# WARNING ABOUT GENERATED CODE # # This file is generated. See the contributing guide for more information: # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md # # WARNING ABOUT GENERATED CODE require 'seahorse/client/plugins/content_length.rb' require 'aws-sdk-core/plugins/credentials_configuration.rb' require 'aws-sdk-core/plugins/logging.rb' require 'aws-sdk-core/plugins/param_converter.rb' require 'aws-sdk-core/plugins/param_validator.rb' require 'aws-sdk-core/plugins/user_agent.rb' require 'aws-sdk-core/plugins/helpful_socket_errors.rb' require 'aws-sdk-core/plugins/retry_errors.rb' require 'aws-sdk-core/plugins/global_configuration.rb' require 'aws-sdk-core/plugins/regional_endpoint.rb' require 'aws-sdk-core/plugins/response_paging.rb' require 'aws-sdk-core/plugins/stub_responses.rb' require 'aws-sdk-core/plugins/idempotency_token.rb' require 'aws-sdk-core/plugins/jsonvalue_converter.rb' require 'aws-sdk-core/plugins/signature_v4.rb' require 'aws-sdk-core/plugins/protocols/json_rpc.rb' Aws::Plugins::GlobalConfiguration.add_identifier(:rekognition) module Aws::Rekognition class Client < Seahorse::Client::Base include Aws::ClientStubs @identifier = :rekognition set_api(ClientApi::API) add_plugin(Seahorse::Client::Plugins::ContentLength) add_plugin(Aws::Plugins::CredentialsConfiguration) add_plugin(Aws::Plugins::Logging) add_plugin(Aws::Plugins::ParamConverter) add_plugin(Aws::Plugins::ParamValidator) add_plugin(Aws::Plugins::UserAgent) add_plugin(Aws::Plugins::HelpfulSocketErrors) add_plugin(Aws::Plugins::RetryErrors) add_plugin(Aws::Plugins::GlobalConfiguration) add_plugin(Aws::Plugins::RegionalEndpoint) add_plugin(Aws::Plugins::ResponsePaging) add_plugin(Aws::Plugins::StubResponses) add_plugin(Aws::Plugins::IdempotencyToken) add_plugin(Aws::Plugins::JsonvalueConverter) add_plugin(Aws::Plugins::SignatureV4) add_plugin(Aws::Plugins::Protocols::JsonRpc) # @option options [required, Aws::CredentialProvider] :credentials # Your AWS credentials. This can be an instance of any one of the # following classes: # # * `Aws::Credentials` - Used for configuring static, non-refreshing # credentials. # # * `Aws::InstanceProfileCredentials` - Used for loading credentials # from an EC2 IMDS on an EC2 instance. # # * `Aws::SharedCredentials` - Used for loading credentials from a # shared file, such as `~/.aws/config`. # # * `Aws::AssumeRoleCredentials` - Used when you need to assume a role. # # When `:credentials` are not configured directly, the following # locations will be searched for credentials: # # * `Aws.config[:credentials]` # * The `:access_key_id`, `:secret_access_key`, and `:session_token` options. # * ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY'] # * `~/.aws/credentials` # * `~/.aws/config` # * EC2 IMDS instance profile - When used by default, the timeouts are # very aggressive. Construct and pass an instance of # `Aws::InstanceProfileCredentails` to enable retries and extended # timeouts. # # @option options [required, String] :region # The AWS region to connect to. The configured `:region` is # used to determine the service `:endpoint`. When not passed, # a default `:region` is search for in the following locations: # # * `Aws.config[:region]` # * `ENV['AWS_REGION']` # * `ENV['AMAZON_REGION']` # * `ENV['AWS_DEFAULT_REGION']` # * `~/.aws/credentials` # * `~/.aws/config` # # @option options [String] :access_key_id # # @option options [Boolean] :convert_params (true) # When `true`, an attempt is made to coerce request parameters into # the required types. # # @option options [String] :endpoint # The client endpoint is normally constructed from the `:region` # option. You should only configure an `:endpoint` when connecting # to test endpoints. This should be avalid HTTP(S) URI. # # @option options [Aws::Log::Formatter] :log_formatter (Aws::Log::Formatter.default) # The log formatter. # # @option options [Symbol] :log_level (:info) # The log level to send messages to the `:logger` at. # # @option options [Logger] :logger # The Logger instance to send log messages to. If this option # is not set, logging will be disabled. # # @option options [String] :profile ("default") # Used when loading credentials from the shared credentials file # at HOME/.aws/credentials. When not specified, 'default' is used. # # @option options [Float] :retry_base_delay (0.3) # The base delay in seconds used by the default backoff function. # # @option options [Symbol] :retry_jitter (:none) # A delay randomiser function used by the default backoff function. Some predefined functions can be referenced by name - :none, :equal, :full, otherwise a Proc that takes and returns a number. # # @see https://www.awsarchitectureblog.com/2015/03/backoff.html # # @option options [Integer] :retry_limit (3) # The maximum number of times to retry failed requests. Only # ~ 500 level server errors and certain ~ 400 level client errors # are retried. Generally, these are throttling errors, data # checksum errors, networking errors, timeout errors and auth # errors from expired credentials. # # @option options [Integer] :retry_max_delay (0) # The maximum number of seconds to delay between retries (0 for no limit) used by the default backoff function. # # @option options [String] :secret_access_key # # @option options [String] :session_token # # @option options [Boolean] :simple_json (false) # Disables request parameter conversion, validation, and formatting. # Also disable response data type conversions. This option is useful # when you want to ensure the highest level of performance by # avoiding overhead of walking request parameters and response data # structures. # # When `:simple_json` is enabled, the request parameters hash must # be formatted exactly as the DynamoDB API expects. # # @option options [Boolean] :stub_responses (false) # Causes the client to return stubbed responses. By default # fake responses are generated and returned. You can specify # the response data to return or errors to raise by calling # {ClientStubs#stub_responses}. See {ClientStubs} for more information. # # ** Please note ** When response stubbing is enabled, no HTTP # requests are made, and retries are disabled. # # @option options [Boolean] :validate_params (true) # When `true`, request parameters are validated before # sending the request. # def initialize(*args) super end # @!group API Operations # Compares a face in the *source* input image with each of the 100 # largest faces detected in the *target* input image. # # If the source image contains multiple faces, the service detects the # largest face and compares it with each face detected in the target # image. # # # # You pass the input and target images either as base64-encoded image # bytes or as a references to images in an Amazon S3 bucket. If you use # the Amazon CLI to call Amazon Rekognition operations, passing image # bytes is not supported. The image must be either a PNG or JPEG # formatted file. # # In response, the operation returns an array of face matches ordered by # similarity score in descending order. For each face match, the # response provides a bounding box of the face, facial landmarks, pose # details (pitch, role, and yaw), quality (brightness and sharpness), # and confidence value (indicating the level of confidence that the # bounding box contains a face). The response also provides a similarity # score, which indicates how closely the faces match. # # By default, only faces with a similarity score of greater than or # equal to 80% are returned in the response. You can change this value # by specifying the `SimilarityThreshold` parameter. # # # # `CompareFaces` also returns an array of faces that don't match the # source image. For each face, it returns a bounding box, confidence # value, landmarks, pose details, and quality. The response also returns # information about the face in the source image, including the bounding # box of the face and confidence value. # # If the image doesn't contain Exif metadata, `CompareFaces` returns # orientation information for the source and target images. Use these # values to display the images with the correct image orientation. # # If no faces are detected in the source or target images, # `CompareFaces` returns an `InvalidParameterException` error. # # This is a stateless API operation. That is, data returned by this # operation doesn't persist. # # # # For an example, see Comparing Faces in Images in the Amazon # Rekognition Developer Guide. # # This operation requires permissions to perform the # `rekognition:CompareFaces` action. # # @option params [required, Types::Image] :source_image # The input image as base64-encoded bytes or an S3 object. If you use # the AWS CLI to call Amazon Rekognition operations, passing # base64-encoded image bytes is not supported. # # @option params [required, Types::Image] :target_image # The target image as base64-encoded bytes or an S3 object. If you use # the AWS CLI to call Amazon Rekognition operations, passing # base64-encoded image bytes is not supported. # # @option params [Float] :similarity_threshold # The minimum level of confidence in the face matches that a match must # meet to be included in the `FaceMatches` array. # # @return [Types::CompareFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::CompareFacesResponse#source_image_face #source_image_face} => Types::ComparedSourceImageFace # * {Types::CompareFacesResponse#face_matches #face_matches} => Array<Types::CompareFacesMatch> # * {Types::CompareFacesResponse#unmatched_faces #unmatched_faces} => Array<Types::ComparedFace> # * {Types::CompareFacesResponse#source_image_orientation_correction #source_image_orientation_correction} => String # * {Types::CompareFacesResponse#target_image_orientation_correction #target_image_orientation_correction} => String # # # @example Example: To compare two images # # # This operation compares the largest face detected in the source image with each face detected in the target image. # # resp = client.compare_faces({ # similarity_threshold: 90, # source_image: { # s3_object: { # bucket: "mybucket", # name: "mysourceimage", # }, # }, # target_image: { # s3_object: { # bucket: "mybucket", # name: "mytargetimage", # }, # }, # }) # # resp.to_h outputs the following: # { # face_matches: [ # { # face: { # bounding_box: { # height: 0.33481481671333313, # left: 0.31888890266418457, # top: 0.4933333396911621, # width: 0.25, # }, # confidence: 99.9991226196289, # }, # similarity: 100, # }, # ], # source_image_face: { # bounding_box: { # height: 0.33481481671333313, # left: 0.31888890266418457, # top: 0.4933333396911621, # width: 0.25, # }, # confidence: 99.9991226196289, # }, # } # # @example Request syntax with placeholder values # # resp = client.compare_faces({ # source_image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # target_image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # similarity_threshold: 1.0, # }) # # @example Response structure # # resp.source_image_face.bounding_box.width #=> Float # resp.source_image_face.bounding_box.height #=> Float # resp.source_image_face.bounding_box.left #=> Float # resp.source_image_face.bounding_box.top #=> Float # resp.source_image_face.confidence #=> Float # resp.face_matches #=> Array # resp.face_matches[0].similarity #=> Float # resp.face_matches[0].face.bounding_box.width #=> Float # resp.face_matches[0].face.bounding_box.height #=> Float # resp.face_matches[0].face.bounding_box.left #=> Float # resp.face_matches[0].face.bounding_box.top #=> Float # resp.face_matches[0].face.confidence #=> Float # resp.face_matches[0].face.landmarks #=> Array # resp.face_matches[0].face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil" # resp.face_matches[0].face.landmarks[0].x #=> Float # resp.face_matches[0].face.landmarks[0].y #=> Float # resp.face_matches[0].face.pose.roll #=> Float # resp.face_matches[0].face.pose.yaw #=> Float # resp.face_matches[0].face.pose.pitch #=> Float # resp.face_matches[0].face.quality.brightness #=> Float # resp.face_matches[0].face.quality.sharpness #=> Float # resp.unmatched_faces #=> Array # resp.unmatched_faces[0].bounding_box.width #=> Float # resp.unmatched_faces[0].bounding_box.height #=> Float # resp.unmatched_faces[0].bounding_box.left #=> Float # resp.unmatched_faces[0].bounding_box.top #=> Float # resp.unmatched_faces[0].confidence #=> Float # resp.unmatched_faces[0].landmarks #=> Array # resp.unmatched_faces[0].landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil" # resp.unmatched_faces[0].landmarks[0].x #=> Float # resp.unmatched_faces[0].landmarks[0].y #=> Float # resp.unmatched_faces[0].pose.roll #=> Float # resp.unmatched_faces[0].pose.yaw #=> Float # resp.unmatched_faces[0].pose.pitch #=> Float # resp.unmatched_faces[0].quality.brightness #=> Float # resp.unmatched_faces[0].quality.sharpness #=> Float # resp.source_image_orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270" # resp.target_image_orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270" # # @overload compare_faces(params = {}) # @param [Hash] params ({}) def compare_faces(params = {}, options = {}) req = build_request(:compare_faces, params) req.send_request(options) end # Creates a collection in an AWS Region. You can add faces to the # collection using the operation. # # For example, you might create collections, one for each of your # application users. A user can then index faces using the `IndexFaces` # operation and persist results in a specific collection. Then, a user # can search the collection for faces in the user-specific container. # # Collection names are case-sensitive. # # # # This operation requires permissions to perform the # `rekognition:CreateCollection` action. # # @option params [required, String] :collection_id # ID for the collection that you are creating. # # @return [Types::CreateCollectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::CreateCollectionResponse#status_code #status_code} => Integer # * {Types::CreateCollectionResponse#collection_arn #collection_arn} => String # * {Types::CreateCollectionResponse#face_model_version #face_model_version} => String # # # @example Example: To create a collection # # # This operation creates a Rekognition collection for storing image data. # # resp = client.create_collection({ # collection_id: "myphotos", # }) # # resp.to_h outputs the following: # { # collection_arn: "aws:rekognition:us-west-2:123456789012:collection/myphotos", # status_code: 200, # } # # @example Request syntax with placeholder values # # resp = client.create_collection({ # collection_id: "CollectionId", # required # }) # # @example Response structure # # resp.status_code #=> Integer # resp.collection_arn #=> String # resp.face_model_version #=> String # # @overload create_collection(params = {}) # @param [Hash] params ({}) def create_collection(params = {}, options = {}) req = build_request(:create_collection, params) req.send_request(options) end # Creates an Amazon Rekognition stream processor that you can use to # detect and recognize faces in a streaming video. # # Amazon Rekognition Video is a consumer of live video from Amazon # Kinesis Video Streams. Amazon Rekognition Video sends analysis results # to Amazon Kinesis Data Streams. # # You provide as input a Kinesis video stream (`Input`) and a Kinesis # data stream (`Output`) stream. You also specify the face recognition # criteria in `Settings`. For example, the collection containing faces # that you want to recognize. Use `Name` to assign an identifier for the # stream processor. You use `Name` to manage the stream processor. For # example, you can start processing the source video by calling with the # `Name` field. # # After you have finished analyzing a streaming video, use to stop # processing. You can delete the stream processor by calling . # # @option params [required, Types::StreamProcessorInput] :input # Kinesis video stream stream that