range.low #=> Integer
# resp.face_records[0].face_detail.age_range.high #=> Integer
# resp.face_records[0].face_detail.smile.value #=> Boolean
# resp.face_records[0].face_detail.smile.confidence #=> Float
# resp.face_records[0].face_detail.eyeglasses.value #=> Boolean
# resp.face_records[0].face_detail.eyeglasses.confidence #=> Float
# resp.face_records[0].face_detail.sunglasses.value #=> Boolean
# resp.face_records[0].face_detail.sunglasses.confidence #=> Float
# resp.face_records[0].face_detail.gender.value #=> String, one of "Male", "Female"
# resp.face_records[0].face_detail.gender.confidence #=> Float
# resp.face_records[0].face_detail.beard.value #=> Boolean
# resp.face_records[0].face_detail.beard.confidence #=> Float
# resp.face_records[0].face_detail.mustache.value #=> Boolean
# resp.face_records[0].face_detail.mustache.confidence #=> Float
# resp.face_records[0].face_detail.eyes_open.value #=> Boolean
# resp.face_records[0].face_detail.eyes_open.confidence #=> Float
# resp.face_records[0].face_detail.mouth_open.value #=> Boolean
# resp.face_records[0].face_detail.mouth_open.confidence #=> Float
# resp.face_records[0].face_detail.emotions #=> Array
# resp.face_records[0].face_detail.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN"
# resp.face_records[0].face_detail.emotions[0].confidence #=> Float
# resp.face_records[0].face_detail.landmarks #=> Array
# resp.face_records[0].face_detail.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil"
# resp.face_records[0].face_detail.landmarks[0].x #=> Float
# resp.face_records[0].face_detail.landmarks[0].y #=> Float
# resp.face_records[0].face_detail.pose.roll #=> Float
# resp.face_records[0].face_detail.pose.yaw #=> Float
# resp.face_records[0].face_detail.pose.pitch #=> Float
# resp.face_records[0].face_detail.quality.brightness #=> Float
# resp.face_records[0].face_detail.quality.sharpness #=> Float
# resp.face_records[0].face_detail.confidence #=> Float
# resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270"
# resp.face_model_version #=> String
#
# @overload index_faces(params = {})
# @param [Hash] params ({})
def index_faces(params = {}, options = {})
req = build_request(:index_faces, params)
req.send_request(options)
end
# Returns list of collection IDs in your account. If the result is
# truncated, the response also provides a `NextToken` that you can use
# in the subsequent request to fetch the next set of collection IDs.
#
# For an example, see Listing Collections in the Amazon Rekognition
# Developer Guide.
#
# This operation requires permissions to perform the
# `rekognition:ListCollections` action.
#
# @option params [String] :next_token
# Pagination token from the previous response.
#
# @option params [Integer] :max_results
# Maximum number of collection IDs to return.
#
# @return [Types::ListCollectionsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::ListCollectionsResponse#collection_ids #collection_ids} => Array<String>
# * {Types::ListCollectionsResponse#next_token #next_token} => String
# * {Types::ListCollectionsResponse#face_model_versions #face_model_versions} => Array<String>
#
#
# @example Example: To list the collections
#
# # This operation returns a list of Rekognition collections.
#
# resp = client.list_collections({
# })
#
# resp.to_h outputs the following:
# {
# collection_ids: [
# "myphotos",
# ],
# }
#
# @example Request syntax with placeholder values
#
# resp = client.list_collections({
# next_token: "PaginationToken",
# max_results: 1,
# })
#
# @example Response structure
#
# resp.collection_ids #=> Array
# resp.collection_ids[0] #=> String
# resp.next_token #=> String
# resp.face_model_versions #=> Array
# resp.face_model_versions[0] #=> String
#
# @overload list_collections(params = {})
# @param [Hash] params ({})
def list_collections(params = {}, options = {})
req = build_request(:list_collections, params)
req.send_request(options)
end
# Returns metadata for faces in the specified collection. This metadata
# includes information such as the bounding box coordinates, the
# confidence (that the bounding box contains a face), and face ID. For
# an example, see Listing Faces in a Collection in the Amazon
# Rekognition Developer Guide.
#
# This operation requires permissions to perform the
# `rekognition:ListFaces` action.
#
# @option params [required, String] :collection_id
# ID of the collection from which to list the faces.
#
# @option params [String] :next_token
# If the previous response was incomplete (because there is more data to
# retrieve), Amazon Rekognition returns a pagination token in the
# response. You can use this pagination token to retrieve the next set
# of faces.
#
# @option params [Integer] :max_results
# Maximum number of faces to return.
#
# @return [Types::ListFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::ListFacesResponse#faces #faces} => Array<Types::Face>
