/* ---------------------------------------------------------------------------- * This file was automatically generated by SWIG (http://www.swig.org). * Version 1.3.27 * * This file is not intended to be easily readable and contains a number of * coding conventions designed to improve portability and efficiency. Do not make * changes to this file unless you know what you are doing--modify the SWIG * interface file instead. * ----------------------------------------------------------------------------- */ /*********************************************************************** * * This section contains generic SWIG labels for method/variable * declarations/attributes, and other compiler dependent labels. * ************************************************************************/ /* template workaround for compilers that cannot correctly implement the C++ standard */ #ifndef SWIGTEMPLATEDISAMBIGUATOR # if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x560) # define SWIGTEMPLATEDISAMBIGUATOR template # else # define SWIGTEMPLATEDISAMBIGUATOR # endif #endif /* inline attribute */ #ifndef SWIGINLINE # if defined(__cplusplus) || (defined(__GNUC__) && !defined(__STRICT_ANSI__)) # define SWIGINLINE inline # else # define SWIGINLINE # endif #endif /* attribute recognised by some compilers to avoid 'unused' warnings */ #ifndef SWIGUNUSED # if defined(__GNUC__) || defined(__ICC) # define SWIGUNUSED __attribute__ ((unused)) # else # define SWIGUNUSED # endif #endif /* internal SWIG method */ #ifndef SWIGINTERN # define SWIGINTERN static SWIGUNUSED #endif /* internal inline SWIG method */ #ifndef SWIGINTERNINLINE # define SWIGINTERNINLINE SWIGINTERN SWIGINLINE #endif /* exporting methods for Windows DLLs */ #ifndef SWIGEXPORT # if defined(_WIN32) || defined(__WIN32__) || defined(__CYGWIN__) # if defined(STATIC_LINKED) # define SWIGEXPORT # else # define SWIGEXPORT __declspec(dllexport) # endif # else # define SWIGEXPORT # endif #endif /* calling conventions for Windows */ #ifndef SWIGSTDCALL # if defined(_WIN32) || defined(__WIN32__) || defined(__CYGWIN__) # define SWIGSTDCALL __stdcall # else # define SWIGSTDCALL # endif #endif /* ruby.swg */ /* Implementation : RUBY */ #define SWIGRUBY 1 #include "ruby.h" /* Flags for pointer conversion */ #define SWIG_POINTER_EXCEPTION 0x1 #define SWIG_POINTER_OWN 0x1 #define SWIG_POINTER_DISOWN 0x2 #define SWIG_TRACK_OBJECTS 0x4 #define NUM2USHRT(n) (\ (0 <= NUM2UINT(n) && NUM2UINT(n) <= USHRT_MAX)\ ? (unsigned short) NUM2UINT(n) \ : (rb_raise(rb_eArgError, "integer %d out of range of `unsigned short'",\ NUM2UINT(n)), (short)0)\ ) #define NUM2SHRT(n) (\ (SHRT_MIN <= NUM2INT(n) && NUM2INT(n) <= SHRT_MAX)\ ? (short)NUM2INT(n)\ : (rb_raise(rb_eArgError, "integer %d out of range of `short'",\ NUM2INT(n)), (short)0)\ ) /* Ruby 1.7 defines NUM2LL(), LL2NUM() and ULL2NUM() macros */ #ifndef NUM2LL #define NUM2LL(x) NUM2LONG((x)) #endif #ifndef LL2NUM #define LL2NUM(x) INT2NUM((long) (x)) #endif #ifndef ULL2NUM #define ULL2NUM(x) UINT2NUM((unsigned long) (x)) #endif /* Ruby 1.7 doesn't (yet) define NUM2ULL() */ #ifndef NUM2ULL #ifdef HAVE_LONG_LONG #define NUM2ULL(x) rb_num2ull((x)) #else #define NUM2ULL(x) NUM2ULONG(x) #endif #endif /* * Need to be very careful about how these macros are defined, especially * when compiling C++ code or C code with an ANSI C compiler. * * VALUEFUNC(f) is a macro used to typecast a C function that implements * a Ruby method so that it can be passed as an argument to API functions * like rb_define_method() and rb_define_singleton_method(). * * VOIDFUNC(f) is a macro used to typecast a C function that implements * either the "mark" or "free" stuff for a Ruby Data object, so that it * can be passed as an argument to API functions like Data_Wrap_Struct() * and Data_Make_Struct(). */ #ifdef __cplusplus # ifndef RUBY_METHOD_FUNC /* These definitions should work for Ruby 1.4.6 */ # define PROTECTFUNC(f) ((VALUE (*)()) f) # define VALUEFUNC(f) ((VALUE (*)()) f) # define VOIDFUNC(f) ((void (*)()) f) # else # ifndef ANYARGS /* These definitions should work for Ruby 1.6 */ # define PROTECTFUNC(f) ((VALUE (*)()) f) # define VALUEFUNC(f) ((VALUE (*)()) f) # define VOIDFUNC(f) ((RUBY_DATA_FUNC) f) # else /* These definitions should work for Ruby 1.7+ */ # define PROTECTFUNC(f) ((VALUE (*)(VALUE)) f) # define VALUEFUNC(f) ((VALUE (*)(ANYARGS)) f) # define VOIDFUNC(f) ((RUBY_DATA_FUNC) f) # endif # endif #else # define VALUEFUNC(f) (f) # define VOIDFUNC(f) (f) #endif typedef struct { VALUE klass; VALUE mImpl; void (*mark)(void *); void (*destroy)(void *); } swig_class; /* Don't use for expressions have side effect */ #ifndef RB_STRING_VALUE #define RB_STRING_VALUE(s) (TYPE(s) == T_STRING ? (s) : (*(volatile VALUE *)&(s) = rb_str_to_str(s))) #endif #ifndef StringValue #define StringValue(s) RB_STRING_VALUE(s) #endif #ifndef StringValuePtr #define StringValuePtr(s) RSTRING(RB_STRING_VALUE(s))->ptr #endif #ifndef StringValueLen #define StringValueLen(s) RSTRING(RB_STRING_VALUE(s))->len #endif #ifndef SafeStringValue #define SafeStringValue(v) do {\ StringValue(v);\ rb_check_safe_str(v);\ } while (0) #endif #ifndef HAVE_RB_DEFINE_ALLOC_FUNC #define rb_define_alloc_func(klass, func) rb_define_singleton_method((klass), "new", VALUEFUNC((func)), -1) #define rb_undef_alloc_func(klass) rb_undef_method(CLASS_OF((klass)), "new") #endif /* Contract support */ #define SWIG_contract_assert(expr, msg) if (!(expr)) { rb_raise(rb_eRuntimeError, (char *) msg ); } else /*********************************************************************** * swigrun.swg * * This file contains generic CAPI SWIG runtime support for pointer * type checking. * ************************************************************************/ /* This should only be incremented when either the layout of swig_type_info changes, or for whatever reason, the runtime changes incompatibly */ #define SWIG_RUNTIME_VERSION "2" /* define SWIG_TYPE_TABLE_NAME as "SWIG_TYPE_TABLE" */ #ifdef SWIG_TYPE_TABLE # define SWIG_QUOTE_STRING(x) #x # define SWIG_EXPAND_AND_QUOTE_STRING(x) SWIG_QUOTE_STRING(x) # define SWIG_TYPE_TABLE_NAME SWIG_EXPAND_AND_QUOTE_STRING(SWIG_TYPE_TABLE) #else # define SWIG_TYPE_TABLE_NAME #endif /* You can use the SWIGRUNTIME and SWIGRUNTIMEINLINE macros for creating a static or dynamic library from the swig runtime code. In 99.9% of the cases, swig just needs to declare them as 'static'. But only do this if is strictly necessary, ie, if you have problems with your compiler or so. */ #ifndef SWIGRUNTIME # define SWIGRUNTIME SWIGINTERN #endif #ifndef SWIGRUNTIMEINLINE # define SWIGRUNTIMEINLINE SWIGRUNTIME SWIGINLINE #endif #include #ifdef __cplusplus extern "C" { #endif typedef void *(*swig_converter_func)(void *); typedef struct swig_type_info *(*swig_dycast_func)(void **); /* Structure to store inforomation on one type */ typedef struct swig_type_info { const char *name; /* mangled name of this type */ const char *str; /* human readable name of this type */ swig_dycast_func dcast; /* dynamic cast function down a hierarchy */ struct swig_cast_info *cast; /* linked list of types that can cast into this type */ void *clientdata; /* language specific type data */ } swig_type_info; /* Structure to store a type and conversion function used for casting */ typedef struct swig_cast_info { swig_type_info *type; /* pointer to type that is equivalent to this type */ swig_converter_func converter; /* function to cast the void pointers */ struct swig_cast_info *next; /* pointer to next cast in linked list */ struct swig_cast_info *prev; /* pointer to the previous cast */ } swig_cast_info; /* Structure used to store module information * Each module generates one structure like this, and the runtime collects * all of these structures and stores them in a circularly linked list.