provides the source streaming video. # If you are using the AWS CLI, the parameter name is # `StreamProcessorInput`. # # @option params [required, Types::StreamProcessorOutput] :output # Kinesis data stream stream to which Amazon Rekognition Video puts the # analysis results. If you are using the AWS CLI, the parameter name is # `StreamProcessorOutput`. # # @option params [required, String] :name # An identifier you assign to the stream processor. You can use `Name` # to manage the stream processor. For example, you can get the current # status of the stream processor by calling . `Name` is idempotent. # # @option params [required, Types::StreamProcessorSettings] :settings # Face recognition input parameters to be used by the stream processor. # Includes the collection to use for face recognition and the face # attributes to detect. # # @option params [required, String] :role_arn # ARN of the IAM role that allows access to the stream processor. # # @return [Types::CreateStreamProcessorResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::CreateStreamProcessorResponse#stream_processor_arn #stream_processor_arn} => String # # @example Request syntax with placeholder values # # resp = client.create_stream_processor({ # input: { # required # kinesis_video_stream: { # arn: "KinesisVideoArn", # }, # }, # output: { # required # kinesis_data_stream: { # arn: "KinesisDataArn", # }, # }, # name: "StreamProcessorName", # required # settings: { # required # face_search: { # collection_id: "CollectionId", # face_match_threshold: 1.0, # }, # }, # role_arn: "RoleArn", # required # }) # # @example Response structure # # resp.stream_processor_arn #=> String # # @overload create_stream_processor(params = {}) # @param [Hash] params ({}) def create_stream_processor(params = {}, options = {}) req = build_request(:create_stream_processor, params) req.send_request(options) end # Deletes the specified collection. Note that this operation removes all # faces in the collection. For an example, see # delete-collection-procedure. # # This operation requires permissions to perform the # `rekognition:DeleteCollection` action. # # @option params [required, String] :collection_id # ID of the collection to delete. # # @return [Types::DeleteCollectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DeleteCollectionResponse#status_code #status_code} => Integer # # # @example Example: To delete a collection # # # This operation deletes a Rekognition collection. # # resp = client.delete_collection({ # collection_id: "myphotos", # }) # # resp.to_h outputs the following: # { # status_code: 200, # } # # @example Request syntax with placeholder values # # resp = client.delete_collection({ # collection_id: "CollectionId", # required # }) # # @example Response structure # # resp.status_code #=> Integer # # @overload delete_collection(params = {}) # @param [Hash] params ({}) def delete_collection(params = {}, options = {}) req = build_request(:delete_collection, params) req.send_request(options) end # Deletes faces from a collection. You specify a collection ID and an # array of face IDs to remove from the collection. # # This operation requires permissions to perform the # `rekognition:DeleteFaces` action. # # @option params [required, String] :collection_id # Collection from which to remove the specific faces. # # @option params [required, Array] :face_ids # An array of face IDs to delete. # # @return [Types::DeleteFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DeleteFacesResponse#deleted_faces #deleted_faces} => Array<String> # # # @example Example: To delete a face # # # This operation deletes one or more faces from a Rekognition collection. # # resp = client.delete_faces({ # collection_id: "myphotos", # face_ids: [ # "ff43d742-0c13-5d16-a3e8-03d3f58e980b", # ], # }) # # resp.to_h outputs the following: # { # deleted_faces: [ # "ff43d742-0c13-5d16-a3e8-03d3f58e980b", # ], # } # # @example Request syntax with placeholder values # # resp = client.delete_faces({ # collection_id: "CollectionId", # required # face_ids: ["FaceId"], # required # }) # # @example Response structure # # resp.deleted_faces #=> Array # resp.deleted_faces[0] #=> String # # @overload delete_faces(params = {}) # @param [Hash] params ({}) def delete_faces(params = {}, options = {}) req = build_request(:delete_faces, params) req.send_request(options) end # Deletes the stream processor identified by `Name`. You assign the # value for `Name` when you create the stream processor with . You might # not be able to use the same name for a stream processor for a few # seconds after calling `DeleteStreamProcessor`. # # @option params [required, String] :name # The name of the stream processor you want to delete. # # @return [Struct] Returns an empty {Seahorse::Client::Response response}. # # @example Request syntax with placeholder values # # resp = client.delete_stream_processor({ # name: "StreamProcessorName", # required # }) # # @overload delete_stream_processor(params = {}) # @param [Hash] params ({}) def delete_stream_processor(params = {}, options = {}) req = build_request(:delete_stream_processor, params) req.send_request(options) end # Describes the specified collection. You can use `DescribeCollection` # to get information, such as the number of faces indexed into a # collection and the version of the model used by the collection for # face detection. # # For more information, see Describing a Collection in the Amazon # Rekognition Developer Guide. # # @option params [required, String] :collection_id # The ID of the collection to describe. # # @return [Types::DescribeCollectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DescribeCollectionResponse#face_count #face_count} => Integer # * {Types::DescribeCollectionResponse#face_model_version #face_model_version} => String # * {Types::DescribeCollectionResponse#collection_arn #collection_arn} => String # * {Types::DescribeCollectionResponse#creation_timestamp #creation_timestamp} => Time # # @example Request syntax with placeholder values # # resp = client.describe_collection({ # collection_id: "CollectionId", # required # }) # # @example Response structure # # resp.face_count #=> Integer # resp.face_model_version #=> String # resp.collection_arn #=> String # resp.creation_timestamp #=> Time # # @overload describe_collection(params = {}) # @param [Hash] params ({}) def describe_collection(params = {}, options = {}) req = build_request(:describe_collection, params) req.send_request(options) end # Provides information about a stream processor created by . You can get # information about the input and output streams, the input parameters # for the face recognition being performed, and the current status of # the stream processor. # # @option params [required, String] :name # Name of the stream processor for which you want information. # # @return [Types::DescribeStreamProcessorResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DescribeStreamProcessorResponse#name #name} => String # * {Types::DescribeStreamProcessorResponse#stream_processor_arn #stream_processor_arn} => String # * {Types::DescribeStreamProcessorResponse#status #status} => String # * {Types::DescribeStreamProcessorResponse#status_message #status_message} => String # * {Types::DescribeStreamProcessorResponse#creation_timestamp #creation_timestamp} => Time # * {Types::DescribeStreamProcessorResponse#last_update_timestamp #last_update_timestamp} => Time # * {Types::DescribeStreamProcessorResponse#input #input} => Types::StreamProcessorInput # * {Types::DescribeStreamProcessorResponse#output #output} => Types::StreamProcessorOutput # * {Types::DescribeStreamProcessorResponse#role_arn #role_arn} => String # * {Types::DescribeStreamProcessorResponse#settings #settings} => Types::StreamProcessorSettings # # @example Request syntax with placeholder values # # resp = client.describe_stream_processor({ # name: "StreamProcessorName", # required # }) # # @example Response structure # # resp.name #=> String # resp.stream_processor_arn #=> String # resp.status #=> String, one of "STOPPED", "STARTING", "RUNNING", "FAILED", "STOPPING" # resp.status_message #=> String # resp.creation_timestamp #=> Time # resp.last_update_timestamp #=> Time # resp.input.kinesis_video_stream.arn #=> String # resp.output.kinesis_data_stream.arn #=> String # resp.role_arn #=> String # resp.settings.face_search.collection_id #=> String # resp.settings.face_search.face_match_threshold #=> Float # # @overload describe_stream_processor(params = {}) # @param [Hash] params ({}) def describe_stream_processor(params = {}, options = {}) req = build_request(:describe_stream_processor, params) req.send_request(options) end # Detects faces within an image that is provided as input. # # `DetectFaces` detects the 100 largest faces in the image. For each # face detected, the operation returns face details including a bounding # box of the face, a confidence value (that the bounding box contains a # face), and a fixed set of attributes such as facial landmarks (for # example, coordinates of eye and mouth), gender, presence of beard, # sunglasses, etc. # # The face-detection algorithm is most effective on frontal faces. For # non-frontal or obscured faces, the algorithm may not detect the faces # or might detect faces with lower confidence. # # You pass the input image either as base64-encoded image bytes or as a # reference to an image in an Amazon S3 bucket. If you use the Amazon # CLI to call Amazon Rekognition operations, passing image bytes is not # supported. The image must be either a PNG or JPEG formatted file. # # This is a stateless API operation. That is, the operation does not # persist any data. # # # # This operation requires permissions to perform the # `rekognition:DetectFaces` action. # # @option params [required, Types::Image] :image # The input image as base64-encoded bytes or an S3 object. If you use # the AWS CLI to call Amazon Rekognition operations, passing # base64-encoded image bytes is not supported. # # @option params [Array] :attributes # An array of facial attributes you want to be returned. This can be the # default list of attributes or all attributes. If you don't specify a # value for `Attributes` or if you specify `["DEFAULT"]`, the API # returns the following subset of facial attributes: `BoundingBox`, # `Confidence`, `Pose`, `Quality` and `Landmarks`. If you provide # `["ALL"]`, all facial attributes are returned but the operation will # take longer to complete. # # If you provide both, `["ALL", "DEFAULT"]`, the service uses a logical # AND operator to determine which attributes to return (in this case, # all attributes). # # @return [Types::DetectFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DetectFacesResponse#face_details #face_details} => Array<Types::FaceDetail> # * {Types::DetectFacesResponse#orientation_correction #orientation_correction} => String # # # @example Example: To detect faces in an image # # # This operation detects faces in an image stored in an AWS S3 bucket. # # resp = client.detect_faces({ # image: { # s3_object: { # bucket: "mybucket", # name: "myphoto", # }, # }, # }) # # resp.to_h outputs the following: # { # face_details: [ # { # bounding_box: { # height: 0.18000000715255737, # left: 0.5555555820465088, # top: 0.33666667342185974, # width: 0.23999999463558197, # }, # confidence: 100, # landmarks: [ # { # type: "eyeLeft", # x: 0.6394737362861633, # y: 0.40819624066352844, # }, # { # type: "eyeRight", # x: 0.7266660928726196, # y: 0.41039225459098816, # }, # { # type: "eyeRight", # x: 0.6912462115287781, # y: 0.44240960478782654, # }, # { # type: "mouthDown", # x: 0.6306198239326477, # y: 0.46700039505958557, # }, # { # type: "mouthUp", # x: 0.7215608954429626, # y: 0.47114261984825134, # }, # ], # pose: { # pitch: 4.050806522369385, # roll: 0.9950747489929199, # yaw: 13.693790435791016, # }, # quality: { # brightness: 37.60169982910156, # sharpness: 80, # }, # }, # ], # orientation_correction: "ROTATE_0", # } # # @example Request syntax with placeholder values # # resp = client.detect_faces({ # image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # attributes: ["DEFAULT"], # accepts DEFAULT, ALL # }) # # @example Response structure # # resp.face_details #=> Array # resp.face_details[0].bounding_box.width #=> Float # resp.face_details[0].bounding_box.height #=> Float # resp.face_details[0].bounding_box.left #=> Float # resp.face_details[0].bounding_box.top #=> Float # resp.face_details[0].age_range.low #=> Integer # resp.face_details[0].age_range.high #=> Integer # resp.face_details[0].smile.value #=> Boolean # resp.face_details[0].smile.confidence #=> Float # resp.face_details[0].eyeglasses.value #=> Boolean # resp.face_details[0].eyeglasses.confidence #=> Float # resp.face_details[0].sunglasses.value #=> Boolean # resp.face_details[0].sunglasses.confidence #=> Float # resp.face_details[0].gender.value #=> String, one of "Male", "Female" # resp.face_details[0].gender.confidence #=> Float # resp.face_details[0].beard.value #=> Boolean # resp.face_details[0].beard.confidence #=> Float # resp.face_details[0].mustache.value #=> Boolean # resp.face_details[0].mustache.confidence #=> Float # resp.face_details[0].eyes_open.value #=> Boolean # resp.face_details[0].eyes_open.confidence #=> Float # resp.face_details[0].mouth_open.value #=> Boolean # resp.face_details[0].mouth_open.confidence #=> Float # resp.face_details[0].emotions #=> Array # resp.face_details[0].emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN" # resp.face_details[0].emotions[0].confidence #=> Float # resp.face_details[0].landmarks #=> Array # resp.face_details[0].landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil" # resp.face_details[0].landmarks[0].x #=> Float # resp.face_details[0].landmarks[0].y #=> Float # resp.face_details[0].pose.roll #=> Float # resp.face_details[0].pose.yaw #=> Float # resp.face_details[0].pose.pitch #=> Float # resp.face_details[0].quality.brightness #=> Float # resp.face_details[0].quality.sharpness #=> Float # resp.face_details[0].confidence #=> Float # resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270" # # @overload detect_faces(params = {}) # @param [Hash] params ({}) def detect_faces(params = {}, options = {}) req = build_request(:detect_faces, params) req.send_request(options) end # Detects instances of real-world entities within an image (JPEG or PNG) # provided as input. This includes objects like flower, tree, and table; # events like wedding, graduation, and birthday party; and concepts like # landscape, evening, and nature. # # For an example, see Analyzing Images Stored in an Amazon S3 Bucket in # the Amazon Rekognition Developer Guide. # # `DetectLabels` does not support the detection of activities. However, # activity detection is supported for label detection in videos. For # more information, see StartLabelDetection in the Amazon Rekognition # Developer Guide. # # # # You pass the input image as base64-encoded image bytes or as a # reference to an image in an Amazon S3 bucket. If you use the Amazon # CLI to call Amazon Rekognition operations, passing image bytes is not # supported. The image must be either a PNG or JPEG formatted file. # # For each object, scene, and concept the API returns one or more # labels. Each label provides the object name, and the level of # confidence that the image contains the object. For example, suppose # the input image has a lighthouse, the sea, and a rock. The response # will include all three labels, one for each object. # # `\{Name: lighthouse, Confidence: 98.4629\}` # # `\{Name: rock,Confidence: 79.2097\}` # # ` \{Name: sea,Confidence: 75.061\}` # # In the preceding example, the operation returns one label for each of # the three objects. The operation can also return multiple labels for # the same object in the image. For example, if the input image shows a # flower (for example, a