# * {Types::ListFacesResponse#next_token #next_token} => String
# * {Types::ListFacesResponse#face_model_version #face_model_version} => String
#
#
# @example Example: To list the faces in a collection
#
# # This operation lists the faces in a Rekognition collection.
#
# resp = client.list_faces({
# collection_id: "myphotos",
# max_results: 20,
# })
#
# resp.to_h outputs the following:
# {
# faces: [
# {
# bounding_box: {
# height: 0.18000000715255737,
# left: 0.5555559992790222,
# top: 0.336667001247406,
# width: 0.23999999463558197,
# },
# confidence: 100,
# face_id: "1c62e8b5-69a7-5b7d-b3cd-db4338a8a7e7",
# image_id: "147fdf82-7a71-52cf-819b-e786c7b9746e",
# },
# {
# bounding_box: {
# height: 0.16555599868297577,
# left: 0.30963000655174255,
# top: 0.7066670060157776,
# width: 0.22074100375175476,
# },
# confidence: 100,
# face_id: "29a75abe-397b-5101-ba4f-706783b2246c",
# image_id: "147fdf82-7a71-52cf-819b-e786c7b9746e",
# },
# {
# bounding_box: {
# height: 0.3234420120716095,
# left: 0.3233329951763153,
# top: 0.5,
# width: 0.24222199618816376,
# },
# confidence: 99.99829864501953,
# face_id: "38271d79-7bc2-5efb-b752-398a8d575b85",
# image_id: "d5631190-d039-54e4-b267-abd22c8647c5",
# },
# {
# bounding_box: {
# height: 0.03555560111999512,
# left: 0.37388700246810913,
# top: 0.2477779984474182,
# width: 0.04747769981622696,
# },
# confidence: 99.99210357666016,
# face_id: "3b01bef0-c883-5654-ba42-d5ad28b720b3",
# image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784",
# },
# {
# bounding_box: {
# height: 0.05333330109715462,
# left: 0.2937690019607544,
# top: 0.35666701197624207,
# width: 0.07121659815311432,
# },
# confidence: 99.99919891357422,
# face_id: "4839a608-49d0-566c-8301-509d71b534d1",
# image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784",
# },
# {
# bounding_box: {
# height: 0.3249259889125824,
# left: 0.5155559778213501,
# top: 0.1513350009918213,
# width: 0.24333299696445465,
# },
# confidence: 99.99949645996094,
# face_id: "70008e50-75e4-55d0-8e80-363fb73b3a14",
# image_id: "d5631190-d039-54e4-b267-abd22c8647c5",
# },
# {
# bounding_box: {
# height: 0.03777780011296272,
# left: 0.7002969980239868,
# top: 0.18777799606323242,
# width: 0.05044509842991829,
# },
# confidence: 99.92639923095703,
# face_id: "7f5f88ed-d684-5a88-b0df-01e4a521552b",
# image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784",
# },
# {
# bounding_box: {
# height: 0.05555560067296028,
# left: 0.13946600258350372,
# top: 0.46333301067352295,
# width: 0.07270029932260513,
# },
# confidence: 99.99469757080078,
# face_id: "895b4e2c-81de-5902-a4bd-d1792bda00b2",
# image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784",
# },
# {
# bounding_box: {
# height: 0.3259260058403015,
# left: 0.5144439935684204,
# top: 0.15111100673675537,
# width: 0.24444399774074554,
# },
# confidence: 99.99949645996094,
# face_id: "8be04dba-4e58-520d-850e-9eae4af70eb2",
# image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1",
# },
# {
# bounding_box: {
# height: 0.18888899683952332,
# left: 0.3783380091190338,
# top: 0.2355560064315796,
# width: 0.25222599506378174,
# },
# confidence: 99.9999008178711,
# face_id: "908544ad-edc3-59df-8faf-6a87cc256cf5",
# image_id: "3c731605-d772-541a-a5e7-0375dbc68a07",
# },
# {
# bounding_box: {
# height: 0.33481499552726746,
# left: 0.31888899207115173,
# top: 0.49333301186561584,
# width: 0.25,
# },
# confidence: 99.99909973144531,
# face_id: "ff43d742-0c13-5d16-a3e8-03d3f58e980b",
# image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1",
# },
# ],
# }
#
# @example Request syntax with placeholder values
#
# resp = client.list_faces({
# collection_id: "CollectionId", # required
# next_token: "PaginationToken",
# max_results: 1,
# })
#
# @example Response structure
#
# resp.faces #=> Array
# resp.faces[0].face_id #=> String
# resp.faces[0].bounding_box.width #=> Float
# resp.faces[0].bounding_box.height #=> Float
# resp.faces[0].bounding_box.left #=> Float
# resp.faces[0].bounding_box.top #=> Float
# resp.faces[0].image_id #=> String
# resp.faces[0].external_image_id #=> String
# resp.faces[0].confidence #=> Float
# resp.next_token #=> String
# resp.face_model_version #=> String
#
# @overload list_faces(params = {})
# @param [Hash] params ({})
def list_faces(params = {}, options = {})
req = build_request(:list_faces, params)
req.send_request(options)