*/ typedef struct swig_module_info { swig_type_info **types; /* Array of pointers to swig_type_info structures that are in this module */ size_t size; /* Number of types in this module */ struct swig_module_info *next; /* Pointer to next element in circularly linked list */ swig_type_info **type_initial; /* Array of initially generated type structures */ swig_cast_info **cast_initial; /* Array of initially generated casting structures */ void *clientdata; /* Language specific module data */ } swig_module_info; /* Compare two type names skipping the space characters, therefore "char*" == "char *" and "Class" == "Class", etc. Return 0 when the two name types are equivalent, as in strncmp, but skipping ' '. */ SWIGRUNTIME int SWIG_TypeNameComp(const char *f1, const char *l1, const char *f2, const char *l2) { for (;(f1 != l1) && (f2 != l2); ++f1, ++f2) { while ((*f1 == ' ') && (f1 != l1)) ++f1; while ((*f2 == ' ') && (f2 != l2)) ++f2; if (*f1 != *f2) return (int)(*f1 - *f2); } return (l1 - f1) - (l2 - f2); } /* Check type equivalence in a name list like ||... Return 0 if not equal, 1 if equal */ SWIGRUNTIME int SWIG_TypeEquiv(const char *nb, const char *tb) { int equiv = 0; const char* te = tb + strlen(tb); const char* ne = nb; while (!equiv && *ne) { for (nb = ne; *ne; ++ne) { if (*ne == '|') break; } equiv = (SWIG_TypeNameComp(nb, ne, tb, te) == 0) ? 1 : 0; if (*ne) ++ne; } return equiv; } /* Check type equivalence in a name list like ||... Return 0 if equal, -1 if nb < tb, 1 if nb > tb */ SWIGRUNTIME int SWIG_TypeCompare(const char *nb, const char *tb) { int equiv = 0; const char* te = tb + strlen(tb); const char* ne = nb; while (!equiv && *ne) { for (nb = ne; *ne; ++ne) { if (*ne == '|') break; } equiv = (SWIG_TypeNameComp(nb, ne, tb, te) == 0) ? 1 : 0; if (*ne) ++ne; } return equiv; } /* think of this as a c++ template<> or a scheme macro */ #define SWIG_TypeCheck_Template(comparison, ty) \ if (ty) { \ swig_cast_info *iter = ty->cast; \ while (iter) { \ if (comparison) { \ if (iter == ty->cast) return iter; \ /* Move iter to the top of the linked list */ \ iter->prev->next = iter->next; \ if (iter->next) \ iter->next->prev = iter->prev; \ iter->next = ty->cast; \ iter->prev = 0; \ if (ty->cast) ty->cast->prev = iter; \ ty->cast = iter; \ return iter; \ } \ iter = iter->next; \ } \ } \ return 0 /* Check the typename */ SWIGRUNTIME swig_cast_info * SWIG_TypeCheck(const char *c, swig_type_info *ty) { SWIG_TypeCheck_Template(strcmp(iter->type->name, c) == 0, ty); } /* Same as previous function, except strcmp is replaced with a pointer comparison */ SWIGRUNTIME swig_cast_info * SWIG_TypeCheckStruct(swig_type_info *from, swig_type_info *into) { SWIG_TypeCheck_Template(iter->type == from, into); } /* Cast a pointer up an inheritance hierarchy */ SWIGRUNTIMEINLINE void * SWIG_TypeCast(swig_cast_info *ty, void *ptr) { return ((!ty) || (!ty->converter)) ? ptr : (*ty->converter)(ptr); } /* Dynamic pointer casting. Down an inheritance hierarchy */ SWIGRUNTIME swig_type_info * SWIG_TypeDynamicCast(swig_type_info *ty, void **ptr) { swig_type_info *lastty = ty; if (!ty || !ty->dcast) return ty; while (ty && (ty->dcast)) { ty = (*ty->dcast)(ptr); if (ty) lastty = ty; } return lastty; } /* Return the name associated with this type */ SWIGRUNTIMEINLINE const char * SWIG_TypeName(const swig_type_info *ty) { return ty->name; } /* Return the pretty name associated with this type, that is an unmangled type name in a form presentable to the user. */ SWIGRUNTIME const char * SWIG_TypePrettyName(const swig_type_info *type) { /* The "str" field contains the equivalent pretty names of the type, separated by vertical-bar characters. We choose to print the last name, as it is often (?) the most specific. */ if (type->str != NULL) { const char *last_name = type->str; const char *s; for (s = type->str; *s; s++) if (*s == '|') last_name = s+1; return last_name; } else return type->name; } /* Set the clientdata field for a type */ SWIGRUNTIME void SWIG_TypeClientData(swig_type_info *ti, void *clientdata) { swig_cast_info *cast = ti->cast; /* if (ti->clientdata == clientdata) return; */ ti->clientdata = clientdata; while (cast) { if (!cast->converter) { swig_type_info *tc = cast->type; if (!tc->clientdata) { SWIG_TypeClientData(tc, clientdata); } } cast = cast->next; } } /* Search for a swig_type_info structure only by mangled name Search is a O(log #types) We start searching at module start, and finish searching when start == end. Note: if start == end at the beginning of the function, we go all the way around the circular list. */ SWIGRUNTIME swig_type_info * SWIG_MangledTypeQueryModule(swig_module_info *start, swig_module_info *end, const char *name) { swig_module_info *iter = start; do { if (iter->size) { register size_t l = 0; register size_t r = iter->size - 1; do { /* since l+r >= 0, we can (>> 1) instead (/ 2) */ register size_t i = (l + r) >> 1; const char *iname = iter->types[i]->name; if (iname) { register int compare = strcmp(name, iname); if (compare == 0) { return iter->types[i]; } else if (compare < 0) { if (i) { r = i - 1; } else { break; } } else if (compare > 0) { l = i + 1; } } else { break; /* should never happen */ } } while (l <= r); } iter = iter->next; } while (iter != end); return 0; } /* Search for a swig_type_info structure for either a mangled name or a human readable name. It first searches the mangled names of the types, which is a O(log #types) If a type is not found it then searches the human readable names, which is O(#types). We start searching at module start, and finish searching when start == end. Note: if start == end at the beginning of the function, we go all the way around the circular list. */ SWIGRUNTIME swig_type_info * SWIG_TypeQueryModule(swig_module_info *start, swig_module_info *end, const char *name) { /* STEP 1: Search the name field using binary search */ swig_type_info *ret = SWIG_MangledTypeQueryModule(start, end, name); if (ret) { return ret; } else { /* STEP 2: If the type hasn't been found, do a complete search of the str field (the human readable name) */ swig_module_info *iter = start; do { register size_t i = 0; for (; i < iter->size; ++i) { if (iter->types[i]->str && (SWIG_TypeEquiv(iter->types[i]->str, name))) return iter->types[i]; } iter = iter->next; } while (iter != end); } /* neither found a match */ return 0; } /* Pack binary data into a string */ SWIGRUNTIME char * SWIG_PackData(char *c, void *ptr, size_t sz) { static const char hex[17] = "0123456789abcdef"; register const unsigned char *u = (unsigned char *) ptr; register const unsigned char *eu = u + sz; for (; u != eu; ++u) { register unsigned char uu = *u; *(c++) = hex[(uu & 0xf0) >> 4]; *(c++) = hex[uu & 0xf]; } return c; } /* Unpack binary data from a string */ SWIGRUNTIME const char * SWIG_UnpackData(const char *c, void *ptr, size_t sz) { register unsigned char *u = (unsigned char *) ptr; register const unsigned char *eu = u + sz; for (; u != eu; ++u) { register char d = *(c++); register unsigned char uu = 0; if ((d >= '0') && (d <= '9')) uu = ((d - '0') << 4); else if ((d >= 'a') && (d <= 'f')) uu = ((d - ('a'-10)) << 4); else return (char *) 0; d = *(c++); if ((d >= '0') && (d <= '9')) uu |= (d - '0'); else if ((d >= 'a') && (d <= 'f')) uu |= (d - ('a'-10)); else return (char *) 0; *u = uu; } return c; } /* Pack 'void *' into a string buffer. */ SWIGRUNTIME char * SWIG_PackVoidPtr(char *buff, void *ptr, const char *name, size_t bsz) { char *r = buff; if ((2*sizeof(void *) + 2) > bsz) return 0; *(r++) = '_'; r = SWIG_PackData(r,&ptr,sizeof(void *)); if (strlen(name) + 1 > (bsz - (r - buff))) return 0; strcpy(r,name); return buff; } SWIGRUNTIME const char * SWIG_UnpackVoidPtr(const char *c, void **ptr, const char *name) { if (*c != '_') { if (strcmp(c,"NULL") == 0) { *ptr = (void *) 0; return name; } else { return 0; } } return SWIG_UnpackData(++c,ptr,sizeof(void *)); } SWIGRUNTIME char * SWIG_PackDataName(char *buff, void *ptr, size_t sz, const char *name, size_t bsz) { char *r = buff; size_t lname = (name ? strlen(name) : 0); if ((2*sz + 2 + lname) > bsz) return 0; *(r++) = '_'; r = SWIG_PackData(r,ptr,sz); if (lname) { strncpy(r,name,lname+1); } else { *r = 0; } return buff; } SWIGRUNTIME const char * SWIG_UnpackDataName(const char *c, void *ptr, size_t sz, const char *name) { if (*c != '_') { if (strcmp(c,"NULL") == 0) { memset(ptr,0,sz); return name; } else { return 0; } } return SWIG_UnpackData(++c,ptr,sz); } #ifdef __cplusplus } #endif /*********************************************************************** * rubytracking.swg * * This file contains support for tracking mappings from * Ruby objects to C++ objects. This functionality is needed * to implement mark functions for Ruby's mark and sweep * garbage collector. ************************************************************************/ /* Global Ruby hash table to store Trackings from C/C++ structs to Ruby Objects. */ static VALUE swig_ruby_trackings; /* Setup a Ruby hash table to store Trackings */ static void SWIG_RubyInitializeTrackings() { /* Create a ruby hash table to store Trackings from C++ objects to Ruby objects. Also make sure to tell the garabage collector about the hash table. */ swig_ruby_trackings = rb_hash_new(); rb_gc_register_address(&swig_ruby_trackings); } /* Get a Ruby number to reference a pointer */ static VALUE SWIG_RubyPtrToReference(void* ptr) { /* We cast the pointer to an unsigned long and then store a reference to it using a Ruby number object. */ /* Convert the pointer to a Ruby number */ unsigned long value = (unsigned long) ptr; return LONG2NUM(value); } /* Get a Ruby number to reference an object */ static VALUE SWIG_RubyObjectToReference(VALUE object) { /* We cast the object to an unsigned long and then store a reference to it using a Ruby number object. */ /* Convert the Object to a Ruby number */ unsigned long value = (unsigned long) object; return LONG2NUM(value); } /* Get a Ruby object from a previously stored reference */ static VALUE SWIG_RubyReferenceToObject(VALUE reference) { /* The provided Ruby number object is a reference to the Ruby object we want.*/ /* First convert the Ruby number to a C number */ unsigned long value = NUM2LONG(reference); return (VALUE) value; } /* Add a Tracking from a C/C++ struct to a Ruby object */ static void SWIG_RubyAddTracking(void* ptr, VALUE object) { /* In a Ruby hash table we store the pointer and the associated Ruby object. The trick here is that we cannot store the Ruby object directly - if we do then it cannot be garbage collected. So instead we typecast it as a unsigned long and convert it to a Ruby number object.*/ /* Get a reference to the pointer as a Ruby number */ VALUE key = SWIG_RubyPtrToReference(ptr); /* Get a reference to the Ruby object as a Ruby number */ VALUE value = SWIG_RubyObjectToReference(object); /* Store the mapping to the global hash table. */ rb_hash_aset(swig_ruby_trackings, key, value); } /* Get the Ruby object that owns the specified C/C++ struct */ static VALUE SWIG_RubyInstanceFor(void* ptr) { /* Get a reference to the pointer as a Ruby number */ VALUE key = SWIG_RubyPtrToReference(ptr); /* Now lookup the value stored in the global hash table */ VALUE value = rb_hash_aref(swig_ruby_trackings, key); if (value == Qnil) { /* No object exists - return nil. */ return Qnil; } else { /* Convert this value to Ruby object */ return SWIG_RubyReferenceToObject(value); } } /* Remove a Tracking from a C/C++ struct to a Ruby object */ static void SWIG_RubyRemoveTracking(void* ptr) { /* Get a reference to the pointer as a Ruby number */ VALUE key = SWIG_RubyPtrToReference(ptr); /* Define delete method - in C++ this could be marked as static but unfortunately not in C. */ VALUE delete_function = rb_intern("delete"); /* Delete the object from the hash table by calling Ruby's do this we need to call the Hash.delete method.*/ rb_funcall(swig_ruby_trackings, delete_function, 1, key); } /* This is a helper method that unlinks a Ruby object from its underlying C++ object. This is needed if the lifetime of the Ruby object is longer than the C++ object */ static void SWIG_RubyUnlinkObjects(void* ptr) { VALUE object = SWIG_RubyInstanceFor(ptr); if (object != Qnil) { DATA_PTR(object) = 0; } } /* Common SWIG API */ #define SWIG_ConvertPtr(obj, pp, type, flags) \ SWIG_Ruby_ConvertPtr(obj, pp, type, flags) #define SWIG_NewPointerObj(p, type, flags) \ SWIG_Ruby_NewPointerObj(p, type, flags) #define SWIG_MustGetPtr(p, type, argnum, flags) \ SWIG_Ruby_MustGetPtr(p, type, argnum, flags) #define SWIG_GetModule(clientdata) \ SWIG_Ruby_GetModule() #define SWIG_SetModule(clientdata, pointer) \ SWIG_Ruby_SetModule(pointer) /* Ruby-specific SWIG API */ #define SWIG_InitRuntime() \ SWIG_Ruby_InitRuntime() #define SWIG_define_class(ty) \ SWIG_Ruby_define_class(ty) #define SWIG_NewClassInstance(value, ty) \ SWIG_Ruby_NewClassInstance(value, ty) #define SWIG_MangleStr(value) \ SWIG_Ruby_MangleStr(value) #define SWIG_CheckConvert(value, ty) \ SWIG_Ruby_CheckConvert(value, ty) #define SWIG_NewPackedObj(ptr, sz, ty) \ SWIG_Ruby_NewPackedObj(ptr, sz, ty) #define SWIG_ConvertPacked(obj, ptr, sz, ty, flags) \ SWIG_Ruby_ConvertPacked(obj, ptr, sz, ty, flags) /* rubydef.swg */ #ifdef __cplusplus extern "C" { #endif static VALUE _mSWIG = Qnil; static VALUE _cSWIG_Pointer = Qnil; static VALUE swig_runtime_data_type_pointer = Qnil; /* Initialize Ruby runtime support */ static void SWIG_Ruby_InitRuntime(void) { if (_mSWIG == Qnil) { _mSWIG = rb_define_module("SWIG"); } } /* Define Ruby class for C type */ static void SWIG_Ruby_define_class(swig_type_info *type) { VALUE klass; char *klass_name = (char *) malloc(4 + strlen(type->name) + 1); sprintf(klass_name, "TYPE%s", type->name); if (NIL_P(_cSWIG_Pointer)) { _cSWIG_Pointer = rb_define_class_under(_mSWIG, "Pointer", rb_cObject); rb_undef_method(CLASS_OF(_cSWIG_Pointer), "new"); } klass = rb_define_class_under(_mSWIG, klass_name, _cSWIG_Pointer); free((void *) klass_name); } /* Create a new pointer object */ static VALUE SWIG_Ruby_NewPointerObj(void *ptr, swig_type_info *type, int flags) { int own = flags & SWIG_POINTER_OWN; int track = flags & SWIG_TRACK_OBJECTS; char *klass_name; swig_class *sklass; VALUE klass; VALUE obj; if (!ptr) return Qnil; /* Have we already wrapped this pointer? */ if (track) { obj = SWIG_RubyInstanceFor(ptr); if (obj != Qnil) { return obj; } } if (type->clientdata) { sklass = (swig_class *) type->clientdata; obj = Data_Wrap_Struct(sklass->klass, VOIDFUNC(sklass->mark), (own ? VOIDFUNC(sklass->destroy) : 0), ptr); } else { klass_name = (char *) malloc(4 + strlen(type->name) + 1); sprintf(klass_name, "TYPE%s", type->name); klass = rb_const_get(_mSWIG, rb_intern(klass_name)); free((void *) klass_name); obj = Data_Wrap_Struct(klass, 0, 0, ptr); } rb_iv_set(obj, "__swigtype__", rb_str_new2(type->name)); /* Keep track of this object if necessary */ if (track) { SWIG_RubyAddTracking(ptr, obj); } return obj; } /* Create a new class instance (always owned) */ static VALUE SWIG_Ruby_NewClassInstance(VALUE klass, swig_type_info *type) { VALUE obj; swig_class *sklass = (swig_class *) type->clientdata; obj = Data_Wrap_Struct(klass, VOIDFUNC(sklass->mark), VOIDFUNC(sklass->destroy), 0); rb_iv_set(obj, "__swigtype__", rb_str_new2(type->name)); return obj; } /* Get type mangle from class name */ static SWIGINLINE char * SWIG_Ruby_MangleStr(VALUE obj) { VALUE stype = rb_iv_get(obj, "__swigtype__"); return StringValuePtr(stype); } /* Convert a pointer value */ static int SWIG_Ruby_ConvertPtr(VALUE obj, void **ptr, swig_type_info *ty, int flags) { char *c; swig_cast_info *tc; /* Grab the pointer */ if (NIL_P(obj)) { *ptr = 0; return 0; } else { Data_Get_Struct(obj, void, *ptr); } /* Check to see if the input object is giving up ownership of the underlying C struct or C++ object. If so then we need to reset the destructor since the Ruby object no longer owns the underlying C++ object.*/ if (flags & SWIG_POINTER_DISOWN) { if (flags & SWIG_TRACK_OBJECTS) { /* We are tracking objects. Thus we change the destructor * to SWIG_RubyRemoveTracking. This allows us to * remove the mapping from the C++ to Ruby object * when the Ruby object is garbage collected. If we don't * do this, then it is possible we will return a reference * to a Ruby object that no longer exists thereby crashing Ruby. */ RDATA(obj)->dfree = SWIG_RubyRemoveTracking; } else { RDATA(obj)->dfree = 0; } } /* Do type-checking if type info was provided */ if (ty) { if (ty->clientdata) { if (rb_obj_is_kind_of(obj, ((swig_class *) (ty->clientdata))->klass)) { if (*ptr == 0) rb_raise(rb_eRuntimeError, "This %s already released", ty->str); return 0; } } if ((c = SWIG_MangleStr(obj)) == NULL) { if (flags & SWIG_POINTER_EXCEPTION) rb_raise(rb_eTypeError, "Expected %s", ty->str); else return -1; } tc = SWIG_TypeCheck(c, ty); if (!tc) { if (flags & SWIG_POINTER_EXCEPTION) rb_raise(rb_eTypeError, "Expected %s", ty->str); else return -1; } *ptr = SWIG_TypeCast(tc, *ptr); } return 0; } /* Convert a pointer value, signal an exception on a type mismatch */ static SWIGINLINE void * SWIG_Ruby_MustGetPtr(VALUE obj, swig_type_info *ty, int argnum, int flags) { void *result; SWIG_ConvertPtr(obj, &result, ty, flags | SWIG_POINTER_EXCEPTION); return result; } /* Check convert */ static SWIGINLINE int SWIG_Ruby_CheckConvert(VALUE obj, swig_type_info *ty) { char *c = SWIG_MangleStr(obj); if (!c) return 0; return SWIG_TypeCheck(c,ty) != 0; } static VALUE SWIG_Ruby_NewPackedObj(void *ptr, int sz, swig_type_info *type) { char result[1024]; char *r = result; if ((2*sz + 1 + strlen(type->name)) > 1000) return 0; *(r++) = '_'; r = SWIG_PackData(r, ptr, sz); strcpy(r, type->name); return rb_str_new2(result); } /* Convert a packed value value */ static void SWIG_Ruby_ConvertPacked(VALUE obj, void *ptr, int sz, swig_type_info *ty, int flags) { swig_cast_info *tc; const char *c; if (TYPE(obj) != T_STRING) goto type_error; c = StringValuePtr(obj); /* Pointer values must start with leading underscore */ if (*c != '_') goto type_error; c++; c = SWIG_UnpackData(c, ptr, sz); if (ty) { tc = SWIG_TypeCheck(c, ty); if (!tc) goto type_error; } return; type_error: if (flags) { if (ty) { rb_raise(rb_eTypeError, "Type error. Expected %s", ty->name); } else { rb_raise(rb_eTypeError, "Expected a pointer"); } } } static swig_module_info *SWIG_Ruby_GetModule() { VALUE pointer; swig_module_info *ret = 0; /* first check if pointer already created */ pointer = rb_gv_get("$swig_runtime_data_type_pointer" SWIG_RUNTIME_VERSION SWIG_TYPE_TABLE_NAME); if (pointer != Qnil) { Data_Get_Struct(pointer, swig_module_info, ret); } return ret; } static void SWIG_Ruby_SetModule(swig_module_info *pointer) { /* register a new class */ VALUE cl = rb_define_class("swig_runtime_data", rb_cObject); /* create and store the structure pointer to a global variable */ swig_runtime_data_type_pointer = Data_Wrap_Struct(cl, 0, 0, pointer); rb_define_readonly_variable("$swig_runtime_data_type_pointer" SWIG_RUNTIME_VERSION SWIG_TYPE_TABLE_NAME, &swig_runtime_data_type_pointer); } #ifdef __cplusplus } #endif /* -------- TYPES TABLE (BEGIN) -------- */ #define SWIGTYPE_p_char swig_types[0] #define SWIGTYPE_p_f_p_char__int swig_types[1] #define SWIGTYPE_p_f_p_struct_t_cb_data__int swig_types[2] #define SWIGTYPE_p_int swig_types[3] #define SWIGTYPE_p_p_char swig_types[4] #define SWIGTYPE_p_p_f___void swig_types[5] #define SWIGTYPE_p_s_vpi_value_value swig_types[6] #define SWIGTYPE_p_short swig_types[7] #define SWIGTYPE_p_t_cb_data swig_types[8] #define SWIGTYPE_p_t_vpi_delay swig_types[9] #define SWIGTYPE_p_t_vpi_error_info swig_types[10] #define SWIGTYPE_p_t_vpi_strengthval swig_types[11] #define SWIGTYPE_p_t_vpi_systf_data swig_types[12] #define SWIGTYPE_p_t_vpi_time swig_types[13] #define SWIGTYPE_p_t_vpi_value swig_types[14] #define SWIGTYPE_p_t_vpi_vecval swig_types[15] #define SWIGTYPE_p_t_vpi_vlog_info swig_types[16] #define SWIGTYPE_p_unsigned_char swig_types[17] #define SWIGTYPE_p_unsigned_int swig_types[18] #define SWIGTYPE_p_unsigned_long swig_types[19] #define SWIGTYPE_p_unsigned_short swig_types[20] #define SWIGTYPE_p_void swig_types[21] static swig_type_info *swig_types[23]; static swig_module_info swig_module = {swig_types, 22, 0, 0, 0, 0}; #define SWIG_TypeQuery(name) SWIG_TypeQueryModule(&swig_module, &swig_module, name) #define SWIG_MangledTypeQuery(name) SWIG_MangledTypeQueryModule(&swig_module, &swig_module, name) /* -------- TYPES TABLE (END) -------- */ #define SWIG_init Init_vpi #define SWIG_name "Vpi" static VALUE mVpi; static void SWIG_AsVal(VALUE obj, int *val) { *val = (int) NUM2INT(obj); } /* Includes the header in the wrapper code */ #include "swig_vpi.h" typedef union { PLI_BYTE8 *str; /* string value */ PLI_INT32 scalar; /* vpi[0,1,X,Z] */ PLI_INT32 integer; /* integer value */ double real; /* real value */ struct t_vpi_time *time; /* time value */ struct t_vpi_vecval *vector; /* vector value */ struct t_vpi_strengthval *strength; /* strength value */ PLI_BYTE8 *misc; /* ...other */ } s_vpi_value_value; swig_class cS_vpi_time; static VALUE _wrap_s_vpi_time_type_set(int argc, VALUE *argv, VALUE self) { s_vpi_time *arg1 = (s_vpi_time *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_time, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->type = arg2; return Qnil; } static VALUE _wrap_s_vpi_time_type_get(int argc, VALUE *argv, VALUE self) { s_vpi_time *arg1 = (s_vpi_time *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_time, 0); result = (PLI_INT32) ((arg1)->type); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_time_high_set(int argc, VALUE *argv, VALUE self) { s_vpi_time *arg1 = (s_vpi_time *) 0 ; PLI_UINT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_time, 0); arg2 = NUM2UINT(argv[0]); if (arg1) (arg1)->high = arg2; return Qnil; } static VALUE _wrap_s_vpi_time_high_get(int argc, VALUE *argv, VALUE self) { s_vpi_time *arg1 = (s_vpi_time *) 0 ; PLI_UINT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_time, 0); result = (PLI_UINT32) ((arg1)->high); vresult = UINT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_time_low_set(int argc, VALUE *argv, VALUE self) { s_vpi_time *arg1 = (s_vpi_time *) 0 ; PLI_UINT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_time, 0); arg2 = NUM2UINT(argv[0]); if (arg1) (arg1)->low = arg2; return Qnil; } static VALUE _wrap_s_vpi_time_low_get(int argc, VALUE *argv, VALUE self) { s_vpi_time *arg1 = (s_vpi_time *) 0 ; PLI_UINT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_time, 0); result = (PLI_UINT32) ((arg1)->low); vresult = UINT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_time_real_set(int argc, VALUE *argv, VALUE self) { s_vpi_time *arg1 = (s_vpi_time *) 0 ; double arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_time, 0); arg2 = (double) NUM2DBL(argv[0]); if (arg1) (arg1)->real = arg2; return Qnil; } static VALUE _wrap_s_vpi_time_real_get(int argc, VALUE *argv, VALUE self) { s_vpi_time *arg1 = (s_vpi_time *) 0 ; double result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_time, 0); result = (double) ((arg1)->real); vresult = rb_float_new(result); return vresult; } #ifdef HAVE_RB_DEFINE_ALLOC_FUNC static VALUE _wrap_s_vpi_time_allocate(VALUE self) { #else static VALUE _wrap_s_vpi_time_allocate(int argc, VALUE *argv, VALUE self) { #endif VALUE vresult = SWIG_NewClassInstance(self, SWIGTYPE_p_t_vpi_time); #ifndef HAVE_RB_DEFINE_ALLOC_FUNC rb_obj_call_init(vresult, argc, argv); #endif return vresult; } static VALUE _wrap_new_s_vpi_time(int argc, VALUE *argv, VALUE self) { s_vpi_time *result; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); result = (s_vpi_time *)(s_vpi_time *) calloc(1, sizeof(s_vpi_time)); DATA_PTR(self) = result; return self; } static void free_s_vpi_time(s_vpi_time *arg1) { free((char *) arg1); } swig_class cS_vpi_delay; static VALUE _wrap_s_vpi_delay_da_set(int argc, VALUE *argv, VALUE self) { s_vpi_delay *arg1 = (s_vpi_delay *) 0 ; struct t_vpi_time *arg2 = (struct t_vpi_time *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_delay, 0); SWIG_ConvertPtr(argv[0], (void **) &arg2, SWIGTYPE_p_t_vpi_time, SWIG_POINTER_DISOWN); if (arg1) (arg1)->da = arg2; return Qnil; } static VALUE _wrap_s_vpi_delay_da_get(int argc, VALUE *argv, VALUE self) { s_vpi_delay *arg1 = (s_vpi_delay *) 0 ; struct t_vpi_time *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_delay, 0); result = (struct t_vpi_time *) ((arg1)->da); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_t_vpi_time,0); return vresult; } static VALUE _wrap_s_vpi_delay_no_of_delays_set(int argc, VALUE *argv, VALUE self) { s_vpi_delay *arg1 = (s_vpi_delay *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_delay, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->no_of_delays = arg2; return Qnil; } static VALUE _wrap_s_vpi_delay_no_of_delays_get(int argc, VALUE *argv, VALUE self) { s_vpi_delay *arg1 = (s_vpi_delay *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_delay, 0); result = (PLI_INT32) ((arg1)->no_of_delays); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_delay_time_type_set(int argc, VALUE *argv, VALUE self) { s_vpi_delay *arg1 = (s_vpi_delay *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_delay, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->time_type = arg2; return Qnil; } static VALUE _wrap_s_vpi_delay_time_type_get(int argc, VALUE *argv, VALUE self) { s_vpi_delay *arg1 = (s_vpi_delay *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_delay, 0); result = (PLI_INT32) ((arg1)->time_type); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_delay_mtm_flag_set(int argc, VALUE *argv, VALUE self) { s_vpi_delay *arg1 = (s_vpi_delay *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_delay, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->mtm_flag = arg2; return Qnil; } static VALUE _wrap_s_vpi_delay_mtm_flag_get(int argc, VALUE *argv, VALUE self) { s_vpi_delay *arg1 = (s_vpi_delay *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_delay, 0); result = (PLI_INT32) ((arg1)->mtm_flag); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_delay_append_flag_set(int argc, VALUE *argv, VALUE self) { s_vpi_delay *arg1 = (s_vpi_delay *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_delay, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->append_flag = arg2; return Qnil; } static VALUE _wrap_s_vpi_delay_append_flag_get(int argc, VALUE *argv, VALUE self) { s_vpi_delay *arg1 = (s_vpi_delay *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_delay, 0); result = (PLI_INT32) ((arg1)->append_flag); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_delay_pulsere_flag_set(int argc, VALUE *argv, VALUE self) { s_vpi_delay *arg1 = (s_vpi_delay *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_delay, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->pulsere_flag = arg2; return Qnil; } static VALUE _wrap_s_vpi_delay_pulsere_flag_get(int argc, VALUE *argv, VALUE self) { s_vpi_delay *arg1 = (s_vpi_delay *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_delay, 0); result = (PLI_INT32) ((arg1)->pulsere_flag); vresult = INT2NUM(result); return vresult; } #ifdef HAVE_RB_DEFINE_ALLOC_FUNC static VALUE _wrap_s_vpi_delay_allocate(VALUE self) { #else static VALUE _wrap_s_vpi_delay_allocate(int argc, VALUE *argv, VALUE self) { #endif VALUE vresult = SWIG_NewClassInstance(self, SWIGTYPE_p_t_vpi_delay); #ifndef HAVE_RB_DEFINE_ALLOC_FUNC rb_obj_call_init(vresult, argc, argv); #endif return vresult; } static VALUE _wrap_new_s_vpi_delay(int argc, VALUE *argv, VALUE self) { s_vpi_delay *result; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); result = (s_vpi_delay *)(s_vpi_delay *) calloc(1, sizeof(s_vpi_delay)); DATA_PTR(self) = result; return self; } static void free_s_vpi_delay(s_vpi_delay *arg1) { free((char *) arg1); } swig_class cS_vpi_vecval; static VALUE _wrap_s_vpi_vecval_aval_set(int argc, VALUE *argv, VALUE self) { s_vpi_vecval *arg1 = (s_vpi_vecval *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_vecval, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->aval = arg2; return Qnil; } static VALUE _wrap_s_vpi_vecval_aval_get(int argc, VALUE *argv, VALUE self) { s_vpi_vecval *arg1 = (s_vpi_vecval *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_vecval, 0); result = (PLI_INT32) ((arg1)->aval); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_vecval_bval_set(int