tulip), the operation might return the # following three labels. # # `\{Name: flower,Confidence: 99.0562\}` # # `\{Name: plant,Confidence: 99.0562\}` # # `\{Name: tulip,Confidence: 99.0562\}` # # In this example, the detection algorithm more precisely identifies the # flower as a tulip. # # In response, the API returns an array of labels. In addition, the # response also includes the orientation correction. Optionally, you can # specify `MinConfidence` to control the confidence threshold for the # labels returned. The default is 50%. You can also add the `MaxLabels` # parameter to limit the number of labels returned. # # If the object detected is a person, the operation doesn't provide the # same facial details that the DetectFaces operation provides. # # # # This is a stateless API operation. That is, the operation does not # persist any data. # # This operation requires permissions to perform the # `rekognition:DetectLabels` action. # # @option params [required, Types::Image] :image # The input image as base64-encoded bytes or an S3 object. If you use # the AWS CLI to call Amazon Rekognition operations, passing # base64-encoded image bytes is not supported. # # @option params [Integer] :max_labels # Maximum number of labels you want the service to return in the # response. The service returns the specified number of highest # confidence labels. # # @option params [Float] :min_confidence # Specifies the minimum confidence level for the labels to return. # Amazon Rekognition doesn't return any labels with confidence lower # than this specified value. # # If `MinConfidence` is not specified, the operation returns labels with # a confidence values greater than or equal to 50 percent. # # @return [Types::DetectLabelsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DetectLabelsResponse#labels #labels} => Array<Types::Label> # * {Types::DetectLabelsResponse#orientation_correction #orientation_correction} => String # # # @example Example: To detect labels # # # This operation detects labels in the supplied image # # resp = client.detect_labels({ # image: { # s3_object: { # bucket: "mybucket", # name: "myphoto", # }, # }, # max_labels: 123, # min_confidence: 70, # }) # # resp.to_h outputs the following: # { # labels: [ # { # confidence: 99.25072479248047, # name: "People", # }, # { # confidence: 99.25074005126953, # name: "Person", # }, # ], # } # # @example Request syntax with placeholder values # # resp = client.detect_labels({ # image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # max_labels: 1, # min_confidence: 1.0, # }) # # @example Response structure # # resp.labels #=> Array # resp.labels[0].name #=> String # resp.labels[0].confidence #=> Float # resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270" # # @overload detect_labels(params = {}) # @param [Hash] params ({}) def detect_labels(params = {}, options = {}) req = build_request(:detect_labels, params) req.send_request(options) end # Detects explicit or suggestive adult content in a specified JPEG or # PNG format image. Use `DetectModerationLabels` to moderate images # depending on your requirements. For example, you might want to filter # images that contain nudity, but not images containing suggestive # content. # # To filter images, use the labels returned by `DetectModerationLabels` # to determine which types of content are appropriate. # # For information about moderation labels, see Detecting Unsafe Content # in the Amazon Rekognition Developer Guide. # # You pass the input image either as base64-encoded image bytes or as a # reference to an image in an Amazon S3 bucket. If you use the Amazon # CLI to call Amazon Rekognition operations, passing image bytes is not # supported. The image must be either a PNG or JPEG formatted file. # # @option params [required, Types::Image] :image # The input image as base64-encoded bytes or an S3 object. If you use # the AWS CLI to call Amazon Rekognition operations, passing # base64-encoded image bytes is not supported. # # @option params [Float] :min_confidence # Specifies the minimum confidence level for the labels to return. # Amazon Rekognition doesn't return any labels with a confidence level # lower than this specified value. # # If you don't specify `MinConfidence`, the operation returns labels # with confidence values greater than or equal to 50 percent. # # @return [Types::DetectModerationLabelsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DetectModerationLabelsResponse#moderation_labels #moderation_labels} => Array<Types::ModerationLabel> # # @example Request syntax with placeholder values # # resp = client.detect_moderation_labels({ # image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # min_confidence: 1.0, # }) # # @example Response structure # # resp.moderation_labels #=> Array # resp.moderation_labels[0].confidence #=> Float # resp.moderation_labels[0].name #=> String # resp.moderation_labels[0].parent_name #=> String # # @overload detect_moderation_labels(params = {}) # @param [Hash] params ({}) def detect_moderation_labels(params = {}, options = {}) req = build_request(:detect_moderation_labels, params) req.send_request(options) end # Detects text in the input image and converts it into machine-readable # text. # # Pass the input image as base64-encoded image bytes or as a reference # to an image in an Amazon S3 bucket. If you use the AWS CLI to call # Amazon Rekognition operations, you must pass it as a reference to an # image in an Amazon S3 bucket. For the AWS CLI, passing image bytes is # not supported. The image must be either a .png or .jpeg formatted # file. # # The `DetectText` operation returns text in an array of elements, # `TextDetections`. Each `TextDetection` element provides information # about a single word or line of text that was detected in the image. # # A word is one or more ISO basic latin script characters that are not # separated by spaces. `DetectText` can detect up to 50 words in an # image. # # A line is a string of equally spaced words. A line isn't necessarily # a complete sentence. For example, a driver's license number is # detected as a line. A line ends when there is no aligned text after # it. Also, a line ends when there is a large gap between words, # relative to the length of the words. This means, depending on the gap # between words, Amazon Rekognition may detect multiple lines in text # aligned in the same direction. Periods don't represent the end of a # line. If a sentence spans multiple lines, the `DetectText` operation # returns multiple lines. # # To determine whether a `TextDetection` element is a line of text or a # word, use the `TextDetection` object `Type` field. # # To be detected, text must be within +/- 90 degrees orientation of the # horizontal axis. # # For more information, see DetectText in the Amazon Rekognition # Developer Guide. # # @option params [required, Types::Image] :image # The input image as base64-encoded bytes or an Amazon S3 object. If you # use the AWS CLI to call Amazon Rekognition operations, you can't pass # image bytes. # # @return [Types::DetectTextResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DetectTextResponse#text_detections #text_detections} => Array<Types::TextDetection> # # @example Request syntax with placeholder values # # resp = client.detect_text({ # image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # }) # # @example Response structure # # resp.text_detections #=> Array # resp.text_detections[0].detected_text #=> String # resp.text_detections[0].type #=> String, one of "LINE", "WORD" # resp.text_detections[0].id #=> Integer # resp.text_detections[0].parent_id #=> Integer # resp.text_detections[0].confidence #=> Float # resp.text_detections[0].geometry.bounding_box.width #=> Float # resp.text_detections[0].geometry.bounding_box.height #=> Float # resp.text_detections[0].geometry.bounding_box.left #=> Float # resp.text_detections[0].geometry.bounding_box.top #=> Float # resp.text_detections[0].geometry.polygon #=> Array # resp.text_detections[0].geometry.polygon[0].x #=> Float # resp.text_detections[0].geometry.polygon[0].y #=> Float # # @overload detect_text(params = {}) # @param [Hash] params ({}) def detect_text(params = {}, options = {}) req = build_request(:detect_text, params) req.send_request(options) end # Gets the name and additional information about a celebrity based on # his or her Rekognition ID. The additional information is returned as # an array of URLs. If there is no additional information about the # celebrity, this list is empty. # # For more information, see Recognizing Celebrities in an Image in the # Amazon Rekognition Developer Guide. # # This operation requires permissions to perform the # `rekognition:GetCelebrityInfo` action. # # @option params [required, String] :id # The ID for the celebrity. You get the celebrity ID from a call to the # operation, which recognizes celebrities in an image. # # @return [Types::GetCelebrityInfoResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::GetCelebrityInfoResponse#urls #urls} => Array<String> # * {Types::GetCelebrityInfoResponse#name #name} => String # # @example Request syntax with placeholder values # # resp = client.get_celebrity_info({ # id: "RekognitionUniqueId", # required # }) # # @example Response structure # # resp.urls #=> Array # resp.urls[0] #=> String # resp.name #=> String # # @overload get_celebrity_info(params = {}) # @param [Hash] params ({}) def get_celebrity_info(params = {}, options = {}) req = build_request(:get_celebrity_info, params) req.send_request(options) end # Gets the celebrity recognition results for a Amazon Rekognition Video # analysis started by . # # Celebrity recognition in a video is an asynchronous operation. # Analysis is started by a call to which returns a job identifier # (`JobId`). When the celebrity recognition operation finishes, Amazon # Rekognition Video publishes a completion status to the Amazon Simple # Notification Service topic registered in the initial call to # `StartCelebrityRecognition`. To get the results of the celebrity # recognition analysis, first check that the status value published to # the Amazon SNS topic is `SUCCEEDED`. If so, call # `GetCelebrityDetection` and pass the job identifier (`JobId`) from the # initial call to `StartCelebrityDetection`. # # For more information, see Working With Stored Videos in the Amazon # Rekognition Developer Guide. # # `GetCelebrityRecognition` returns detected celebrities and the time(s) # they are detected in an array (`Celebrities`) of objects. Each # `CelebrityRecognition` contains information about the celebrity in a # object and the time, `Timestamp`, the celebrity was detected. # # `GetCelebrityRecognition` only returns the default facial attributes # (`BoundingBox`, `Confidence`, `Landmarks`, `Pose`, and `Quality`). The # other facial attributes listed in the `Face` object of the following # response syntax are not returned. For more information, see FaceDetail # in the Amazon Rekognition Developer Guide. # # # # By default, the `Celebrities` array is sorted by time (milliseconds # from the start of the video). You can also sort the array by celebrity # by specifying the value `ID` in the `SortBy` input parameter. # # The `CelebrityDetail` object includes the celebrity identifer and # additional information urls. If you don't store the additional # information urls, you can get them later by calling with the celebrity # identifer. # # No information is returned for faces not recognized as celebrities. # # Use MaxResults parameter to limit the number of labels returned. If # there are more results than specified in `MaxResults`, the value of # `NextToken` in the operation response contains a pagination token for # getting the next set of results. To get the next page of results, call # `GetCelebrityDetection` and populate the `NextToken` request parameter # with the token value returned from the previous call to # `GetCelebrityRecognition`. # # @option params [required, String] :job_id # Job identifier for the required celebrity recognition analysis. You # can get the job identifer from a call to `StartCelebrityRecognition`. # # @option params [Integer] :max_results # Maximum number of results to return per paginated call. The largest # value you can specify is 1000. If you specify a value greater than # 1000, a maximum of 1000 results is returned. The default value is # 1000. # # @option params [String] :next_token # If the previous response was incomplete (because there is more # recognized celebrities to retrieve), Amazon Rekognition Video returns # a pagination token in the response. You can use this pagination token # to retrieve the next set of celebrities. # # @option params [String] :sort_by # Sort to use for celebrities returned in `Celebrities` field. Specify # `ID` to sort by the celebrity identifier, specify `TIMESTAMP` to sort # by the time the celebrity was recognized. # # @return [Types::GetCelebrityRecognitionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::GetCelebrityRecognitionResponse#job_status #job_status} => String # * {Types::GetCelebrityRecognitionResponse#status_message #status_message} => String # * {Types::GetCelebrityRecognitionResponse#video_metadata #video_metadata} => Types::VideoMetadata # * {Types::GetCelebrityRecognitionResponse#next_token #next_token} => String # * {Types::GetCelebrityRecognitionResponse#celebrities #celebrities} => Array<Types::CelebrityRecognition> # # @example Request syntax with placeholder values # # resp = client.get_celebrity_recognition({ # job_id: "JobId", # required # max_results: 1, # next_token: "PaginationToken", # sort_by: "ID", # accepts ID, TIMESTAMP # }) # # @example Response structure # # resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED" # resp.status_message #=> String # resp.video_metadata.codec #=> String # resp.video_metadata.duration_millis #=> Integer # resp.video_metadata.format #=> String # resp.video_metadata.frame_rate #=> Float # resp.video_metadata.frame_height #=> Integer # resp.video_metadata.frame_width #=> Integer # resp.next_token #=> String # resp.celebrities #=> Array # resp.celebrities[0].timestamp #=> Integer # resp.celebrities[0].celebrity.urls #=> Array # resp.celebrities[0].celebrity.urls[0] #=> String # resp.celebrities[0].celebrity.name #=> String # resp.celebrities[0].celebrity.id #=> String # resp.celebrities[0].celebrity.confidence #=> Float # resp.celebrities[0].celebrity.bounding_box.width #=> Float # resp.celebrities[0].celebrity.bounding_box.height #=> Float # resp.celebrities[0].celebrity.bounding_box.left #=> Float # resp.celebrities[0].celebrity.bounding_box.top #=> Float # resp.celebrities[0].celebrity.face.bounding_box.width #=> Float # resp.celebrities[0].celebrity.face.bounding_box.height #=> Float # resp.celebrities[0].celebrity.face.bounding_box.left #=> Float # resp.celebrities[0].celebrity.face.bounding_box.top #=> Float # resp.celebrities[0].celebrity.face.age_range.low #=> Integer # resp.celebrities[0].celebrity.face.age_range.high #=> Integer # resp.celebrities[0].celebrity.face.smile.value #=> Boolean # resp.celebrities[0].celebrity.face.smile.confidence #=> Float # resp.celebrities[0].celebrity.face.eyeglasses.value #=> Boolean # resp.celebrities[0].celebrity.face.eyeglasses.confidence #=> Float # resp.celebrities[0].celebrity.face.sunglasses.value #=> Boolean # resp.celebrities[0].celebrity.face.sunglasses.confidence #=> Float # resp.celebrities[0].celebrity.face.gender.value #=> String, one of "Male", "Female" # resp.celebrities[0].celebrity.face.gender.confidence #=> Float # resp.celebrities[0].celebrity.face.beard.value #=> Boolean # resp.celebrities[0].celebrity.face.beard.confidence #=> Float # resp.celebrities[0].celebrity.face.mustache.value #=> Boolean # resp.celebrities[0].celebrity.face.mustache.confidence #=> Float # resp.celebrities[0].celebrity.face.eyes_open.value #=> Boolean # resp.celebrities[0].celebrity.face.eyes_open.confidence #=> Float # resp.celebrities[0].celebrity.face.mouth_open.value #=> Boolean # resp.celebrities[0].celebrity.face.mouth_open.confidence #=> Float # resp.celebrities[0].celebrity.face.emotions #=> Array # resp.celebrities[0].celebrity.face.