end
# Gets a list of stream processors that you have created with .
#
# @option params [String] :next_token
# If the previous response was incomplete (because there are more stream
# processors to retrieve), Amazon Rekognition Video returns a pagination
# token in the response. You can use this pagination token to retrieve
# the next set of stream processors.
#
# @option params [Integer] :max_results
# Maximum number of stream processors you want Amazon Rekognition Video
# to return in the response. The default is 1000.
#
# @return [Types::ListStreamProcessorsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::ListStreamProcessorsResponse#next_token #next_token} => String
# * {Types::ListStreamProcessorsResponse#stream_processors #stream_processors} => Array<Types::StreamProcessor>
#
# @example Request syntax with placeholder values
#
# resp = client.list_stream_processors({
# next_token: "PaginationToken",
# max_results: 1,
# })
#
# @example Response structure
#
# resp.next_token #=> String
# resp.stream_processors #=> Array
# resp.stream_processors[0].name #=> String
# resp.stream_processors[0].status #=> String, one of "STOPPED", "STARTING", "RUNNING", "FAILED", "STOPPING"
#
# @overload list_stream_processors(params = {})
# @param [Hash] params ({})
def list_stream_processors(params = {}, options = {})
req = build_request(:list_stream_processors, params)
req.send_request(options)
end
# Returns an array of celebrities recognized in the input image. For
# more information, see Recognizing Celebrities in the Amazon
# Rekognition Developer Guide.
#
# `RecognizeCelebrities` returns the 100 largest faces in the image. It
# lists recognized celebrities in the `CelebrityFaces` array and
# unrecognized faces in the `UnrecognizedFaces` array.
# `RecognizeCelebrities` doesn't return celebrities whose faces are not
# amongst the largest 100 faces in the image.
#
# For each celebrity recognized, the `RecognizeCelebrities` returns a
# `Celebrity` object. The `Celebrity` object contains the celebrity
# name, ID, URL links to additional information, match confidence, and a
# `ComparedFace` object that you can use to locate the celebrity's face
# on the image.
#
# Rekognition does not retain information about which images a celebrity
# has been recognized in. Your application must store this information
# and use the `Celebrity` ID property as a unique identifier for the
# celebrity. If you don't store the celebrity name or additional
# information URLs returned by `RecognizeCelebrities`, you will need the
# ID to identify the celebrity in a call to the operation.
#
# You pass the imput image either as base64-encoded image bytes or as a
# reference to an image in an Amazon S3 bucket. If you use the Amazon
# CLI to call Amazon Rekognition operations, passing image bytes is not
# supported. The image must be either a PNG or JPEG formatted file.
#
# For an example, see Recognizing Celebrities in an Image in the Amazon
# Rekognition Developer Guide.
#
# This operation requires permissions to perform the
# `rekognition:RecognizeCelebrities` operation.
#
# @option params [required, Types::Image] :image
# The input image as base64-encoded bytes or an S3 object. If you use
# the AWS CLI to call Amazon Rekognition operations, passing
# base64-encoded image bytes is not supported.
#
# @return [Types::RecognizeCelebritiesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::RecognizeCelebritiesResponse#celebrity_faces #celebrity_faces} => Array<Types::Celebrity>
# * {Types::RecognizeCelebritiesResponse#unrecognized_faces #unrecognized_faces} => Array<Types::ComparedFace>
# * {Types::RecognizeCelebritiesResponse#orientation_correction #orientation_correction} => String
#
# @example Request syntax with placeholder values
#
# resp = client.recognize_celebrities({
# image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# })
#
# @example Response structure
#
# resp.celebrity_faces #=> Array
# resp.celebrity_faces[0].urls #=> Array
# resp.celebrity_faces[0].urls[0] #=> String
# resp.celebrity_faces[0].name #=> String
# resp.celebrity_faces[0].id #=> String
# resp.celebrity_faces[0].face.bounding_box.width #=> Float
# resp.celebrity_faces[0].face.bounding_box.height #=> Float
# resp.celebrity_faces[0].face.bounding_box.left #=> Float
# resp.celebrity_faces[0].face.bounding_box.top #=> Float
# resp.celebrity_faces[0].face.confidence #=> Float
# resp.celebrity_faces[0].face.landmarks #=> Array
# resp.celebrity_faces[0].face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil"
# resp.celebrity_faces[0].face.landmarks[0].x #=> Float
# resp.celebrity_faces[0].face.landmarks[0].y #=> Float
# resp.celebrity_faces[0].face.pose.roll #=> Float
# resp.celebrity_faces[0].face.pose.yaw #=> Float
# resp.celebrity_faces[0].face.pose.pitch #=> Float
# resp.celebrity_faces[0].face.quality.brightness #=> Float
# resp.celebrity_faces[0].face.quality.sharpness #=> Float
# resp.celebrity_faces[0].match_confidence #=> Float
# resp.unrecognized_faces #=> Array
# resp.unrecognized_faces[0].bounding_box.width #=> Float
# resp.unrecognized_faces[0].bounding_box.height #=> Float
# resp.unrecognized_faces[0].bounding_box.left #=> Float
# resp.unrecognized_faces[0].bounding_box.top #=> Float
# resp.unrecognized_faces[0].confidence #=> Float
# resp.unrecognized_faces[0].landmarks #=> Array
# resp.unrecognized_faces[0].landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil"
# resp.unrecognized_faces[0].landmarks[0].x #=> Float
# resp.unrecognized_faces[0].landmarks[0].y #=> Float
# resp.unrecognized_faces[0].pose.roll #=> Float
# resp.unrecognized_faces[0].pose.yaw #=> Float
# resp.unrecognized_faces[0].pose.pitch #=> Float
# resp.unrecognized_faces[0].quality.brightness #=> Float
# resp.unrecognized_faces[0].quality.sharpness #=> Float
# resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270"
#
# @overload recognize_celebrities(params = {})
# @param [Hash] params ({})
def recognize_celebrities(params = {}, options = {})
req = build_request(:recognize_celebrities, params)
req.send_request(options)