argc, VALUE *argv, VALUE self) { s_vpi_vecval *arg1 = (s_vpi_vecval *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_vecval, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->bval = arg2; return Qnil; } static VALUE _wrap_s_vpi_vecval_bval_get(int argc, VALUE *argv, VALUE self) { s_vpi_vecval *arg1 = (s_vpi_vecval *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_vecval, 0); result = (PLI_INT32) ((arg1)->bval); vresult = INT2NUM(result); return vresult; } #ifdef HAVE_RB_DEFINE_ALLOC_FUNC static VALUE _wrap_s_vpi_vecval_allocate(VALUE self) { #else static VALUE _wrap_s_vpi_vecval_allocate(int argc, VALUE *argv, VALUE self) { #endif VALUE vresult = SWIG_NewClassInstance(self, SWIGTYPE_p_t_vpi_vecval); #ifndef HAVE_RB_DEFINE_ALLOC_FUNC rb_obj_call_init(vresult, argc, argv); #endif return vresult; } static VALUE _wrap_new_s_vpi_vecval(int argc, VALUE *argv, VALUE self) { s_vpi_vecval *result; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); result = (s_vpi_vecval *)(s_vpi_vecval *) calloc(1, sizeof(s_vpi_vecval)); DATA_PTR(self) = result; return self; } static void free_s_vpi_vecval(s_vpi_vecval *arg1) { free((char *) arg1); } swig_class cS_vpi_strengthval; static VALUE _wrap_s_vpi_strengthval_logic_set(int argc, VALUE *argv, VALUE self) { s_vpi_strengthval *arg1 = (s_vpi_strengthval *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_strengthval, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->logic = arg2; return Qnil; } static VALUE _wrap_s_vpi_strengthval_logic_get(int argc, VALUE *argv, VALUE self) { s_vpi_strengthval *arg1 = (s_vpi_strengthval *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_strengthval, 0); result = (PLI_INT32) ((arg1)->logic); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_strengthval_s0_set(int argc, VALUE *argv, VALUE self) { s_vpi_strengthval *arg1 = (s_vpi_strengthval *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_strengthval, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->s0 = arg2; return Qnil; } static VALUE _wrap_s_vpi_strengthval_s0_get(int argc, VALUE *argv, VALUE self) { s_vpi_strengthval *arg1 = (s_vpi_strengthval *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_strengthval, 0); result = (PLI_INT32) ((arg1)->s0); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_strengthval_s1_set(int argc, VALUE *argv, VALUE self) { s_vpi_strengthval *arg1 = (s_vpi_strengthval *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_strengthval, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->s1 = arg2; return Qnil; } static VALUE _wrap_s_vpi_strengthval_s1_get(int argc, VALUE *argv, VALUE self) { s_vpi_strengthval *arg1 = (s_vpi_strengthval *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_strengthval, 0); result = (PLI_INT32) ((arg1)->s1); vresult = INT2NUM(result); return vresult; } #ifdef HAVE_RB_DEFINE_ALLOC_FUNC static VALUE _wrap_s_vpi_strengthval_allocate(VALUE self) { #else static VALUE _wrap_s_vpi_strengthval_allocate(int argc, VALUE *argv, VALUE self) { #endif VALUE vresult = SWIG_NewClassInstance(self, SWIGTYPE_p_t_vpi_strengthval); #ifndef HAVE_RB_DEFINE_ALLOC_FUNC rb_obj_call_init(vresult, argc, argv); #endif return vresult; } static VALUE _wrap_new_s_vpi_strengthval(int argc, VALUE *argv, VALUE self) { s_vpi_strengthval *result; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); result = (s_vpi_strengthval *)(s_vpi_strengthval *) calloc(1, sizeof(s_vpi_strengthval)); DATA_PTR(self) = result; return self; } static void free_s_vpi_strengthval(s_vpi_strengthval *arg1) { free((char *) arg1); } swig_class cS_vpi_value; static VALUE _wrap_s_vpi_value_format_set(int argc, VALUE *argv, VALUE self) { s_vpi_value *arg1 = (s_vpi_value *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_value, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->format = arg2; return Qnil; } static VALUE _wrap_s_vpi_value_format_get(int argc, VALUE *argv, VALUE self) { s_vpi_value *arg1 = (s_vpi_value *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_value, 0); result = (PLI_INT32) ((arg1)->format); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_value_value_get(int argc, VALUE *argv, VALUE self) { s_vpi_value *arg1 = (s_vpi_value *) 0 ; s_vpi_value_value *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_value, 0); result = (s_vpi_value_value *)& ((arg1)->value); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_s_vpi_value_value,0); return vresult; } #ifdef HAVE_RB_DEFINE_ALLOC_FUNC static VALUE _wrap_s_vpi_value_allocate(VALUE self) { #else static VALUE _wrap_s_vpi_value_allocate(int argc, VALUE *argv, VALUE self) { #endif VALUE vresult = SWIG_NewClassInstance(self, SWIGTYPE_p_t_vpi_value); #ifndef HAVE_RB_DEFINE_ALLOC_FUNC rb_obj_call_init(vresult, argc, argv); #endif return vresult; } static VALUE _wrap_new_s_vpi_value(int argc, VALUE *argv, VALUE self) { s_vpi_value *result; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); result = (s_vpi_value *)(s_vpi_value *) calloc(1, sizeof(s_vpi_value)); DATA_PTR(self) = result; return self; } static void free_s_vpi_value(s_vpi_value *arg1) { free((char *) arg1); } swig_class cS_vpi_value_value; static VALUE _wrap_s_vpi_value_value_str_set(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; PLI_BYTE8 *arg2 = (PLI_BYTE8 *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); arg2 = StringValuePtr(argv[0]); { if (arg1->str) free((char*)arg1->str); if (arg2) { arg1->str = (PLI_BYTE8 *) malloc(strlen(arg2)+1); strcpy((char*)arg1->str,arg2); } else { arg1->str = 0; } } return Qnil; } static VALUE _wrap_s_vpi_value_value_str_get(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; PLI_BYTE8 *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); result = (PLI_BYTE8 *) ((arg1)->str); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_s_vpi_value_value_scalar_set(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->scalar = arg2; return Qnil; } static VALUE _wrap_s_vpi_value_value_scalar_get(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); result = (PLI_INT32) ((arg1)->scalar); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_value_value_integer_set(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->integer = arg2; return Qnil; } static VALUE _wrap_s_vpi_value_value_integer_get(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); result = (PLI_INT32) ((arg1)->integer); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_value_value_real_set(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; double arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); arg2 = (double) NUM2DBL(argv[0]); if (arg1) (arg1)->real = arg2; return Qnil; } static VALUE _wrap_s_vpi_value_value_real_get(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; double result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); result = (double) ((arg1)->real); vresult = rb_float_new(result); return vresult; } static VALUE _wrap_s_vpi_value_value_time_set(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; struct t_vpi_time *arg2 = (struct t_vpi_time *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); SWIG_ConvertPtr(argv[0], (void **) &arg2, SWIGTYPE_p_t_vpi_time, SWIG_POINTER_DISOWN); if (arg1) (arg1)->time = arg2; return