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN" # resp.celebrities[0].celebrity.face.emotions[0].confidence #=> Float # resp.celebrities[0].celebrity.face.landmarks #=> Array # resp.celebrities[0].celebrity.face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil" # resp.celebrities[0].celebrity.face.landmarks[0].x #=> Float # resp.celebrities[0].celebrity.face.landmarks[0].y #=> Float # resp.celebrities[0].celebrity.face.pose.roll #=> Float # resp.celebrities[0].celebrity.face.pose.yaw #=> Float # resp.celebrities[0].celebrity.face.pose.pitch #=> Float # resp.celebrities[0].celebrity.face.quality.brightness #=> Float # resp.celebrities[0].celebrity.face.quality.sharpness #=> Float # resp.celebrities[0].celebrity.face.confidence #=> Float # # @overload get_celebrity_recognition(params = {}) # @param [Hash] params ({}) def get_celebrity_recognition(params = {}, options = {}) req = build_request(:get_celebrity_recognition, params) req.send_request(options) end # Gets the content moderation analysis results for a Amazon Rekognition # Video analysis started by . # # Content moderation analysis of a video is an asynchronous operation. # You start analysis by calling . which returns a job identifier # (`JobId`). When analysis finishes, Amazon Rekognition Video publishes # a completion status to the Amazon Simple Notification Service topic # registered in the initial call to `StartContentModeration`. To get the # results of the content moderation analysis, first check that the # status value published to the Amazon SNS topic is `SUCCEEDED`. If so, # call `GetCelebrityDetection` and pass the job identifier (`JobId`) # from the initial call to `StartCelebrityDetection`. # # For more information, see Working with Stored Videos in the Amazon # Rekognition Devlopers Guide. # # `GetContentModeration` returns detected content moderation labels, and # the time they are detected, in an array, `ModerationLabels`, of # objects. # # By default, the moderated labels are returned sorted by time, in # milliseconds from the start of the video. You can also sort them by # moderated label by specifying `NAME` for the `SortBy` input parameter. # # Since video analysis can return a large number of results, use the # `MaxResults` parameter to limit the number of labels returned in a # single call to `GetContentModeration`. If there are more results than # specified in `MaxResults`, the value of `NextToken` in the operation # response contains a pagination token for getting the next set of # results. To get the next page of results, call `GetContentModeration` # and populate the `NextToken` request parameter with the value of # `NextToken` returned from the previous call to `GetContentModeration`. # # For more information, see Detecting Unsafe Content in the Amazon # Rekognition Developer Guide. # # @option params [required, String] :job_id # The identifier for the content moderation job. Use `JobId` to identify # the job in a subsequent call to `GetContentModeration`. # # @option params [Integer] :max_results # Maximum number of results to return per paginated call. The largest # value you can specify is 1000. If you specify a value greater than # 1000, a maximum of 1000 results is returned. The default value is # 1000. # # @option params [String] :next_token # If the previous response was incomplete (because there is more data to # retrieve), Amazon Rekognition returns a pagination token in the # response. You can use this pagination token to retrieve the next set # of content moderation labels. # # @option params [String] :sort_by # Sort to use for elements in the `ModerationLabelDetections` array. Use # `TIMESTAMP` to sort array elements by the time labels are detected. # Use `NAME` to alphabetically group elements for a label together. # Within each label group, the array element are sorted by detection # confidence. The default sort is by `TIMESTAMP`. # # @return [Types::GetContentModerationResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::GetContentModerationResponse#job_status #job_status} => String # * {Types::GetContentModerationResponse#status_message #status_message} => String # * {Types::GetContentModerationResponse#video_metadata #video_metadata} => Types::VideoMetadata # * {Types::GetContentModerationResponse#moderation_labels #moderation_labels} => Array<Types::ContentModerationDetection> # * {Types::GetContentModerationResponse#next_token #next_token} => String # # @example Request syntax with placeholder values # # resp = client.get_content_moderation({ # job_id: "JobId", # required # max_results: 1, # next_token: "PaginationToken", # sort_by: "NAME", # accepts NAME, TIMESTAMP # }) # # @example Response structure # # resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED" # resp.status_message #=> String # resp.video_metadata.codec #=> String # resp.video_metadata.duration_millis #=> Integer # resp.video_metadata.format #=> String # resp.video_metadata.frame_rate #=> Float # resp.video_metadata.frame_height #=> Integer # resp.video_metadata.frame_width #=> Integer # resp.moderation_labels #=> Array # resp.moderation_labels[0].timestamp #=> Integer # resp.moderation_labels[0].moderation_label.confidence #=> Float # resp.moderation_labels[0].moderation_label.name #=> String # resp.moderation_labels[0].moderation_label.parent_name #=> String # resp.next_token #=> String # # @overload get_content_moderation(params = {}) # @param [Hash] params ({}) def get_content_moderation(params = {}, options = {}) req = build_request(:get_content_moderation, params) req.send_request(options) end # Gets face detection results for a Amazon Rekognition Video analysis # started by . # # Face detection with Amazon Rekognition Video is an asynchronous # operation. You start face detection by calling which returns a job # identifier (`JobId`). When the face detection operation finishes, # Amazon Rekognition Video publishes a completion status to the Amazon # Simple Notification Service topic registered in the initial call to # `StartFaceDetection`. To get the results of the face detection # operation, first check that the status value published to the Amazon # SNS topic is `SUCCEEDED`. If so, call and pass the job identifier # (`JobId`) from the initial call to `StartFaceDetection`. # # `GetFaceDetection` returns an array of detected faces (`Faces`) sorted # by the time the faces were detected. # # Use MaxResults parameter to limit the number of labels returned. If # there are more results than specified in `MaxResults`, the value of # `NextToken` in the operation response contains a pagination token for # getting the next set of results. To get the next page of results, call # `GetFaceDetection` and populate the `NextToken` request parameter with # the token value returned from the previous call to `GetFaceDetection`. # # @option params [required, String] :job_id # Unique identifier for the face detection job. The `JobId` is returned # from `StartFaceDetection`. # # @option params [Integer] :max_results # Maximum number of results to return per paginated call. The largest # value you can specify is 1000. If you specify a value greater than # 1000, a maximum of 1000 results is returned. The default value is # 1000. # # @option params [String] :next_token # If the previous response was incomplete (because there are more faces # to retrieve), Amazon Rekognition Video returns a pagination token in # the response. You can use this pagination token to retrieve the next # set of faces. # # @return [Types::GetFaceDetectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::GetFaceDetectionResponse#job_status #job_status} => String # * {Types::GetFaceDetectionResponse#status_message #status_message} => String # * {Types::GetFaceDetectionResponse#video_metadata #video_metadata} => Types::VideoMetadata # * {Types::GetFaceDetectionResponse#next_token #next_token} => String # * {Types::GetFaceDetectionResponse#faces #faces} => Array<Types::FaceDetection> # # @example Request syntax with placeholder values # # resp = client.get_face_detection({ # job_id: "JobId", # required # max_results: 1, # next_token: "PaginationToken", # }) # # @example Response structure # # resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED" # resp.status_message #=> String # resp.video_metadata.codec #=> String # resp.video_metadata.duration_millis #=> Integer # resp.video_metadata.format #=> String # resp.video_metadata.frame_rate #=> Float # resp.video_metadata.frame_height #=> Integer # resp.video_metadata.frame_width #=> Integer # resp.next_token #=> String # resp.faces #=> Array # resp.faces[0].timestamp #=> Integer # resp.faces[0].face.bounding_box.width #=> Float # resp.faces[0].face.bounding_box.height #=> Float # resp.faces[0].face.bounding_box.left #=> Float # resp.faces[0].face.bounding_box.top #=> Float # resp.faces[0].face.age_range.low #=> Integer # resp.faces[0].face.age_range.high #=> Integer # resp.faces[0].face.smile.value #=> Boolean # resp.faces[0].face.smile.confidence #=> Float # resp.faces[0].face.eyeglasses.value #=> Boolean # resp.faces[0].face.eyeglasses.confidence #=> Float # resp.faces[0].face.sunglasses.value #=> Boolean # resp.faces[0].face.sunglasses.confidence #=> Float # resp.faces[0].face.gender.value #=> String, one of "Male", "Female" # resp.faces[0].face.gender.confidence #=> Float # resp.faces[0].face.beard.value #=> Boolean # resp.faces[0].face.beard.confidence #=> Float # resp.faces[0].face.mustache.value #=> Boolean # resp.faces[0].face.mustache.confidence #=> Float # resp.faces[0].face.eyes_open.value #=> Boolean # resp.faces[0].face.eyes_open.confidence #=> Float # resp.faces[0].face.mouth_open.value #=> Boolean # resp.faces[0].face.mouth_open.confidence #=> Float # resp.faces[0].face.emotions #=> Array # resp.faces[0].face.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN" # resp.faces[0].face.emotions[0].confidence #=> Float # resp.faces[0].face.landmarks #=> Array # resp.faces[0].face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil" # resp.faces[0].face.landmarks[0].x #=> Float # resp.faces[0].face.landmarks[0].y #=> Float # resp.faces[0].face.pose.roll #=> Float # resp.faces[0].face.pose.yaw #=> Float # resp.faces[0].face.pose.pitch #=> Float # resp.faces[0].face.quality.brightness #=> Float # resp.faces[0].face.quality.sharpness #=> Float # resp.faces[0].face.confidence #=> Float # # @overload get_face_detection(params = {}) # @param [Hash] params ({}) def get_face_detection(params = {}, options = {}) req = build_request(:get_face_detection, params) req.send_request(options) end # Gets the face search results for Amazon Rekognition Video face search # started by . The search returns faces in a collection that match the # faces of persons detected in a video. It also includes the time(s) # that faces are matched in the video. # # Face search in a video is an asynchronous operation. You start face # search by calling to which returns a job identifier (`JobId`). When # the search operation finishes, Amazon Rekognition Video publishes a # completion status to the Amazon Simple Notification Service topic # registered in the initial call to `StartFaceSearch`. To get the search # results, first check that the status value published to the Amazon SNS # topic is `SUCCEEDED`. If so, call `GetFaceSearch` and pass the job # identifier (`JobId`) from the initial call to `StartFaceSearch`. # # For more information, see Searching Faces in a Collection in the # Amazon Rekognition Developer Guide. # # The search results are retured in an array, `Persons`, of objects. # Each`PersonMatch` element contains details about the matching faces in # the input collection, person information (facial attributes, bounding # boxes, and person identifer) for the matched person, and the time the # person was matched in the video. # # `GetFaceSearch` only returns the default facial attributes # (`BoundingBox`, `Confidence`, `Landmarks`, `Pose`, and `Quality`). The # other facial attributes listed in the `Face` object of the following # response syntax are not returned. For more information, see FaceDetail # in the Amazon Rekognition Developer Guide. # # # # By default, the `Persons` array is sorted by the time, in milliseconds # from the start of the video, persons are matched. You can also sort by # persons by specifying `INDEX` for the `SORTBY` input parameter. # # @option params [required, String] :job_id # The job identifer for the search request. You get the job identifier # from an initial call to `StartFaceSearch`. # # @option params [Integer] :max_results # Maximum number of results to return per paginated call. The largest # value you can specify is 1000. If you specify a value greater than # 1000, a maximum of 1000 results is returned. The default value is # 1000. # # @option params [String] :next_token # If the previous response was incomplete (because there is more search # results to retrieve), Amazon Rekognition Video returns a pagination # token in the response. You can use this pagination token to retrieve # the next set of search results. # # @option params [String] :sort_by # Sort to use for grouping faces in the response. Use `TIMESTAMP` to # group faces by the time that they are recognized. Use `INDEX` to sort # by recognized faces. # # @return [Types::GetFaceSearchResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::GetFaceSearchResponse#job_status #job_status} => String # * {Types::GetFaceSearchResponse#status_message #status_message} => String # * {Types::GetFaceSearchResponse#next_token #next_token} => String # * {Types::GetFaceSearchResponse#video_metadata #video_metadata} => Types::VideoMetadata # * {Types::GetFaceSearchResponse#persons #persons} => Array<Types::PersonMatch> # # @example Request syntax with placeholder values # # resp = client.get_face_search({ # job_id: "JobId", # required # max_results: 1, # next_token: "PaginationToken", # sort_by: "INDEX", # accepts INDEX, TIMESTAMP # }) # # @example Response structure # # resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED" # resp.status_message #=> String # resp.next_token #=> String # resp.video_metadata.codec #=> String # resp.video_metadata.duration_millis #=> Integer # resp.video_metadata.format #=> String # resp.video_metadata.frame_rate #=> Float # resp.video_metadata.frame_height #=> Integer # resp.video_metadata.frame_width #=> Integer # resp.persons #=> Array # resp.persons[0].timestamp #=> Integer # resp.persons[0].person.index #=> Integer # resp.persons[0].person.bounding_box.width #=> Float # resp.persons[0].person.bounding_box.height #=> Float # resp.persons[0].person.bounding_box.left #=> Float # resp.persons[0].person.bounding_box.top #=> Float # resp.persons[0].person.face.bounding_box.width #=> Float # resp.persons[0].person.face.bounding_box.height #=> Float # resp.persons[0].person.face.bounding_box.left #=> Float # resp.persons[0].person.face.bounding_box.top #=> Float # resp.persons[0].person.face.age_range.low #=> Integer # resp.persons[0].person.face.age_range.high #=> Integer # resp.persons[0].person.face.smile.value #=> Boolean # resp.persons[0].person.face.smile.confidence #=> Float # resp.persons[0].person.face.eyeglasses.value #=> Boolean # resp.persons[0].person.face.eyeglasses.confidence #=> Float # resp.persons[0].person.face.sunglasses.value #=> Boolean # resp.persons[0].person.face.sunglasses.confidence #=> Float # resp.persons[0].person.face.gender.value #=> String, one of "Male", "Female" # resp.persons[0].person.face.gender.confidence #=> Float # resp.persons[0].person.face.beard.value #=> Boolean # resp.persons[0].person.face.beard.confidence #=> Float # resp.persons[0].person.face.mustache.value #=> Boolean # resp.persons[0].person.face.mustache.confidence #=> Float # resp.persons[0].person.face.eyes_open.value #=> Boolean # resp.persons[0].person.face.eyes_open.confidence #=> Float # resp.persons[0].person.face.mouth_open.value #=> Boolean # resp.persons[0].person.face.mouth_open.confidence #=> Float # resp.persons[0].person.face.emotions #=> Array # resp.persons[0].person.face.