end
# For a given input face ID, searches for matching faces in the
# collection the face belongs to. You get a face ID when you add a face
# to the collection using the IndexFaces operation. The operation
# compares the features of the input face with faces in the specified
# collection.
#
# You can also search faces without indexing faces by using the
# `SearchFacesByImage` operation.
#
#
#
# The operation response returns an array of faces that match, ordered
# by similarity score with the highest similarity first. More
# specifically, it is an array of metadata for each face match that is
# found. Along with the metadata, the response also includes a
# `confidence` value for each face match, indicating the confidence that
# the specific face matches the input face.
#
# For an example, see Searching for a Face Using Its Face ID in the
# Amazon Rekognition Developer Guide.
#
# This operation requires permissions to perform the
# `rekognition:SearchFaces` action.
#
# @option params [required, String] :collection_id
# ID of the collection the face belongs to.
#
# @option params [required, String] :face_id
# ID of a face to find matches for in the collection.
#
# @option params [Integer] :max_faces
# Maximum number of faces to return. The operation returns the maximum
# number of faces with the highest confidence in the match.
#
# @option params [Float] :face_match_threshold
# Optional value specifying the minimum confidence in the face match to
# return. For example, don't return any matches where confidence in
# matches is less than 70%.
#
# @return [Types::SearchFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::SearchFacesResponse#searched_face_id #searched_face_id} => String
# * {Types::SearchFacesResponse#face_matches #face_matches} => Array<Types::FaceMatch>
# * {Types::SearchFacesResponse#face_model_version #face_model_version} => String
#
#
# @example Example: To delete a face
#
# # This operation searches for matching faces in the collection the supplied face belongs to.
#
# resp = client.search_faces({
# collection_id: "myphotos",
# face_id: "70008e50-75e4-55d0-8e80-363fb73b3a14",
# face_match_threshold: 90,
# max_faces: 10,
# })
#
# resp.to_h outputs the following:
# {
# face_matches: [
# {
# face: {
# bounding_box: {
# height: 0.3259260058403015,
# left: 0.5144439935684204,
# top: 0.15111100673675537,
# width: 0.24444399774074554,
# },
# confidence: 99.99949645996094,
# face_id: "8be04dba-4e58-520d-850e-9eae4af70eb2",
# image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1",
# },
# similarity: 99.97222137451172,
# },
# {
# face: {
# bounding_box: {
# height: 0.16555599868297577,
# left: 0.30963000655174255,
# top: 0.7066670060157776,
# width: 0.22074100375175476,
# },
# confidence: 100,
# face_id: "29a75abe-397b-5101-ba4f-706783b2246c",
# image_id: "147fdf82-7a71-52cf-819b-e786c7b9746e",
# },
# similarity: 97.04154968261719,
# },
# {
# face: {
# bounding_box: {
# height: 0.18888899683952332,
# left: 0.3783380091190338,
# top: 0.2355560064315796,
# width: 0.25222599506378174,
# },
# confidence: 99.9999008178711,
# face_id: "908544ad-edc3-59df-8faf-6a87cc256cf5",
# image_id: "3c731605-d772-541a-a5e7-0375dbc68a07",
# },
# similarity: 95.94520568847656,
# },
# ],
# searched_face_id: "70008e50-75e4-55d0-8e80-363fb73b3a14",
# }
#
# @example Request syntax with placeholder values
#
# resp = client.search_faces({
# collection_id: "CollectionId", # required
# face_id: "FaceId", # required
# max_faces: 1,
# face_match_threshold: 1.0,
# })
#
# @example Response structure
#
# resp.searched_face_id #=> String
# resp.face_matches #=> Array
# resp.face_matches[0].similarity #=> Float
# resp.face_matches[0].face.face_id #=> String
# resp.face_matches[0].face.bounding_box.width #=> Float
# resp.face_matches[0].face.bounding_box.height #=> Float
# resp.face_matches[0].face.bounding_box.left #=> Float
# resp.face_matches[0].face.bounding_box.top #=> Float
# resp.face_matches[0].face.image_id #=> String
# resp.face_matches[0].face.external_image_id #=> String
# resp.face_matches[0].face.confidence #=> Float
# resp.face_model_version #=> String
#
# @overload search_faces(params = {})
# @param [Hash] params ({})
def search_faces(params = {}, options = {})
req = build_request(:search_faces, params)
req.send_request(options)
