Sha256: cb309f15efdc4f3cd7e3125db4540eb4f129235f424b82ed578e2e7a9e12bf72
Contents?: true
Size: 1.05 KB
Versions: 4
Compression:
Stored size: 1.05 KB
Contents
setwd("PATH_TO_FASTA") library(phangorn) library(ape) library(ggplot2) library(scales) library(ggforce) library(cowplot) library(magrittr) library(gridExtra) pdf("OUTPUT_PDF", onefile=T, width=11, height=8.5) fileNames <- list.files() for (fileName in fileNames) { dna <- read.dna(fileName, format="fasta") D<- dist.dna(dna, model="raw") pi <- mean(D) dist20 <- quantile(D, prob=c(0.20)) alldist <- data.frame(File=fileName, pi, dist20) write.table(alldist,"OUTPUT_CSV",append=TRUE, sep = ",", row.names = FALSE, col.names=FALSE) D2 <- dist.dna(dna, model="TN93")*100 def.par <- par(no.readonly = TRUE) par(mfrow=c(1,2)) hist<-hist(D, main=fileName, xlab="% Pairwise Distance", ylab="Frequency", col="gray") abline(v=dist20, col="royalblue",lwd=2) abline(v=pi, col="red", lwd=2) legend(x="topright", c("dist20", "pi"), col = c("royalblue", "red"), lwd = c(2,2), cex=0.5) njtree<-NJ(D2) njtreeplot <- plot(njtree, show.tip.label=F, "unrooted", main=fileName) add.scale.bar(cex=0.7, font=2, col="red") } dev.off()
Version data entries
4 entries across 4 versions & 1 rubygems
Version | Path |
---|---|
viral_seq-1.9.1 | lib/viral_seq/util/sdrm_r.r |
viral_seq-1.9.0 | lib/viral_seq/util/sdrm_r.r |
viral_seq-1.8.1.1 | lib/viral_seq/util/sdrm_r.r |
viral_seq-1.8.1 | lib/viral_seq/util/sdrm_r.r |