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN" # resp.persons[0].person.face.emotions[0].confidence #=> Float # resp.persons[0].person.face.landmarks #=> Array # resp.persons[0].person.face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil" # resp.persons[0].person.face.landmarks[0].x #=> Float # resp.persons[0].person.face.landmarks[0].y #=> Float # resp.persons[0].person.face.pose.roll #=> Float # resp.persons[0].person.face.pose.yaw #=> Float # resp.persons[0].person.face.pose.pitch #=> Float # resp.persons[0].person.face.quality.brightness #=> Float # resp.persons[0].person.face.quality.sharpness #=> Float # resp.persons[0].person.face.confidence #=> Float # resp.persons[0].face_matches #=> Array # resp.persons[0].face_matches[0].similarity #=> Float # resp.persons[0].face_matches[0].face.face_id #=> String # resp.persons[0].face_matches[0].face.bounding_box.width #=> Float # resp.persons[0].face_matches[0].face.bounding_box.height #=> Float # resp.persons[0].face_matches[0].face.bounding_box.left #=> Float # resp.persons[0].face_matches[0].face.bounding_box.top #=> Float # resp.persons[0].face_matches[0].face.image_id #=> String # resp.persons[0].face_matches[0].face.external_image_id #=> String # resp.persons[0].face_matches[0].face.confidence #=> Float # # @overload get_face_search(params = {}) # @param [Hash] params ({}) def get_face_search(params = {}, options = {}) req = build_request(:get_face_search, params) req.send_request(options) end # Gets the label detection results of a Amazon Rekognition Video # analysis started by . # # The label detection operation is started by a call to which returns a # job identifier (`JobId`). When the label detection operation finishes, # Amazon Rekognition publishes a completion status to the Amazon Simple # Notification Service topic registered in the initial call to # `StartlabelDetection`. To get the results of the label detection # operation, first check that the status value published to the Amazon # SNS topic is `SUCCEEDED`. If so, call and pass the job identifier # (`JobId`) from the initial call to `StartLabelDetection`. # # `GetLabelDetection` returns an array of detected labels (`Labels`) # sorted by the time the labels were detected. You can also sort by the # label name by specifying `NAME` for the `SortBy` input parameter. # # The labels returned include the label name, the percentage confidence # in the accuracy of the detected label, and the time the label was # detected in the video. # # Use MaxResults parameter to limit the number of labels returned. If # there are more results than specified in `MaxResults`, the value of # `NextToken` in the operation response contains a pagination token for # getting the next set of results. To get the next page of results, call # `GetlabelDetection` and populate the `NextToken` request parameter # with the token value returned from the previous call to # `GetLabelDetection`. # # @option params [required, String] :job_id # Job identifier for the label detection operation for which you want # results returned. You get the job identifer from an initial call to # `StartlabelDetection`. # # @option params [Integer] :max_results # Maximum number of results to return per paginated call. The largest # value you can specify is 1000. If you specify a value greater than # 1000, a maximum of 1000 results is returned. The default value is # 1000. # # @option params [String] :next_token # If the previous response was incomplete (because there are more labels # to retrieve), Amazon Rekognition Video returns a pagination token in # the response. You can use this pagination token to retrieve the next # set of labels. # # @option params [String] :sort_by # Sort to use for elements in the `Labels` array. Use `TIMESTAMP` to # sort array elements by the time labels are detected. Use `NAME` to # alphabetically group elements for a label together. Within each label # group, the array element are sorted by detection confidence. The # default sort is by `TIMESTAMP`. # # @return [Types::GetLabelDetectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::GetLabelDetectionResponse#job_status #job_status} => String # * {Types::GetLabelDetectionResponse#status_message #status_message} => String # * {Types::GetLabelDetectionResponse#video_metadata #video_metadata} => Types::VideoMetadata # * {Types::GetLabelDetectionResponse#next_token #next_token} => String # * {Types::GetLabelDetectionResponse#labels #labels} => Array<Types::LabelDetection> # # @example Request syntax with placeholder values # # resp = client.get_label_detection({ # job_id: "JobId", # required # max_results: 1, # next_token: "PaginationToken", # sort_by: "NAME", # accepts NAME, TIMESTAMP # }) # # @example Response structure # # resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED" # resp.status_message #=> String # resp.video_metadata.codec #=> String # resp.video_metadata.duration_millis #=> Integer # resp.video_metadata.format #=> String # resp.video_metadata.frame_rate #=> Float # resp.video_metadata.frame_height #=> Integer # resp.video_metadata.frame_width #=> Integer # resp.next_token #=> String # resp.labels #=> Array # resp.labels[0].timestamp #=> Integer # resp.labels[0].label.name #=> String # resp.labels[0].label.confidence #=> Float # # @overload get_label_detection(params = {}) # @param [Hash] params ({}) def get_label_detection(params = {}, options = {}) req = build_request(:get_label_detection, params) req.send_request(options) end # Gets the person tracking results of a Amazon Rekognition Video # analysis started by . # # The person detection operation is started by a call to # `StartPersonTracking` which returns a job identifier (`JobId`). When # the person detection operation finishes, Amazon Rekognition Video # publishes a completion status to the Amazon Simple Notification # Service topic registered in the initial call to `StartPersonTracking`. # # To get the results of the person tracking operation, first check that # the status value published to the Amazon SNS topic is `SUCCEEDED`. If # so, call and pass the job identifier (`JobId`) from the initial call # to `StartPersonTracking`. # # `GetPersonTracking` returns an array, `Persons`, of tracked persons # and the time(s) they were tracked in the video. # # `GetPersonTracking` only returns the default facial attributes # (`BoundingBox`, `Confidence`, `Landmarks`, `Pose`, and `Quality`). The # other facial attributes listed in the `Face` object of the following # response syntax are not returned. # # For more information, see FaceDetail in the Amazon Rekognition # Developer Guide. # # # # By default, the array is sorted by the time(s) a person is tracked in # the video. You can sort by tracked persons by specifying `INDEX` for # the `SortBy` input parameter. # # Use the `MaxResults` parameter to limit the number of items returned. # If there are more results than specified in `MaxResults`, the value of # `NextToken` in the operation response contains a pagination token for # getting the next set of results. To get the next page of results, call # `GetPersonTracking` and populate the `NextToken` request parameter # with the token value returned from the previous call to # `GetPersonTracking`. # # @option params [required, String] :job_id # The identifier for a job that tracks persons in a video. You get the # `JobId` from a call to `StartPersonTracking`. # # @option params [Integer] :max_results # Maximum number of results to return per paginated call. The largest # value you can specify is 1000. If you specify a value greater than # 1000, a maximum of 1000 results is returned. The default value is # 1000. # # @option params [String] :next_token # If the previous response was incomplete (because there are more # persons to retrieve), Amazon Rekognition Video returns a pagination # token in the response. You can use this pagination token to retrieve # the next set of persons. # # @option params [String] :sort_by # Sort to use for elements in the `Persons` array. Use `TIMESTAMP` to # sort array elements by the time persons are detected. Use `INDEX` to # sort by the tracked persons. If you sort by `INDEX`, the array # elements for each person are sorted by detection confidence. The # default sort is by `TIMESTAMP`. # # @return [Types::GetPersonTrackingResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::GetPersonTrackingResponse#job_status #job_status} => String # * {Types::GetPersonTrackingResponse#status_message #status_message} => String # * {Types::GetPersonTrackingResponse#video_metadata #video_metadata} => Types::VideoMetadata # * {Types::GetPersonTrackingResponse#next_token #next_token} => String # * {Types::GetPersonTrackingResponse#persons #persons} => Array<Types::PersonDetection> # # @example Request syntax with placeholder values # # resp = client.get_person_tracking({ # job_id: "JobId", # required # max_results: 1, # next_token: "PaginationToken", # sort_by: "INDEX", # accepts INDEX, TIMESTAMP # }) # # @example Response structure # # resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED" # resp.status_message #=> String # resp.video_metadata.codec #=> String # resp.video_metadata.duration_millis #=> Integer # resp.video_metadata.format #=> String # resp.video_metadata.frame_rate #=> Float # resp.video_metadata.frame_height #=> Integer # resp.video_metadata.frame_width #=> Integer # resp.next_token #=> String # resp.persons #=> Array # resp.persons[0].timestamp #=> Integer # resp.persons[0].person.index #=> Integer # resp.persons[0].person.bounding_box.width #=> Float # resp.persons[0].person.bounding_box.height #=> Float # resp.persons[0].person.bounding_box.left #=> Float # resp.persons[0].person.bounding_box.top #=> Float # resp.persons[0].person.face.bounding_box.width #=> Float # resp.persons[0].person.face.bounding_box.height #=> Float # resp.persons[0].person.face.bounding_box.left #=> Float # resp.persons[0].person.face.bounding_box.top #=> Float # resp.persons[0].person.face.age_range.low #=> Integer # resp.persons[0].person.face.age_range.high #=> Integer # resp.persons[0].person.face.smile.value #=> Boolean # resp.persons[0].person.face.smile.confidence #=> Float # resp.persons[0].person.face.eyeglasses.value #=> Boolean # resp.persons[0].person.face.eyeglasses.confidence #=> Float # resp.persons[0].person.face.sunglasses.value #=> Boolean # resp.persons[0].person.face.sunglasses.confidence #=> Float # resp.persons[0].person.face.gender.value #=> String, one of "Male", "Female" # resp.persons[0].person.face.gender.confidence #=> Float # resp.persons[0].person.face.beard.value #=> Boolean # resp.persons[0].person.face.beard.confidence #=> Float # resp.persons[0].person.face.mustache.value #=> Boolean # resp.persons[0].person.face.mustache.confidence #=> Float # resp.persons[0].person.face.eyes_open.value #=> Boolean # resp.persons[0].person.face.eyes_open.confidence #=> Float # resp.persons[0].person.face.mouth_open.value #=> Boolean # resp.persons[0].person.face.mouth_open.confidence #=> Float # resp.persons[0].person.face.emotions #=> Array # resp.persons[0].person.face.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN" # resp.persons[0].person.face.emotions[0].confidence #=> Float # resp.persons[0].person.face.landmarks #=> Array # resp.persons[0].person.face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil" # resp.persons[0].person.face.landmarks[0].x #=> Float # resp.persons[0].person.face.landmarks[0].y #=> Float # resp.persons[0].person.face.pose.roll #=> Float # resp.persons[0].person.face.pose.yaw #=> Float # resp.persons[0].person.face.pose.pitch #=> Float # resp.persons[0].person.face.quality.brightness #=> Float # resp.persons[0].person.face.quality.sharpness #=> Float # resp.persons[0].person.face.confidence #=> Float # # @overload get_person_tracking(params = {}) # @param [Hash] params ({}) def get_person_tracking(params = {}, options = {}) req = build_request(:get_person_tracking, params) req.send_request(options) end # Detects faces in the input image and adds them to the specified # collection. # # Amazon Rekognition does not save the actual faces detected. Instead, # the underlying detection algorithm first detects the faces in the # input image, and for each face extracts facial features into a feature # vector, and stores it in the back-end database. Amazon Rekognition # uses feature vectors when performing face match and search operations # using the and operations. # # To get the number of faces in a collection, call . # # If you are using version 1.0 of the face detection model, `IndexFaces` # indexes the 15 largest faces in the input image. Later versions of the # face detection model index the 100 largest faces in the input image. # To determine which version of the model you are using, call and supply # the collection ID. You also get the model version from the value of # `FaceModelVersion` in the response from `IndexFaces`. # # For more information, see Model Versioning in the Amazon Rekognition # Developer Guide. # # If you provide the optional `ExternalImageID` for the input image you # provided, Amazon Rekognition associates this ID with all faces that it # detects. When you call the operation, the response returns the # external ID. You can use this external image ID to create a # client-side index to associate the faces with each image. You can then # use the index to find all faces in an image. # # In response, the operation returns an array of metadata for all # detected faces. This includes, the bounding box of the detected face, # confidence value (indicating the bounding box contains a face), a face # ID assigned by the service for each face that is detected and stored, # and an image ID assigned by the service for the input image. If you # request all facial attributes (using the `detectionAttributes` # parameter, Amazon Rekognition returns detailed facial attributes such # as facial landmarks (for example, location of eye and mouth) and other # facial attributes such gender. If you provide the same image, specify # the same collection, and use the same external ID in the `IndexFaces` # operation, Amazon Rekognition doesn't save duplicate face metadata. # # For more information, see Adding Faces to a Collection in the Amazon # Rekognition Developer Guide. # # The input image is passed either as base64-encoded image bytes or as a # reference to an image in an Amazon S3 bucket. If you use the Amazon # CLI to call Amazon Rekognition operations, passing image bytes is not # supported. The image must be either a PNG or JPEG formatted file. # # This operation requires permissions to perform the # `rekognition:IndexFaces` action. # # @option params [required, String] :collection_id # The ID of an existing collection to which you want to add the faces # that are detected in the input images. # # @option params [required, Types::Image] :image # The input image as base64-encoded bytes or an S3 object. If you use # the AWS CLI to call Amazon Rekognition operations, passing # base64-encoded image bytes is not supported. # # @option params [String] :external_image_id # ID you want to assign to all the faces detected in the image. # # @option params [Array] :detection_attributes # An array of facial attributes that you want to be returned. This can # be the default list of attributes or all attributes. If you don't # specify a value for `Attributes` or if you specify `["DEFAULT"]`, the # API returns the following subset of facial attributes: `BoundingBox`, # `Confidence`, `Pose`, `Quality` and `Landmarks`. If you provide # `["ALL"]`, all facial attributes are returned but the operation will # take longer to complete. # # If you provide both, `["ALL", "DEFAULT"]`, the service uses a logical # AND operator to determine which attributes to return (in this case, # all attributes). # # @return [Types::IndexFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::IndexFacesResponse#face_records #face_records} => Array<Types::FaceRecord> # * {Types::IndexFacesResponse#orientation_correction #orientation_correction} => String # * {Types::IndexFacesResponse#face_model_version #face_model_version} => String # # # @example Example: To add a face to a collection # # # This operation detects faces in an image and adds them to the specified Rekognition collection. # # resp = client.index_faces({ # collection_id: "myphotos", # detection_attributes: [ # ], # external_image_id: "myphotoid", # image: { # s3_object: { # bucket: "mybucket", # name: "myphoto", # }, # }, # }) # # resp.to_h outputs the following: # { # face_records: [ # { # face: { # bounding_box: { # height: 0.33481481671333313, # left: 0.31888890266418457, # top: 0.4933333396911621, # width: 0.25, # }, # confidence: 99.9991226196289, # face_id: "ff43d742-0c13-5d16-a3e8-03d3f58e980b", # image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1", # }, # face_detail: { # bounding_box: { # height: 0.33481481671333313, # left: 0.31888890266418457, # top: 0.4933333396911621, # width: 0.25, # }, # confidence: 99.9991226196289, # landmarks: [ # { # type: "eyeLeft", # x: 0.3976764678955078, # y: 0.6248345971107483, # }, # { # type: "eyeRight", # x: 0.4810936450958252, # y: 0.6317117214202881, # }, # { # type: "noseLeft", # x: 0.41986238956451416, # y: 0.7111940383911133, # }, # { # type: "mouthDown", # x: 0.40525302290916443, # y: 0.7497701048851013, # }, # { # type: "mouthUp", # x: 0.4753248989582062, # y: 0.7558549642562866, # }, # ], # pose: { # pitch: -9.713645935058594, # roll: 4.707281112670898, # yaw: -24.438663482666016, # }, # quality: { # brightness: 29.23358917236328, # sharpness: 80, # }, # }, # }, # { # face: { # bounding_box: { # height: 0.32592591643333435, # left: 0.5144444704055786, # top: 0.15111111104488373, # width: 0.24444444477558136, # }, # confidence: 99.99950408935547, # face_id: "8be04dba-4e58-520d-850e-9eae4af70eb2", # image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1", # }, # face_detail: { # bounding_box: { # height: 0.32592591643333435, # left: 0.5144444704055786, # top: 0.15111111104488373, # width: 0.24444444477558136, # }, # confidence: 99.99950408935547, # landmarks: [ # { # type: "eyeLeft", # x: 0.6006892323493958, # y: 0.290842205286026, # }, # { # type: "eyeRight", # x: 0.6808141469955444, # y: 0.29609042406082153, # }, # { # type: "noseLeft", # x: 0.6395332217216492, # y: 0.3522595763206482, # }, # { # type: "mouthDown", # x: 0.5892083048820496, # y: 0.38689887523651123, # }, # { # type: "mouthUp", # x: 0.674560010433197, # y: 0.394125759601593, # }, # ], # pose: { # pitch: -4.683138370513916, # roll: 2.1029529571533203, # yaw: 6.716655254364014, # }, # quality: { # brightness: 34.951698303222656, # sharpness: 160, # }, # }, # }, # ], # orientation_correction: "ROTATE_0", # } # # @example Request syntax with placeholder values # # resp = client.index_faces({ # collection_id: "CollectionId", # required # image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # external_image_id: "ExternalImageId", # detection_attributes: ["DEFAULT"], # accepts DEFAULT, ALL # }) # # @example Response structure # # resp.face_records #=> Array # resp.face_records[0].face.face_id #=> String # resp.face_records[0].face.bounding_box.width #=> Float # resp.face_records[0].face.bounding_box.height #=> Float # resp.face_records[0].face.bounding_box.left #=> Float # resp.face_records[0].face.bounding_box.top #=> Float # resp.face_records[0].face.image_id #=> String # resp.face_records[0].face.external_image_id #=> String # resp.face_records[0].face.confidence #=> Float # resp.face_records[0].face_detail.bounding_box.width #=> Float # resp.face_records[0].face_detail.bounding_box.height #=> Float # resp.face_records[0].face_detail.bounding_box.left #=> Float # resp.face_records[0].face_detail.bounding_box.top #=> Float # resp.face_records[0].face_detail.age_range.low #=> Integer # resp.face_records[0].face_detail.age_range.high #=> Integer # resp.face_records[0].face_detail.smile.value #=> Boolean # resp.face_records[0].face_detail.smile.confidence #=> Float # resp.face_records[0].face_detail.eyeglasses.value #=> Boolean # resp.face_records[0].face_detail.eyeglasses.confidence #=> Float # resp.face_records[0].face_detail.sunglasses.value #=> Boolean # resp.face_records[0].face_detail.sunglasses.confidence #=> Float # resp.face_records[0].face_detail.gender.value #=> String, one of "Male", "Female" # resp.face_records[0].face_detail.gender.confidence #=> Float # resp.face_records[0].face_detail.beard.value #=> Boolean # resp.face_records[0].face_detail.beard.confidence #=> Float # resp.face_records[0].face_detail.mustache.value #=> Boolean # resp.face_records[0].face_detail.mustache.confidence #=> Float # resp.face_records[0].face_detail.eyes_open.value #=> Boolean # resp.face_records[0].face_detail.eyes_open.confidence #=> Float # resp.face_records[0].face_detail.mouth_open.value #=> Boolean # resp.face_records[0].face_detail.mouth_open.confidence #=> Float # resp.face_records[0].face_detail.emotions #=> Array # resp.face_records[0].face_detail.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN" # resp.face_records[0].face_detail.emotions[0].confidence #=> Float # resp.face_records[0].face_detail.landmarks #=> Array # resp.face_records[0].face_detail.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil" # resp.face_records[0].face_detail.landmarks[0].x #=> Float # resp.face_records[0].face_detail.landmarks[0].y #=> Float # resp.face_records[0].face_detail.pose.roll #=> Float # resp.face_records[0].face_detail.pose.yaw #=> Float # resp.face_records[0].face_detail.pose.pitch #=> Float # resp.face_records[0].face_detail.quality.brightness #=> Float # resp.face_records[0].face_detail.quality.sharpness #=> Float # resp.face_records[0].face_detail.confidence #=> Float # resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270" # resp.face_model_version #=> String # # @overload index_faces(params = {}) # @param [Hash] params ({}) def index_faces(params = {}, options = {}) req = build_request(:index_faces, params) req.send_request(options) end # Returns list of collection IDs in your account. If the result is # truncated, the response also provides a `NextToken` that you can use # in the subsequent request to fetch the next set of collection IDs. # # For an example, see Listing Collections in the Amazon Rekognition # Developer Guide. # # This operation requires permissions to perform the # `rekognition:ListCollections` action. # # @option params [String] :next_token # Pagination token from the previous response. # # @option params [Integer] :max_results # Maximum number of collection IDs to return. # # @return [Types::ListCollectionsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::ListCollectionsResponse#collection_ids #collection_ids} => Array<String> # * {Types::ListCollectionsResponse#next_token #next_token} => String # * {Types::ListCollectionsResponse#face_model_versions #face_model_versions} => Array<String> # # # @example Example: To list the collections # # # This operation returns a list of Rekognition collections. # # resp = client.list_collections({ # }) # # resp.to_h outputs the following: # { # collection_ids: [ # "myphotos", # ], # } # # @example Request syntax with placeholder values # # resp = client.list_collections({ # next_token: "PaginationToken", # max_results: 1, # }) # # @example Response structure # # resp.collection_ids #=> Array # resp.collection_ids[0] #=> String # resp.next_token #=> String # resp.face_model_versions #=> Array # resp.face_model_versions[0] #=> String # # @overload list_collections(params = {}) # @param [Hash] params ({}) def list_collections(params = {}, options = {}) req = build_request(:list_collections, params) req.send_request(options) end # Returns metadata for faces in the specified collection. This metadata # includes information such as the bounding box coordinates, the # confidence (that the bounding box contains a face), and face ID. For # an example, see Listing Faces in a Collection in the Amazon # Rekognition Developer Guide. # # This operation requires permissions to perform the # `rekognition:ListFaces` action. # # @option params [required, String] :collection_id # ID of the collection from which to list the faces. # # @option params [String] :next_token # If the previous response was incomplete (because there is more data to # retrieve), Amazon Rekognition returns a pagination token in the # response. You can use this pagination token to retrieve the next set # of faces. # # @option params [Integer] :max_results # Maximum number of faces to return. # # @return [Types::ListFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::ListFacesResponse#faces #faces} => Array<Types::Face> # * {Types::ListFacesResponse#next_token #next_token} => String # * {Types::ListFacesResponse#face_model_version #face_model_version} => String # # # @example Example: To list the faces in a collection # # # This operation lists the faces in a Rekognition collection. # # resp = client.list_faces({ # collection_id: "myphotos", # max_results: 20, # }) # # resp.to_h outputs the following: # { # faces: [ # { # bounding_box: { # height: 0.18000000715255737, # left: 0.5555559992790222, # top: 0.336667001247406, # width: 0.23999999463558197, # }, # confidence: 100, # face_id: "1c62e8b5-69a7-5b7d-b3cd-db4338a8a7e7", # image_id: "147fdf82-7a71-52cf-819b-e786c7b9746e", # }, # { # bounding_box: { # height: 0.16555599868297577, # left: 0.30963000655174255, # top: 0.7066670060157776, # width: 0.22074100375175476, # }, # confidence: 100, # face_id: "29a75abe-397b-5101-ba4f-706783b2246c", # image_id: "147fdf82-7a71-52cf-819b-e786c7b9746e", # }, # { # bounding_box: { # height: 0.3234420120716095, # left: 0.3233329951763153, # top: 0.5, # width: 0.24222199618816376, # }, # confidence: 99.99829864501953, # face_id: "38271d79-7bc2-5efb-b752-398a8d575b85", # image_id: "d5631190-d039-54e4-b267-abd22c8647c5", # }, # { # bounding_box: { # height: 0.03555560111999512, # left: 0.37388700246810913, # top: 0.2477779984474182, # width: 0.04747769981622696, # }, # confidence: 99.99210357666016, # face_id: "3b01bef0-c883-5654-ba42-d5ad28b720b3", # image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784", # }, # { # bounding_box: { # height: 0.05333330109715462, # left: 0.2937690019607544, # top: 0.35666701197624207, # width: 0.07121659815311432, # }, # confidence: 99.99919891357422, # face_id: "4839a608-49d0-566c-8301-509d71b534d1", # image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784", # }, # { # bounding_box: { # height: 0.3249259889125824, # left: 0.5155559778213501, # top: 0.1513350009918213, # width: 0.24333299696445465, # }, # confidence: 99.99949645996094, # face_id: "70008e50-75e4-55d0-8e80-363fb73b3a14", # image_id: "d5631190-d039-54e4-b267-abd22c8647c5", # }, # { # bounding_box: { # height: 0.03777780011296272, # left: 0.7002969980239868, # top: 0.18777799606323242, # width: 0.05044509842991829, # }, # confidence: 99.92639923095703, # face_id: "7f5f88ed-d684-5a88-b0df-01e4a521552b", # image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784", # }, # { # bounding_box: { # height: 0.05555560067296028, # left: 0.13946600258350372, # top: 0.46333301067352295, # width: 0.07270029932260513, # }, # confidence: 99.99469757080078, # face_id: "895b4e2c-81de-5902-a4bd-d1792bda00b2", # image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784", # }, # { # bounding_box: { # height: 0.3259260058403015, # left: 0.5144439935684204, # top: 0.15111100673675537, # width: 0.24444399774074554, # }, # confidence: 99.99949645996094, # face_id: "8be04dba-4e58-520d-850e-9eae4af70eb2", # image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1", # }, # { # bounding_box: { # height: 0.18888899683952332, # left: 0.3783380091190338, # top: 0.2355560064315796, # width: 0.25222599506378174, # }, # confidence: 99.9999008178711, # face_id: "908544ad-edc3-59df-8faf-6a87cc256cf5", # image_id: "3c731605-d772-541a-a5e7-0375dbc68a07", # }, # { # bounding_box: { # height: 0.33481499552726746, # left: 0.31888899207115173, # top: 0.49333301186561584, # width: 0.25, # }, # confidence: 99.99909973144531, # face_id: "ff43d742-0c13-5d16-a3e8-03d3f58e980b", # image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1", # }, # ], # } # # @example Request syntax with placeholder values # # resp = client.list_faces({ # collection_id: "CollectionId", # required # next_token: "PaginationToken", # max_results: 1, # }) # # @example Response structure # # resp.faces #=> Array # resp.faces[0].face_id #=> String # resp.faces[0].bounding_box.width #=> Float # resp.faces[0].bounding_box.height #=> Float # resp.faces[0].bounding_box.left #=> Float # resp.faces[0].bounding_box.top #=> Float # resp.faces[0].image_id #=> String # resp.faces[0].external_image_id #=> String # resp.faces[0].confidence #=> Float # resp.next_token #=> String # resp.face_model_version #=> String # # @overload list_faces(params = {}) # @param [Hash] params ({}) def list_faces(params = {}, options = {}) req = build_request(:list_faces, params) req.send_request(options) end # Gets a list of stream processors that you have created with . # # @option params [String] :next_token # If the previous response was incomplete (because there are more stream # processors to retrieve), Amazon Rekognition Video returns a pagination # token in the response. You can use this pagination token to retrieve # the next set of stream processors. # # @option params [Integer] :max_results # Maximum number of stream processors you want Amazon Rekognition Video # to return in the response. The default is 1000. # # @return [Types::ListStreamProcessorsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::ListStreamProcessorsResponse#next_token #next_token} => String # * {Types::ListStreamProcessorsResponse#stream_processors #stream_processors} => Array<Types::StreamProcessor> # # @example Request syntax with placeholder values # # resp = client.list_stream_processors({ # next_token: "PaginationToken", # max_results: 1, # }) # # @example Response structure # # resp.next_token #=> String # resp.stream_processors #=> Array # resp.stream_processors[0].name #=> String # resp.stream_processors[0].status #=> String, one of "STOPPED", "STARTING", "RUNNING", "FAILED", "STOPPING" # # @overload list_stream_processors(params = {}) # @param [Hash] params ({}) def list_stream_processors(params = {}, options = {}) req = build_request(:list_stream_processors, params) req.send_request(options) end # Returns an array of celebrities recognized in the input image. For # more information, see Recognizing Celebrities in the Amazon # Rekognition Developer Guide. # # `RecognizeCelebrities` returns the 100 largest faces in the image. It # lists recognized celebrities in the `CelebrityFaces` array and # unrecognized faces in the `UnrecognizedFaces` array. # `RecognizeCelebrities` doesn't return celebrities whose faces are not # amongst the largest 100 faces in the image. # # For each celebrity recognized, the `RecognizeCelebrities` returns a # `Celebrity` object. The `Celebrity` object contains the celebrity # name, ID, URL links to additional information, match confidence, and a # `ComparedFace` object that you can use to locate the celebrity's face # on the image. # # Rekognition does not retain information about