end
# For a given input image, first detects the largest face in the image,
# and then searches the specified collection for matching faces. The
# operation compares the features of the input face with faces in the
# specified collection.
#
# To search for all faces in an input image, you might first call the
# operation, and then use the face IDs returned in subsequent calls to
# the operation.
#
# You can also call the `DetectFaces` operation and use the bounding
# boxes in the response to make face crops, which then you can pass in
# to the `SearchFacesByImage` operation.
#
#
#
# You pass the input image either as base64-encoded image bytes or as a
# reference to an image in an Amazon S3 bucket. If you use the Amazon
# CLI to call Amazon Rekognition operations, passing image bytes is not
# supported. The image must be either a PNG or JPEG formatted file.
#
# The response returns an array of faces that match, ordered by
# similarity score with the highest similarity first. More specifically,
# it is an array of metadata for each face match found. Along with the
# metadata, the response also includes a `similarity` indicating how
# similar the face is to the input face. In the response, the operation
# also returns the bounding box (and a confidence level that the
# bounding box contains a face) of the face that Amazon Rekognition used
# for the input image.
#
# For an example, Searching for a Face Using an Image in the Amazon
# Rekognition Developer Guide.
#
# This operation requires permissions to perform the
# `rekognition:SearchFacesByImage` action.
#
# @option params [required, String] :collection_id
# ID of the collection to search.
#
# @option params [required, Types::Image] :image
# The input image as base64-encoded bytes or an S3 object. If you use
# the AWS CLI to call Amazon Rekognition operations, passing
# base64-encoded image bytes is not supported.
#
# @option params [Integer] :max_faces
# Maximum number of faces to return. The operation returns the maximum
# number of faces with the highest confidence in the match.
#
# @option params [Float] :face_match_threshold
# (Optional) Specifies the minimum confidence in the face match to
# return. For example, don't return any matches where confidence in
# matches is less than 70%.
#
# @return [Types::SearchFacesByImageResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::SearchFacesByImageResponse#searched_face_bounding_box #searched_face_bounding_box} => Types::BoundingBox
# * {Types::SearchFacesByImageResponse#searched_face_confidence #searched_face_confidence} => Float
# * {Types::SearchFacesByImageResponse#face_matches #face_matches} => Array<Types::FaceMatch>
# * {Types::SearchFacesByImageResponse#face_model_version #face_model_version} => String
#
#
# @example Example: To search for faces matching a supplied image
#
# # This operation searches for faces in a Rekognition collection that match the largest face in an S3 bucket stored image.
#
# resp = client.search_faces_by_image({
# collection_id: "myphotos",
# face_match_threshold: 95,
# image: {
# s3_object: {
# bucket: "mybucket",
# name: "myphoto",
# },
# },
# max_faces: 5,
# })
#
# resp.to_h outputs the following:
# {
# face_matches: [
# {
# face: {
# bounding_box: {
# height: 0.3234420120716095,
# left: 0.3233329951763153,
# top: 0.5,
# width: 0.24222199618816376,
# },
# confidence: 99.99829864501953,
# face_id: "38271d79-7bc2-5efb-b752-398a8d575b85",
# image_id: "d5631190-d039-54e4-b267-abd22c8647c5",
# },
# similarity: 99.97036743164062,
# },
# ],
# searched_face_bounding_box: {
# height: 0.33481481671333313,
# left: 0.31888890266418457,
# top: 0.4933333396911621,
# width: 0.25,
# },
# searched_face_confidence: 99.9991226196289,
# }
#
# @example Request syntax with placeholder values
#
# resp = client.search_faces_by_image({
# collection_id: "CollectionId", # required
# image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# max_faces: 1,
# face_match_threshold: 1.0,
# })
#
# @example Response structure
#
# resp.searched_face_bounding_box.width #=> Float
# resp.searched_face_bounding_box.height #=> Float
# resp.searched_face_bounding_box.left #=> Float
# resp.searched_face_bounding_box.top #=> Float
# resp.searched_face_confidence #=> Float
# resp.face_matches #=> Array
# resp.face_matches[0].similarity #=> Float
# resp.face_matches[0].face.face_id #=> String
# resp.face_matches[0].face.bounding_box.width #=> Float
# resp.face_matches[0].face.bounding_box.height #=> Float
# resp.face_matches[0].face.bounding_box.left #=> Float
# resp.face_matches[0].face.bounding_box.top #=> Float
# resp.face_matches[0].face.image_id #=> String
# resp.face_matches[0].face.external_image_id #=> String
# resp.face_matches[0].face.confidence #=> Float
# resp.face_model_version #=> String
#
# @overload search_faces_by_image(params = {})
# @param [Hash] params ({})
def search_faces_by_image(params = {}, options = {})
req = build_request(:search_faces_by_image, params)
req.send_request(options)
end
# Starts asynchronous recognition of celebrities in a stored video.
#
# Amazon Rekognition Video can detect celebrities in a video must be
# stored in an Amazon S3 bucket. Use Video to specify the bucket name
# and the filename of the video. `StartCelebrityRecognition` returns a
# job identifier (`JobId`) which you use to get the results of the
# analysis. When celebrity recognition analysis is finished, Amazon
# Rekognition Video publishes a completion status to the Amazon Simple
# Notification Service topic that you specify in `NotificationChannel`.
# To get the results of the celebrity recognition analysis, first check
# that the status value published to the Amazon SNS topic is
# `SUCCEEDED`. If so, call and pass the job identifier (`JobId`) from
# the initial call to `StartCelebrityRecognition`.
#
# For more information, see Recognizing Celebrities in the Amazon
# Rekognition Developer Guide.
#
# @option params [required, Types::Video] :video
# The video in which you want to recognize celebrities. The video must
# be stored in an Amazon S3 bucket.
#
# @option params [String] :client_request_token
# Idempotent token used to identify the start request. If you use the
# same token with multiple `StartCelebrityRecognition` requests, the
# same `JobId` is returned. Use `ClientRequestToken` to prevent the same
# job from being accidently started more than once.
#
# @option params [Types::NotificationChannel] :notification_channel
# The Amazon SNS topic ARN that you want Amazon Rekognition Video to
# publish the completion status of the celebrity recognition analysis
# to.
#
# @option params [String] :job_tag
# Unique identifier you specify to identify the job in the completion
# status published to the Amazon Simple Notification Service topic.
#
# @return [Types::StartCelebrityRecognitionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::StartCelebrityRecognitionResponse#job_id #job_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.start_celebrity_recognition({
# video: { # required
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# client_request_token: "ClientRequestToken",
# notification_channel: {
# sns_topic_arn: "SNSTopicArn", # required
# role_arn: "RoleArn", # required
# },
# job_tag: "JobTag",
# })
#
# @example Response structure
#
# resp.job_id #=> String
#
# @overload start_celebrity_recognition(params = {})
# @param [Hash] params ({})
def start_celebrity_recognition(params = {}, options = {})
req = build_request(:start_celebrity_recognition, params)
req.send_request(options)
end
# Starts asynchronous detection of explicit or suggestive adult content
# in a stored video.
#
# Amazon Rekognition Video can moderate content in a video stored in an
# Amazon S3 bucket. Use Video to specify the bucket name and the
# filename of the video. `StartContentModeration` returns a job
# identifier (`JobId`) which you use to get the results of the analysis.
# When content moderation analysis is finished, Amazon Rekognition Video
# publishes a completion status to the Amazon Simple Notification
# Service topic that you specify in `NotificationChannel`.
#
# To get the results of the content moderation analysis, first check
# that the status value published to the Amazon SNS topic is
# `SUCCEEDED`. If so, call and pass the job identifier (`JobId`) from
# the initial call to `StartContentModeration`.
#
# For more information, see Detecting Unsafe Content in the Amazon
# Rekognition Developer Guide.
#
# @option params [required, Types::Video] :video
# The video in which you want to moderate content. The video must be
# stored in an Amazon S3 bucket.
#
# @option params [Float] :min_confidence
# Specifies the minimum confidence that Amazon Rekognition must have in
# order to return a moderated content label. Confidence represents how
# certain Amazon Rekognition is that the moderated content is correctly
# identified. 0 is the lowest confidence. 100 is the highest confidence.
# Amazon Rekognition doesn't return any moderated content labels with a
# confidence level lower than this specified value.
#
# @option params [String] :client_request_token
# Idempotent token used to identify the start request. If you use the
# same token with multiple `StartContentModeration` requests, the same
# `JobId` is returned. Use `ClientRequestToken` to prevent the same job
# from being accidently started more than once.
#
# @option params [Types::NotificationChannel] :notification_channel
# The Amazon SNS topic ARN that you want Amazon Rekognition Video to
# publish the completion status of the content moderation analysis to.
#
# @option params [String] :job_tag
# Unique identifier you specify to identify the job in the completion
# status published to the Amazon Simple Notification Service topic.
#
# @return [Types::StartContentModerationResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::StartContentModerationResponse#job_id #job_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.start_content_moderation({
# video: { # required
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# min_confidence: 1.0,
# client_request_token: "ClientRequestToken",
# notification_channel: {
# sns_topic_arn: "SNSTopicArn", # required
# role_arn: "RoleArn", # required
# },
# job_tag: "JobTag",
# })
#
# @example Response structure
#
# resp.job_id #=> String
#
# @overload start_content_moderation(params = {})
# @param [Hash] params ({})
def start_content_moderation(params = {}, options = {})
req = build_request(:start_content_moderation, params)
req.send_request(options)