which images a celebrity # has been recognized in. Your application must store this information # and use the `Celebrity` ID property as a unique identifier for the # celebrity. If you don't store the celebrity name or additional # information URLs returned by `RecognizeCelebrities`, you will need the # ID to identify the celebrity in a call to the operation. # # You pass the imput image either as base64-encoded image bytes or as a # reference to an image in an Amazon S3 bucket. If you use the Amazon # CLI to call Amazon Rekognition operations, passing image bytes is not # supported. The image must be either a PNG or JPEG formatted file. # # For an example, see Recognizing Celebrities in an Image in the Amazon # Rekognition Developer Guide. # # This operation requires permissions to perform the # `rekognition:RecognizeCelebrities` operation. # # @option params [required, Types::Image] :image # The input image as base64-encoded bytes or an S3 object. If you use # the AWS CLI to call Amazon Rekognition operations, passing # base64-encoded image bytes is not supported. # # @return [Types::RecognizeCelebritiesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::RecognizeCelebritiesResponse#celebrity_faces #celebrity_faces} => Array<Types::Celebrity> # * {Types::RecognizeCelebritiesResponse#unrecognized_faces #unrecognized_faces} => Array<Types::ComparedFace> # * {Types::RecognizeCelebritiesResponse#orientation_correction #orientation_correction} => String # # @example Request syntax with placeholder values # # resp = client.recognize_celebrities({ # image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # }) # # @example Response structure # # resp.celebrity_faces #=> Array # resp.celebrity_faces[0].urls #=> Array # resp.celebrity_faces[0].urls[0] #=> String # resp.celebrity_faces[0].name #=> String # resp.celebrity_faces[0].id #=> String # resp.celebrity_faces[0].face.bounding_box.width #=> Float # resp.celebrity_faces[0].face.bounding_box.height #=> Float # resp.celebrity_faces[0].face.bounding_box.left #=> Float # resp.celebrity_faces[0].face.bounding_box.top #=> Float # resp.celebrity_faces[0].face.confidence #=> Float # resp.celebrity_faces[0].face.landmarks #=> Array # resp.celebrity_faces[0].face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil" # resp.celebrity_faces[0].face.landmarks[0].x #=> Float # resp.celebrity_faces[0].face.landmarks[0].y #=> Float # resp.celebrity_faces[0].face.pose.roll #=> Float # resp.celebrity_faces[0].face.pose.yaw #=> Float # resp.celebrity_faces[0].face.pose.pitch #=> Float # resp.celebrity_faces[0].face.quality.brightness #=> Float # resp.celebrity_faces[0].face.quality.sharpness #=> Float # resp.celebrity_faces[0].match_confidence #=> Float # resp.unrecognized_faces #=> Array # resp.unrecognized_faces[0].bounding_box.width #=> Float # resp.unrecognized_faces[0].bounding_box.height #=> Float # resp.unrecognized_faces[0].bounding_box.left #=> Float # resp.unrecognized_faces[0].bounding_box.top #=> Float # resp.unrecognized_faces[0].confidence #=> Float # resp.unrecognized_faces[0].landmarks #=> Array # resp.unrecognized_faces[0].landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil" # resp.unrecognized_faces[0].landmarks[0].x #=> Float # resp.unrecognized_faces[0].landmarks[0].y #=> Float # resp.unrecognized_faces[0].pose.roll #=> Float # resp.unrecognized_faces[0].pose.yaw #=> Float # resp.unrecognized_faces[0].pose.pitch #=> Float # resp.unrecognized_faces[0].quality.brightness #=> Float # resp.unrecognized_faces[0].quality.sharpness #=> Float # resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270" # # @overload recognize_celebrities(params = {}) # @param [Hash] params ({}) def recognize_celebrities(params = {}, options = {}) req = build_request(:recognize_celebrities, params) req.send_request(options) end # For a given input face ID, searches for matching faces in the # collection the face belongs to. You get a face ID when you add a face # to the collection using the IndexFaces operation. The operation # compares the features of the input face with faces in the specified # collection. # # You can also search faces without indexing faces by using the # `SearchFacesByImage` operation. # # # # The operation response returns an array of faces that match, ordered # by similarity score with the highest similarity first. More # specifically, it is an array of metadata for each face match that is # found. Along with the metadata, the response also includes a # `confidence` value for each face match, indicating the confidence that # the specific face matches the input face. # # For an example, see Searching for a Face Using Its Face ID in the # Amazon Rekognition Developer Guide. # # This operation requires permissions to perform the # `rekognition:SearchFaces` action. # # @option params [required, String] :collection_id # ID of the collection the face belongs to. # # @option params [required, String] :face_id # ID of a face to find matches for in the collection. # # @option params [Integer] :max_faces # Maximum number of faces to return. The operation returns the maximum # number of faces with the highest confidence in the match. # # @option params [Float] :face_match_threshold # Optional value specifying the minimum confidence in the face match to # return. For example, don't return any matches where confidence in # matches is less than 70%. # # @return [Types::SearchFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::SearchFacesResponse#searched_face_id #searched_face_id} => String # * {Types::SearchFacesResponse#face_matches #face_matches} => Array<Types::FaceMatch> # * {Types::SearchFacesResponse#face_model_version #face_model_version} => String # # # @example Example: To delete a face # # # This operation searches for matching faces in the collection the supplied face belongs to. # # resp = client.search_faces({ # collection_id: "myphotos", # face_id: "70008e50-75e4-55d0-8e80-363fb73b3a14", # face_match_threshold: 90, # max_faces: 10, # }) # # resp.to_h outputs the following: # { # face_matches: [ # { # face: { # bounding_box: { # height: 0.3259260058403015, # left: 0.5144439935684204, # top: 0.15111100673675537, # width: 0.24444399774074554, # }, # confidence: 99.99949645996094, # face_id: "8be04dba-4e58-520d-850e-9eae4af70eb2", # image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1", # }, # similarity: 99.97222137451172, # }, # { # face: { # bounding_box: { # height: 0.16555599868297577, # left: 0.30963000655174255, # top: 0.7066670060157776, # width: 0.22074100375175476, # }, # confidence: 100, # face_id: "29a75abe-397b-5101-ba4f-706783b2246c", # image_id: "147fdf82-7a71-52cf-819b-e786c7b9746e", # }, # similarity: 97.04154968261719, # }, # { # face: { # bounding_box: { # height: 0.18888899683952332, # left: 0.3783380091190338, # top: 0.2355560064315796, # width: 0.25222599506378174, # }, # confidence: 99.9999008178711, # face_id: "908544ad-edc3-59df-8faf-6a87cc256cf5", # image_id: "3c731605-d772-541a-a5e7-0375dbc68a07", # }, # similarity: 95.94520568847656, # }, # ], # searched_face_id: "70008e50-75e4-55d0-8e80-363fb73b3a14", # } # # @example Request syntax with placeholder values # # resp = client.search_faces({ # collection_id: "CollectionId", # required # face_id: "FaceId", # required # max_faces: 1, # face_match_threshold: 1.0, # }) # # @example Response structure # # resp.searched_face_id #=> String # resp.face_matches #=> Array # resp.face_matches[0].similarity #=> Float # resp.face_matches[0].face.face_id #=> String # resp.face_matches[0].face.bounding_box.width #=> Float # resp.face_matches[0].face.bounding_box.height #=> Float # resp.face_matches[0].face.bounding_box.left #=> Float # resp.face_matches[0].face.bounding_box.top #=> Float # resp.face_matches[0].face.image_id #=> String # resp.face_matches[0].face.external_image_id #=> String # resp.face_matches[0].face.confidence #=> Float # resp.face_model_version #=> String # # @overload search_faces(params = {}) # @param [Hash] params ({}) def search_faces(params = {}, options = {}) req = build_request(:search_faces, params) req.send_request(options) end # For a given input image, first detects the largest face in the image, # and then searches the specified collection for matching faces. The # operation compares the features of the input face with faces in the # specified collection. # # To search for all faces in an input image, you might first call the # operation, and then use the face IDs returned in subsequent calls to # the operation. # # You can also call the `DetectFaces` operation and use the bounding # boxes in the response to make face crops, which then you can pass in # to the `SearchFacesByImage` operation. # # # # You pass the input image either as base64-encoded image bytes or as a # reference to an image in an Amazon S3 bucket. If you use the Amazon # CLI to call Amazon Rekognition operations, passing image bytes is not # supported. The image must be either a PNG or JPEG formatted file. # # The response returns an array of faces that match, ordered by # similarity score with the highest similarity first. More specifically, # it is an array of metadata for each face match found. Along with the # metadata, the response also includes a `similarity` indicating how # similar the face is to the input face. In the response, the operation # also returns the bounding box (and a confidence level that the # bounding box contains a face) of the face that Amazon Rekognition used # for the input image. # # For an example, Searching for a Face Using an Image in the Amazon # Rekognition Developer Guide. # # This operation requires permissions to perform the # `rekognition:SearchFacesByImage` action. # # @option params [required, String] :collection_id # ID of the collection to search. # # @option params [required, Types::Image] :image # The input image as base64-encoded bytes or an S3 object. If you use # the AWS CLI to call Amazon Rekognition operations, passing # base64-encoded image bytes is not supported. # # @option params [Integer] :max_faces # Maximum number of faces to return. The operation returns the maximum # number of faces with the highest confidence in the match. # # @option params [Float] :face_match_threshold # (Optional) Specifies the minimum confidence in the face match to # return. For example, don't return any matches where confidence in # matches is less than 70%. # # @return [Types::SearchFacesByImageResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::SearchFacesByImageResponse#searched_face_bounding_box #searched_face_bounding_box} => Types::BoundingBox # * {Types::SearchFacesByImageResponse#searched_face_confidence #searched_face_confidence} => Float # * {Types::SearchFacesByImageResponse#face_matches #face_matches} => Array<Types::FaceMatch> # * {Types::SearchFacesByImageResponse#face_model_version #face_model_version} => String # # # @example Example: To search for faces matching a supplied image # # # This operation searches for faces in a Rekognition collection that match the largest face in an S3 bucket stored image. # # resp = client.search_faces_by_image({ # collection_id: "myphotos", # face_match_threshold: 95, # image: { # s3_object: { # bucket: "mybucket", # name: "myphoto", # }, # }, # max_faces: 5, # }) # # resp.to_h outputs the following: # { # face_matches: [ # { # face: { # bounding_box: { # height: 0.3234420120716095, # left: 0.3233329951763153, # top: 0.5, # width: 0.24222199618816376, # }, # confidence: 99.99829864501953, # face_id: "38271d79-7bc2-5efb-b752-398a8d575b85", # image_id: "d5631190-d039-54e4-b267-abd22c8647c5", # }, # similarity: 99.97036743164062, # }, # ], # searched_face_bounding_box: { # height: 0.33481481671333313, # left: 0.31888890266418457, # top: 0.4933333396911621, # width: 0.25, # }, # searched_face_confidence: 99.9991226196289, # } # # @example Request syntax with placeholder values # # resp = client.search_faces_by_image({ # collection_id: "CollectionId", # required # image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # max_faces: 1, # face_match_threshold: 1.0, # }) # # @example Response structure # # resp.searched_face_bounding_box.width #=> Float # resp.searched_face_bounding_box.height #=> Float # resp.searched_face_bounding_box.left #=> Float # resp.searched_face_bounding_box.top #=> Float # resp.searched_face_confidence #=> Float # resp.face_matches #=> Array # resp.face_matches[0].similarity #=> Float # resp.face_matches[0].face.face_id #=> String # resp.face_matches[0].face.bounding_box.width #=> Float # resp.face_matches[0].face.bounding_box.height #=> Float # resp.face_matches[0].face.bounding_box.left #=> Float # resp.face_matches[0].face.bounding_box.top #=> Float # resp.face_matches[0].face.image_id #=> String # resp.face_matches[0].face.external_image_id #=> String # resp.face_matches[0].face.confidence #=> Float # resp.face_model_version #=> String # # @overload search_faces_by_image(params = {}) # @param [Hash] params ({}) def search_faces_by_image(params = {}, options = {}) req = build_request(:search_faces_by_image, params) req.send_request(options) end # Starts asynchronous recognition of celebrities in a stored video. # # Amazon Rekognition Video can detect celebrities in a video must be # stored in an Amazon S3 bucket. Use Video to specify the bucket name # and the filename of the video. `StartCelebrityRecognition` returns a # job identifier (`JobId`) which you use to get the results of the # analysis. When celebrity recognition analysis is finished, Amazon # Rekognition Video publishes a completion status to the Amazon Simple # Notification Service topic that you specify in `NotificationChannel`. # To get the results of the celebrity recognition analysis, first check # that the status value published to the Amazon SNS topic is # `SUCCEEDED`. If so, call and pass the job identifier (`JobId`) from # the initial call to `StartCelebrityRecognition`. # # For more information, see Recognizing Celebrities in the Amazon # Rekognition Developer Guide. # # @option params [required, Types::Video] :video # The video in which you want to recognize celebrities. The video must # be stored in an Amazon S3 bucket. # # @option params [String] :client_request_token # Idempotent token used to identify the start request. If you use the # same token with multiple `StartCelebrityRecognition` requests, the # same `JobId` is returned. Use `ClientRequestToken` to prevent the same # job from being accidently started more than once. # # @option params [Types::NotificationChannel] :notification_channel # The Amazon SNS topic ARN that you want Amazon Rekognition Video to # publish the completion status of the celebrity recognition analysis # to. # # @option params [String] :job_tag # Unique identifier you specify to identify the job in the completion # status published to the Amazon Simple Notification Service topic. # # @return [Types::StartCelebrityRecognitionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::StartCelebrityRecognitionResponse#job_id #job_id} => String # # @example Request syntax with placeholder values # # resp = client.start_celebrity_recognition({ # video: { # required # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # client_request_token: "ClientRequestToken", # notification_channel: { # sns_topic_arn: "SNSTopicArn", # required # role_arn: "RoleArn", # required # }, # job_tag: "JobTag", # }) # # @example Response structure # # resp.job_id #=> String # # @overload start_celebrity_recognition(params = {}) # @param [Hash] params ({}) def start_celebrity_recognition(params = {}, options = {}) req = build_request(:start_celebrity_recognition, params) req.send_request(options) end # Starts asynchronous detection of explicit or suggestive adult content # in a stored video. # # Amazon Rekognition Video can moderate content in a video stored in an # Amazon S3 bucket. Use Video to specify the bucket name and the # filename of the video. `StartContentModeration` returns a job # identifier (`JobId`) which you use to get the results of the analysis. # When content moderation analysis is finished, Amazon Rekognition Video # publishes a completion status to the Amazon Simple Notification # Service topic that you specify in `NotificationChannel`. # # To get the results of the content moderation analysis, first check # that the status value published to the Amazon SNS topic is # `SUCCEEDED`. If so, call and pass the job identifier (`JobId`) from # the initial call to `StartContentModeration`. # # For more information, see Detecting Unsafe Content in the Amazon # Rekognition Developer Guide. # # @option params [required, Types::Video] :video # The video in which you want to moderate content. The video must be # stored in an Amazon S3 bucket. # # @option params [Float] :min_confidence # Specifies the minimum confidence that Amazon Rekognition must have in # order to return a moderated content label. Confidence represents how # certain Amazon Rekognition is that the moderated content is correctly # identified. 