end
# Starts asynchronous detection of faces in a stored video.
#
# Amazon Rekognition Video can detect faces in a video stored in an
# Amazon S3 bucket. Use Video to specify the bucket name and the
# filename of the video. `StartFaceDetection` returns a job identifier
# (`JobId`) that you use to get the results of the operation. When face
# detection is finished, Amazon Rekognition Video publishes a completion
# status to the Amazon Simple Notification Service topic that you
# specify in `NotificationChannel`. To get the results of the label
# detection operation, first check that the status value published to
# the Amazon SNS topic is `SUCCEEDED`. If so, call and pass the job
# identifier (`JobId`) from the initial call to `StartFaceDetection`.
#
# For more information, see Detecting Faces in a Stored Video in the
# Amazon Rekognition Developer Guide.
#
# @option params [required, Types::Video] :video
# The video in which you want to detect faces. The video must be stored
# in an Amazon S3 bucket.
#
# @option params [String] :client_request_token
# Idempotent token used to identify the start request. If you use the
# same token with multiple `StartFaceDetection` requests, the same
# `JobId` is returned. Use `ClientRequestToken` to prevent the same job
# from being accidently started more than once.
#
# @option params [Types::NotificationChannel] :notification_channel
# The ARN of the Amazon SNS topic to which you want Amazon Rekognition
# Video to publish the completion status of the face detection
# operation.
#
# @option params [String] :face_attributes
# The face attributes you want returned.
#
# `DEFAULT` - The following subset of facial attributes are returned:
# BoundingBox, Confidence, Pose, Quality and Landmarks.
#
# `ALL` - All facial attributes are returned.
#
# @option params [String] :job_tag
# Unique identifier you specify to identify the job in the completion
# status published to the Amazon Simple Notification Service topic.
#
# @return [Types::StartFaceDetectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::StartFaceDetectionResponse#job_id #job_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.start_face_detection({
# video: { # required
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# client_request_token: "ClientRequestToken",
# notification_channel: {
# sns_topic_arn: "SNSTopicArn", # required
# role_arn: "RoleArn", # required
# },
# face_attributes: "DEFAULT", # accepts DEFAULT, ALL
# job_tag: "JobTag",
# })
#
# @example Response structure
#
# resp.job_id #=> String
#
# @overload start_face_detection(params = {})
# @param [Hash] params ({})
def start_face_detection(params = {}, options = {})
req = build_request(:start_face_detection, params)
req.send_request(options)
end
# Starts the asynchronous search for faces in a collection that match
# the faces of persons detected in a stored video.
#
# The video must be stored in an Amazon S3 bucket. Use Video to specify
# the bucket name and the filename of the video. `StartFaceSearch`
# returns a job identifier (`JobId`) which you use to get the search
# results once the search has completed. When searching is finished,
# Amazon Rekognition Video publishes a completion status to the Amazon
# Simple Notification Service topic that you specify in
# `NotificationChannel`. To get the search results, first check that the
# status value published to the Amazon SNS topic is `SUCCEEDED`. If so,
# call and pass the job identifier (`JobId`) from the initial call to
# `StartFaceSearch`. For more information, see
# procedure-person-search-videos.
#
# @option params [required, Types::Video] :video
# The video you want to search. The video must be stored in an Amazon S3
# bucket.
#
# @option params [String] :client_request_token
# Idempotent token used to identify the start request. If you use the
# same token with multiple `StartFaceSearch` requests, the same `JobId`
# is returned. Use `ClientRequestToken` to prevent the same job from
# being accidently started more than once.
#
# @option params [Float] :face_match_threshold
# The minimum confidence in the person match to return. For example,
# don't return any matches where confidence in matches is less than
# 70%.
#
# @option params [required, String] :collection_id
# ID of the collection that contains the faces you want to search for.
#
# @option params [Types::NotificationChannel] :notification_channel
# The ARN of the Amazon SNS topic to which you want Amazon Rekognition
# Video to publish the completion status of the search.
#
# @option params [String] :job_tag
# Unique identifier you specify to identify the job in the completion
# status published to the Amazon Simple Notification Service topic.
#
# @return [Types::StartFaceSearchResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::StartFaceSearchResponse#job_id #job_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.start_face_search({
# video: { # required
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# client_request_token: "ClientRequestToken",
# face_match_threshold: 1.0,
# collection_id: "CollectionId", # required
# notification_channel: {
# sns_topic_arn: "SNSTopicArn", # required
# role_arn: "RoleArn", # required
# },
# job_tag: "JobTag",
# })
#
# @example Response structure
#
# resp.job_id #=> String
#
# @overload start_face_search(params = {})
# @param [Hash] params ({})
def start_face_search(params = {}, options = {})
req = build_request(:start_face_search, params)
req.send_request(options)