0 is the lowest confidence. 100 is the highest confidence. # Amazon Rekognition doesn't return any moderated content labels with a # confidence level lower than this specified value. # # @option params [String] :client_request_token # Idempotent token used to identify the start request. If you use the # same token with multiple `StartContentModeration` requests, the same # `JobId` is returned. Use `ClientRequestToken` to prevent the same job # from being accidently started more than once. # # @option params [Types::NotificationChannel] :notification_channel # The Amazon SNS topic ARN that you want Amazon Rekognition Video to # publish the completion status of the content moderation analysis to. # # @option params [String] :job_tag # Unique identifier you specify to identify the job in the completion # status published to the Amazon Simple Notification Service topic. # # @return [Types::StartContentModerationResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::StartContentModerationResponse#job_id #job_id} => String # # @example Request syntax with placeholder values # # resp = client.start_content_moderation({ # video: { # required # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # min_confidence: 1.0, # client_request_token: "ClientRequestToken", # notification_channel: { # sns_topic_arn: "SNSTopicArn", # required # role_arn: "RoleArn", # required # }, # job_tag: "JobTag", # }) # # @example Response structure # # resp.job_id #=> String # # @overload start_content_moderation(params = {}) # @param [Hash] params ({}) def start_content_moderation(params = {}, options = {}) req = build_request(:start_content_moderation, params) req.send_request(options) end # Starts asynchronous detection of faces in a stored video. # # Amazon Rekognition Video can detect faces in a video stored in an # Amazon S3 bucket. Use Video to specify the bucket name and the # filename of the video. `StartFaceDetection` returns a job identifier # (`JobId`) that you use to get the results of the operation. When face # detection is finished, Amazon Rekognition Video publishes a completion # status to the Amazon Simple Notification Service topic that you # specify in `NotificationChannel`. To get the results of the label # detection operation, first check that the status value published to # the Amazon SNS topic is `SUCCEEDED`. If so, call and pass the job # identifier (`JobId`) from the initial call to `StartFaceDetection`. # # For more information, see Detecting Faces in a Stored Video in the # Amazon Rekognition Developer Guide. # # @option params [required, Types::Video] :video # The video in which you want to detect faces. The video must be stored # in an Amazon S3 bucket. # # @option params [String] :client_request_token # Idempotent token used to identify the start request. If you use the # same token with multiple `StartFaceDetection` requests, the same # `JobId` is returned. Use `ClientRequestToken` to prevent the same job # from being accidently started more than once. # # @option params [Types::NotificationChannel] :notification_channel # The ARN of the Amazon SNS topic to which you want Amazon Rekognition # Video to publish the completion status of the face detection # operation. # # @option params [String] :face_attributes # The face attributes you want returned. # # `DEFAULT` - The following subset of facial attributes are returned: # BoundingBox, Confidence, Pose, Quality and Landmarks. # # `ALL` - All facial attributes are returned. # # @option params [String] :job_tag # Unique identifier you specify to identify the job in the completion # status published to the Amazon Simple Notification Service topic. # # @return [Types::StartFaceDetectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::StartFaceDetectionResponse#job_id #job_id} => String # # @example Request syntax with placeholder values # # resp = client.start_face_detection({ # video: { # required # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # client_request_token: "ClientRequestToken", # notification_channel: { # sns_topic_arn: "SNSTopicArn", # required # role_arn: "RoleArn", # required # }, # face_attributes: "DEFAULT", # accepts DEFAULT, ALL # job_tag: "JobTag", # }) # # @example Response structure # # resp.job_id #=> String # # @overload start_face_detection(params = {}) # @param [Hash] params ({}) def start_face_detection(params = {}, options = {}) req = build_request(:start_face_detection, params) req.send_request(options) end # Starts the asynchronous search for faces in a collection that match # the faces of persons detected in a stored video. # # The video must be stored in an Amazon S3 bucket. Use Video to specify # the bucket name and the filename of the video. `StartFaceSearch` # returns a job identifier (`JobId`) which you use to get the search # results once the search has completed. When searching is finished, # Amazon Rekognition Video publishes a completion status to the Amazon # Simple Notification Service topic that you specify in # `NotificationChannel`. To get the search results, first check that the # status value published to the Amazon SNS topic is `SUCCEEDED`. If so, # call and pass the job identifier (`JobId`) from the initial call to # `StartFaceSearch`. For more information, see # procedure-person-search-videos. # # @option params [required, Types::Video] :video # The video you want to search. The video must be stored in an Amazon S3 # bucket. # # @option params [String] :client_request_token # Idempotent token used to identify the start request. If you use the # same token with multiple `StartFaceSearch` requests, the same `JobId` # is returned. Use `ClientRequestToken` to prevent the same job from # being accidently started more than once. # # @option params [Float] :face_match_threshold # The minimum confidence in the person match to return. For example, # don't return any matches where confidence in matches is less than # 70%. # # @option params [required, String] :collection_id # ID of the collection that contains the faces you want to search for. # # @option params [Types::NotificationChannel] :notification_channel # The ARN of the Amazon SNS topic to which you want Amazon Rekognition # Video to publish the completion status of the search. # # @option params [String] :job_tag # Unique identifier you specify to identify the job in the completion # status published to the Amazon Simple Notification Service topic. # # @return [Types::StartFaceSearchResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::StartFaceSearchResponse#job_id #job_id} => String # # @example Request syntax with placeholder values # # resp = client.start_face_search({ # video: { # required # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # client_request_token: "ClientRequestToken", # face_match_threshold: 1.0, # collection_id: "CollectionId", # required # notification_channel: { # sns_topic_arn: "SNSTopicArn", # required # role_arn: "RoleArn", # required # }, # job_tag: "JobTag", # }) # # @example Response structure # # resp.job_id #=> String # # @overload start_face_search(params = {}) # @param [Hash] params ({}) def start_face_search(params = {}, options = {}) req = build_request(:start_face_search, params) req.send_request(options) end # Starts asynchronous detection of labels in a stored video. # # Amazon Rekognition Video can detect labels in a video. Labels are # instances of real-world entities. This includes objects like flower, # tree, and table; events like wedding, graduation, and birthday party; # concepts like landscape, evening, and nature; and activities like a # person getting out of a car or a person skiing. # # The video must be stored in an Amazon S3 bucket. Use Video to specify # the bucket name and the filename of the video. `StartLabelDetection` # returns a job identifier (`JobId`) which you use to get the results of # the operation. When label detection is finished, Amazon Rekognition # Video publishes a completion status to the Amazon Simple Notification # Service topic that you specify in `NotificationChannel`. # # To get the results of the label detection operation, first check that # the status value published to the Amazon SNS topic is `SUCCEEDED`. If # so, call and pass the job identifier (`JobId`) from the initial call # to `StartLabelDetection`. # # @option params [required, Types::Video] :video # The video in which you want to detect labels. The video must be stored # in an Amazon S3 bucket. # # @option params [String] :client_request_token # Idempotent token used to identify the start request. If you use the # same token with multiple `StartLabelDetection` requests, the same # `JobId` is returned. Use `ClientRequestToken` to prevent the same job # from being accidently started more than once. # # @option params [Float] :min_confidence # Specifies the minimum confidence that Amazon Rekognition Video must # have in order to return a detected label. Confidence represents how # certain Amazon Rekognition is that a label is correctly identified.0 # is the lowest confidence. 100 is the highest confidence. Amazon # Rekognition Video doesn't return any labels with a confidence level # lower than this specified value. # # If you don't specify `MinConfidence`, the operation returns labels # with confidence values greater than or equal to 50 percent. # # @option params [Types::NotificationChannel] :notification_channel # The Amazon SNS topic ARN you want Amazon Rekognition Video to publish # the completion status of the label detection operation to. # # @option params [String] :job_tag # Unique identifier you specify to identify the job in the completion # status published to the Amazon Simple Notification Service topic. # # @return [Types::StartLabelDetectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::StartLabelDetectionResponse#job_id #job_id} => String # # @example Request syntax with placeholder values # # resp = client.start_label_detection({ # video: { # required # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # client_request_token: "ClientRequestToken", # min_confidence: 1.0, # notification_channel: { # sns_topic_arn: "SNSTopicArn", # required # role_arn: "RoleArn", # required # }, # job_tag: "JobTag", # }) # # @example Response structure # # resp.job_id #=> String # # @overload start_label_detection(params = {}) # @param [Hash] params ({}) def start_label_detection(params = {}, options = {}) req = build_request(:start_label_detection, params) req.send_request(options) end # Starts the asynchronous tracking of persons in a stored video. # # Amazon Rekognition Video can track persons in a video stored in an # Amazon S3 bucket. Use Video to specify the bucket name and the # filename of the video. `StartPersonTracking` returns a job identifier # (`JobId`) which you use to get the results of the operation. When # label detection is finished, Amazon Rekognition publishes a completion # status to the Amazon Simple Notification Service topic that you # specify in `NotificationChannel`. # # To get the results of the person detection operation, first check that # the status value published to the Amazon SNS topic is `SUCCEEDED`. If # so, call and pass the job identifier (`JobId`) from the initial call # to `StartPersonTracking`. # # @option params [required, Types::Video] :video # The video in which you want to detect people. The video must be stored # in an Amazon S3 bucket. # # @option params [String] :client_request_token # Idempotent token used to identify the start request. If you use the # same token with multiple `StartPersonTracking` requests, the same # `JobId` is returned. Use `ClientRequestToken` to prevent the same job # from being accidently started more than once. # # @option params [Types::NotificationChannel] :notification_channel # The Amazon SNS topic ARN you want Amazon Rekognition Video to publish # the completion status of the people detection operation to. # # @option params [String] :job_tag # Unique identifier you specify to identify the job in the completion # status published to the Amazon Simple Notification Service topic. # # @return [Types::StartPersonTrackingResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::StartPersonTrackingResponse#job_id #job_id} => String # # @example Request syntax with placeholder values # # resp = client.start_person_tracking({ # video: { # required # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # client_request_token: "ClientRequestToken", # notification_channel: { # sns_topic_arn: "SNSTopicArn", # required # role_arn: "RoleArn", # required # }, # job_tag: "JobTag", # }) # # @example Response structure # # resp.job_id #=> String # # @overload start_person_tracking(params = {}) # @param [Hash] params ({}) def start_person_tracking(params = {}, options = {}) req = build_request(:start_person_tracking, params) req.send_request(options) end # Starts processing a stream processor. You create a stream processor by # calling . To tell `StartStreamProcessor` which stream processor to # start, use the value of the `Name` field specified in the call to # `CreateStreamProcessor`. # # @option params [required, String] :name # The name of the stream processor to start processing. # # @return [Struct] Returns an empty {Seahorse::Client::Response response}. # # @example Request syntax with placeholder values # # resp = client.start_stream_processor({ # name: "StreamProcessorName", # required # }) # # @overload start_stream_processor(params = {}) # @param [Hash] params ({}) def start_stream_processor(params = {}, options = {}) req = build_request(:start_stream_processor, params) req.send_request(options) end # Stops a running stream processor that was created by . # # @option params [required, String] :name # The name of a stream processor created by . # # @return [Struct] Returns an empty {Seahorse::Client::Response response}. # # @example Request syntax with placeholder values # # resp = client.stop_stream_processor({ # name: "StreamProcessorName", # required # }) # # @overload stop_stream_processor(params = {}) # @param [Hash] params ({}) def stop_stream_processor(params = {}, options = {}) req = build_request(:stop_stream_processor, params) req.send_request(options) end # @!endgroup # @param params ({}) # @api private def build_request(operation_name, params = {}) handlers = @handlers.for(operation_name) context = Seahorse::Client::RequestContext.new( operation_name: operation_name, operation: config.api.operation(operation_name), client: self, params: params, config: config) context[:gem_name] = 'aws-sdk-rekognition' context[:gem_version] = '1.7.0' Seahorse::Client::Request.new(handlers, context) end # @api private # @deprecated def waiter_names [] end class << self # @api private attr_reader :identifier # @api private def errors_module Errors end end end end