end
# Starts asynchronous detection of labels in a stored video.
#
# Amazon Rekognition Video can detect labels in a video. Labels are
# instances of real-world entities. This includes objects like flower,
# tree, and table; events like wedding, graduation, and birthday party;
# concepts like landscape, evening, and nature; and activities like a
# person getting out of a car or a person skiing.
#
# The video must be stored in an Amazon S3 bucket. Use Video to specify
# the bucket name and the filename of the video. `StartLabelDetection`
# returns a job identifier (`JobId`) which you use to get the results of
# the operation. When label detection is finished, Amazon Rekognition
# Video publishes a completion status to the Amazon Simple Notification
# Service topic that you specify in `NotificationChannel`.
#
# To get the results of the label detection operation, first check that
# the status value published to the Amazon SNS topic is `SUCCEEDED`. If
# so, call and pass the job identifier (`JobId`) from the initial call
# to `StartLabelDetection`.
#
# @option params [required, Types::Video] :video
# The video in which you want to detect labels. The video must be stored
# in an Amazon S3 bucket.
#
# @option params [String] :client_request_token
# Idempotent token used to identify the start request. If you use the
# same token with multiple `StartLabelDetection` requests, the same
# `JobId` is returned. Use `ClientRequestToken` to prevent the same job
# from being accidently started more than once.
#
# @option params [Float] :min_confidence
# Specifies the minimum confidence that Amazon Rekognition Video must
# have in order to return a detected label. Confidence represents how
# certain Amazon Rekognition is that a label is correctly identified.0
# is the lowest confidence. 100 is the highest confidence. Amazon
# Rekognition Video doesn't return any labels with a confidence level
# lower than this specified value.
#
# If you don't specify `MinConfidence`, the operation returns labels
# with confidence values greater than or equal to 50 percent.
#
# @option params [Types::NotificationChannel] :notification_channel
# The Amazon SNS topic ARN you want Amazon Rekognition Video to publish
# the completion status of the label detection operation to.
#
# @option params [String] :job_tag
# Unique identifier you specify to identify the job in the completion
# status published to the Amazon Simple Notification Service topic.
#
# @return [Types::StartLabelDetectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::StartLabelDetectionResponse#job_id #job_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.start_label_detection({
# video: { # required
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# client_request_token: "ClientRequestToken",
# min_confidence: 1.0,
# notification_channel: {
# sns_topic_arn: "SNSTopicArn", # required
# role_arn: "RoleArn", # required
# },
# job_tag: "JobTag",
# })
#
# @example Response structure
#
# resp.job_id #=> String
#
# @overload start_label_detection(params = {})
# @param [Hash] params ({})
def start_label_detection(params = {}, options = {})
req = build_request(:start_label_detection, params)
req.send_request(options)
end
# Starts the asynchronous tracking of persons in a stored video.
#
# Amazon Rekognition Video can track persons in a video stored in an
# Amazon S3 bucket. Use Video to specify the bucket name and the
# filename of the video. `StartPersonTracking` returns a job identifier
# (`JobId`) which you use to get the results of the operation. When
# label detection is finished, Amazon Rekognition publishes a completion
# status to the Amazon Simple Notification Service topic that you
# specify in `NotificationChannel`.
#
# To get the results of the person detection operation, first check that
# the status value published to the Amazon SNS topic is `SUCCEEDED`. If
# so, call and pass the job identifier (`JobId`) from the initial call
# to `StartPersonTracking`.
#
# @option params [required, Types::Video] :video
# The video in which you want to detect people. The video must be stored
# in an Amazon S3 bucket.
#
# @option params [String] :client_request_token
# Idempotent token used to identify the start request. If you use the
# same token with multiple `StartPersonTracking` requests, the same
# `JobId` is returned. Use `ClientRequestToken` to prevent the same job
# from being accidently started more than once.
#
# @option params [Types::NotificationChannel] :notification_channel
# The Amazon SNS topic ARN you want Amazon Rekognition Video to publish
# the completion status of the people detection operation to.
#
# @option params [String] :job_tag
# Unique identifier you specify to identify the job in the completion
# status published to the Amazon Simple Notification Service topic.
#
# @return [Types::StartPersonTrackingResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::StartPersonTrackingResponse#job_id #job_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.start_person_tracking({
# video: { # required
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# client_request_token: "ClientRequestToken",
# notification_channel: {
# sns_topic_arn: "SNSTopicArn", # required
# role_arn: "RoleArn", # required
# },
# job_tag: "JobTag",
# })
#
# @example Response structure
#
# resp.job_id #=> String
#
# @overload start_person_tracking(params = {})
# @param [Hash] params ({})
def start_person_tracking(params = {}, options = {})
req = build_request(:start_person_tracking, params)
req.send_request(options)
end
# Starts processing a stream processor. You create a stream processor by
# calling . To tell `StartStreamProcessor` which stream processor to
# start, use the value of the `Name` field specified in the call to
# `CreateStreamProcessor`.
#
# @option params [required, String] :name
# The name of the stream processor to start processing.
#
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
#
# @example Request syntax with placeholder values
#
# resp = client.start_stream_processor({
# name: "StreamProcessorName", # required
# })
#
# @overload start_stream_processor(params = {})
# @param [Hash] params ({})
def start_stream_processor(params = {}, options = {})
req = build_request(:start_stream_processor, params)
req.send_request(options)
end
# Stops a running stream processor that was created by .
#
# @option params [required, String] :name
# The name of a stream processor created by .
#
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
#
# @example Request syntax with placeholder values
#
# resp = client.stop_stream_processor({
# name: "StreamProcessorName", # required
# })
#
# @overload stop_stream_processor(params = {})
# @param [Hash] params ({})
def stop_stream_processor(params = {}, options = {})
req = build_request(:stop_stream_processor, params)
req.send_request(options)
end
# @!endgroup
# @param params ({})
# @api private
def build_request(operation_name, params = {})
handlers = @handlers.for(operation_name)
context = Seahorse::Client::RequestContext.new(
operation_name: operation_name,
operation: config.api.operation(operation_name),
client: self,
params: params,
config: config)
context[:gem_name] = 'aws-sdk-rekognition'
context[:gem_version] = '1.7.0'
Seahorse::Client::Request.new(handlers, context)
end
# @api private
# @deprecated
def waiter_names
[]
end
class << self
# @api private
attr_reader :identifier
# @api private
def errors_module
Errors
end
end
end
end