Qnil; } static VALUE _wrap_s_vpi_value_value_time_get(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; struct t_vpi_time *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); result = (struct t_vpi_time *) ((arg1)->time); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_t_vpi_time,0); return vresult; } static VALUE _wrap_s_vpi_value_value_vector_set(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; struct t_vpi_vecval *arg2 = (struct t_vpi_vecval *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); SWIG_ConvertPtr(argv[0], (void **) &arg2, SWIGTYPE_p_t_vpi_vecval, SWIG_POINTER_DISOWN); if (arg1) (arg1)->vector = arg2; return Qnil; } static VALUE _wrap_s_vpi_value_value_vector_get(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; struct t_vpi_vecval *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); result = (struct t_vpi_vecval *) ((arg1)->vector); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_t_vpi_vecval,0); return vresult; } static VALUE _wrap_s_vpi_value_value_strength_set(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; struct t_vpi_strengthval *arg2 = (struct t_vpi_strengthval *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); SWIG_ConvertPtr(argv[0], (void **) &arg2, SWIGTYPE_p_t_vpi_strengthval, SWIG_POINTER_DISOWN); if (arg1) (arg1)->strength = arg2; return Qnil; } static VALUE _wrap_s_vpi_value_value_strength_get(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; struct t_vpi_strengthval *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); result = (struct t_vpi_strengthval *) ((arg1)->strength); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_t_vpi_strengthval,0); return vresult; } static VALUE _wrap_s_vpi_value_value_misc_set(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; PLI_BYTE8 *arg2 = (PLI_BYTE8 *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); arg2 = StringValuePtr(argv[0]); { if (arg1->misc) free((char*)arg1->misc); if (arg2) { arg1->misc = (PLI_BYTE8 *) malloc(strlen(arg2)+1); strcpy((char*)arg1->misc,arg2); } else { arg1->misc = 0; } } return Qnil; } static VALUE _wrap_s_vpi_value_value_misc_get(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *arg1 = (s_vpi_value_value *) 0 ; PLI_BYTE8 *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_s_vpi_value_value, 0); result = (PLI_BYTE8 *) ((arg1)->misc); vresult = rb_str_new2(result); return vresult; } #ifdef HAVE_RB_DEFINE_ALLOC_FUNC static VALUE _wrap_s_vpi_value_value_allocate(VALUE self) { #else static VALUE _wrap_s_vpi_value_value_allocate(int argc, VALUE *argv, VALUE self) { #endif VALUE vresult = SWIG_NewClassInstance(self, SWIGTYPE_p_s_vpi_value_value); #ifndef HAVE_RB_DEFINE_ALLOC_FUNC rb_obj_call_init(vresult, argc, argv); #endif return vresult; } static VALUE _wrap_new_s_vpi_value_value(int argc, VALUE *argv, VALUE self) { s_vpi_value_value *result; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); result = (s_vpi_value_value *)(s_vpi_value_value *) calloc(1, sizeof(s_vpi_value_value)); DATA_PTR(self) = result; return self; } static void free_s_vpi_value_value(s_vpi_value_value *arg1) { free((char *) arg1); } swig_class cS_vpi_systf_data; static VALUE _wrap_s_vpi_systf_data_type_set(int argc, VALUE *argv, VALUE self) { s_vpi_systf_data *arg1 = (s_vpi_systf_data *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_systf_data, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->type = arg2; return Qnil; } static VALUE _wrap_s_vpi_systf_data_type_get(int argc, VALUE *argv, VALUE self) { s_vpi_systf_data *arg1 = (s_vpi_systf_data *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_systf_data, 0); result = (PLI_INT32) ((arg1)->type); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_systf_data_sysfunctype_set(int argc, VALUE *argv, VALUE self) { s_vpi_systf_data *arg1 = (s_vpi_systf_data *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_systf_data, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->sysfunctype = arg2; return Qnil; } static VALUE _wrap_s_vpi_systf_data_sysfunctype_get(int argc, VALUE *argv, VALUE self) { s_vpi_systf_data *arg1 = (s_vpi_systf_data *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_systf_data, 0); result = (PLI_INT32) ((arg1)->sysfunctype); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_systf_data_tfname_set(int argc, VALUE *argv, VALUE self) { s_vpi_systf_data *arg1 = (s_vpi_systf_data *) 0 ; PLI_BYTE8 *arg2 = (PLI_BYTE8 *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_systf_data, 0); arg2 = StringValuePtr(argv[0]); { if (arg1->tfname) free((char*)arg1->tfname); if (arg2) { arg1->tfname = (PLI_BYTE8 *) malloc(strlen(arg2)+1); strcpy((char*)arg1->tfname,arg2); } else { arg1->tfname = 0; } } return Qnil; } static VALUE _wrap_s_vpi_systf_data_tfname_get(int argc, VALUE *argv, VALUE self) { s_vpi_systf_data *arg1 = (s_vpi_systf_data *) 0 ; PLI_BYTE8 *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_systf_data, 0); result = (PLI_BYTE8 *) ((arg1)->tfname); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_s_vpi_systf_data_calltf_set(int argc, VALUE *argv, VALUE self) { s_vpi_systf_data *arg1 = (s_vpi_systf_data *) 0 ; PLI_INT32 (*arg2)(PLI_BYTE8 *) = (PLI_INT32 (*)(PLI_BYTE8 *)) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_systf_data, 0); SWIG_ConvertPtr(argv[0], (void **) &arg2, SWIGTYPE_p_f_p_char__int, 0); if (arg1) (arg1)->calltf = arg2; return Qnil; } static VALUE _wrap_s_vpi_systf_data_calltf_get(int argc, VALUE *argv, VALUE self) { s_vpi_systf_data *arg1 = (s_vpi_systf_data *) 0 ; PLI_INT32 (*result)(PLI_BYTE8 *); VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_systf_data, 0); result = (PLI_INT32 (*)(PLI_BYTE8 *)) ((arg1)->calltf); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_f_p_char__int,0); return vresult; } static VALUE _wrap_s_vpi_systf_data_compiletf_set(int argc, VALUE *argv, VALUE self) { s_vpi_systf_data *arg1 = (s_vpi_systf_data *) 0 ; PLI_INT32 (*arg2)(PLI_BYTE8 *) = (PLI_INT32 (*)(PLI_BYTE8 *)) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_systf_data, 0); SWIG_ConvertPtr(argv[0], (void **) &arg2, SWIGTYPE_p_f_p_char__int, 0); if (arg1) (arg1)->compiletf = arg2; return Qnil; } static VALUE _wrap_s_vpi_systf_data_compiletf_get(int argc, VALUE *argv, VALUE self) { s_vpi_systf_data *arg1 = (s_vpi_systf_data *) 0 ; PLI_INT32 (*result)(PLI_BYTE8 *); VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_systf_data, 0); result = (PLI_INT32 (*)(PLI_BYTE8 *)) ((arg1)->compiletf); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_f_p_char__int,0); return vresult; } static VALUE _wrap_s_vpi_systf_data_sizetf_set(int argc, VALUE *argv, VALUE self) { s_vpi_systf_data *arg1 = (s_vpi_systf_data *) 0 ; PLI_INT32 (*arg2)(PLI_BYTE8 *) = (PLI_INT32 (*)(PLI_BYTE8 *)) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_systf_data, 0); SWIG_ConvertPtr(argv[0], (void **) &arg2, SWIGTYPE_p_f_p_char__int, 0); if (arg1) (arg1)->sizetf = arg2; return Qnil; } static VALUE _wrap_s_vpi_systf_data_sizetf_get(int argc, VALUE *argv, VALUE self) { s_vpi_systf_data *arg1 = (s_vpi_systf_data *) 0 ; PLI_INT32 (*result)(PLI_BYTE8 *); VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_systf_data, 0); result = (PLI_INT32 (*)(PLI_BYTE8 *)) ((arg1)->sizetf); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_f_p_char__int,0); return vresult; } static VALUE _wrap_s_vpi_systf_data_user_data_set(int argc, VALUE *argv, VALUE self) { s_vpi_systf_data *arg1 = (s_vpi_systf_data *) 0 ; PLI_BYTE8 *arg2 = (PLI_BYTE8 *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_systf_data, 0); arg2 = StringValuePtr(argv[0]); { if (arg1->user_data) free((char*)arg1->user_data); if (arg2) { arg1->user_data = (PLI_BYTE8 *) malloc(strlen(arg2)+1); strcpy((char*)arg1->user_data,arg2); } else { arg1->user_data = 0; } } return Qnil; } static VALUE _wrap_s_vpi_systf_data_user_data_get(int argc, VALUE *argv, VALUE self) { s_vpi_systf_data *arg1 = (s_vpi_systf_data *) 0 ; PLI_BYTE8 *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_systf_data, 0); result = (PLI_BYTE8 *) ((arg1)->user_data); vresult = rb_str_new2(result); return vresult; } #ifdef HAVE_RB_DEFINE_ALLOC_FUNC static VALUE _wrap_s_vpi_systf_data_allocate(VALUE self) { #else static VALUE _wrap_s_vpi_systf_data_allocate(int argc, VALUE *argv, VALUE self) { #endif VALUE vresult = SWIG_NewClassInstance(self, SWIGTYPE_p_t_vpi_systf_data); #ifndef HAVE_RB_DEFINE_ALLOC_FUNC rb_obj_call_init(vresult, argc, argv); #endif return vresult; } static VALUE _wrap_new_s_vpi_systf_data(int argc, VALUE *argv, VALUE self) { s_vpi_systf_data *result; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); result = (s_vpi_systf_data *)(s_vpi_systf_data *) calloc(1, sizeof(s_vpi_systf_data)); DATA_PTR(self) = result; return self; } static void free_s_vpi_systf_data(s_vpi_systf_data *arg1) { free((char *) arg1); } swig_class cS_vpi_vlog_info; static VALUE _wrap_s_vpi_vlog_info_argc_set(int argc, VALUE *argv, VALUE self) { s_vpi_vlog_info *arg1 = (s_vpi_vlog_info *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_vlog_info, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->argc = arg2; return Qnil; } static VALUE _wrap_s_vpi_vlog_info_argc_get(int argc, VALUE *argv, VALUE self) { s_vpi_vlog_info *arg1 = (s_vpi_vlog_info *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_vlog_info, 0); result = (PLI_INT32) ((arg1)->argc); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_vlog_info_argv_set(int argc, VALUE *argv, VALUE self) { s_vpi_vlog_info *arg1 = (s_vpi_vlog_info *) 0 ; PLI_BYTE8 **arg2 = (PLI_BYTE8 **) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_vlog_info, 0); SWIG_ConvertPtr(argv[0], (void **) &arg2, SWIGTYPE_p_p_char, 0); if (arg1) (arg1)->argv = arg2; return Qnil; } static VALUE _wrap_s_vpi_vlog_info_argv_get(int argc, VALUE *argv, VALUE self) { s_vpi_vlog_info *arg1 = (s_vpi_vlog_info *) 0 ; PLI_BYTE8 **result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_vlog_info, 0); result = (PLI_BYTE8 **) ((arg1)->argv); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_p_char,0); return vresult; } static VALUE _wrap_s_vpi_vlog_info_product_set(int argc, VALUE *argv, VALUE self) { s_vpi_vlog_info *arg1 = (s_vpi_vlog_info *) 0 ; PLI_BYTE8 *arg2 = (PLI_BYTE8 *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_vlog_info, 0); arg2 = StringValuePtr(argv[0]); { if (arg1->product) free((char*)arg1->product); if (arg2) { arg1->product = (PLI_BYTE8 *) malloc(strlen(arg2)+1); strcpy((char*)arg1->product,arg2); } else { arg1->product = 0; } } return Qnil; } static VALUE _wrap_s_vpi_vlog_info_product_get(int argc, VALUE *argv, VALUE self) { s_vpi_vlog_info *arg1 = (s_vpi_vlog_info *) 0 ; PLI_BYTE8 *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_vlog_info, 0); result = (PLI_BYTE8 *) ((arg1)->product); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_s_vpi_vlog_info_version_set(int argc, VALUE *argv, VALUE self) { s_vpi_vlog_info *arg1 = (s_vpi_vlog_info *) 0 ; PLI_BYTE8 *arg2 = (PLI_BYTE8 *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_vlog_info, 0); arg2 = StringValuePtr(argv[0]); { if (arg1->version) free((char*)arg1->version); if (arg2) { arg1->version = (PLI_BYTE8 *) malloc(strlen(arg2)+1); strcpy((char*)arg1->version,arg2); } else { arg1->version = 0; } } return Qnil; } static VALUE _wrap_s_vpi_vlog_info_version_get(int argc, VALUE *argv, VALUE self) { s_vpi_vlog_info *arg1 = (s_vpi_vlog_info *) 0 ; PLI_BYTE8 *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_vlog_info, 0); result = (PLI_BYTE8 *) ((arg1)->version); vresult = rb_str_new2(result); return vresult; } #ifdef HAVE_RB_DEFINE_ALLOC_FUNC static VALUE _wrap_s_vpi_vlog_info_allocate(VALUE self) { #else static VALUE _wrap_s_vpi_vlog_info_allocate(int argc, VALUE *argv, VALUE self) { #endif VALUE vresult = SWIG_NewClassInstance(self, SWIGTYPE_p_t_vpi_vlog_info); #ifndef HAVE_RB_DEFINE_ALLOC_FUNC rb_obj_call_init(vresult, argc, argv); #endif return vresult; } static VALUE _wrap_new_s_vpi_vlog_info(int argc, VALUE *argv, VALUE self) { s_vpi_vlog_info *result; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); result = (s_vpi_vlog_info *)(s_vpi_vlog_info *) calloc(1, sizeof(s_vpi_vlog_info)); DATA_PTR(self) = result; return self; } static void free_s_vpi_vlog_info(s_vpi_vlog_info *arg1) { free((char *) arg1); } swig_class cS_vpi_error_info; static VALUE _wrap_s_vpi_error_info_state_set(int argc, VALUE *argv, VALUE self) { s_vpi_error_info *arg1 = (s_vpi_error_info *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_error_info, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->state = arg2; return Qnil; } static VALUE _wrap_s_vpi_error_info_state_get(int argc, VALUE *argv, VALUE self) { s_vpi_error_info *arg1 = (s_vpi_error_info *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_error_info, 0); result = (PLI_INT32) ((arg1)->state); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_error_info_level_set(int argc, VALUE *argv, VALUE self) { s_vpi_error_info *arg1 = (s_vpi_error_info *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_error_info, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->level = arg2; return Qnil; } static VALUE _wrap_s_vpi_error_info_level_get(int argc, VALUE *argv, VALUE self) { s_vpi_error_info *arg1 = (s_vpi_error_info *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_error_info, 0); result = (PLI_INT32) ((arg1)->level); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_vpi_error_info_message_set(int argc, VALUE *argv, VALUE self) { s_vpi_error_info *arg1 = (s_vpi_error_info *) 0 ; PLI_BYTE8 *arg2 = (PLI_BYTE8 *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_error_info, 0); arg2 = StringValuePtr(argv[0]); { if (arg1->message) free((char*)arg1->message); if (arg2) { arg1->message = (PLI_BYTE8 *) malloc(strlen(arg2)+1); strcpy((char*)arg1->message,arg2); } else { arg1->message = 0; } } return Qnil; } static VALUE _wrap_s_vpi_error_info_message_get(int argc, VALUE *argv, VALUE self) { s_vpi_error_info *arg1 = (s_vpi_error_info *) 0 ; PLI_BYTE8 *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_error_info, 0); result = (PLI_BYTE8 *) ((arg1)->message); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_s_vpi_error_info_product_set(int argc, VALUE *argv, VALUE self) { s_vpi_error_info *arg1 = (s_vpi_error_info *) 0 ; PLI_BYTE8 *arg2 = (PLI_BYTE8 *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_error_info, 0); arg2 = StringValuePtr(argv[0]); { if (arg1->product) free((char*)arg1->product); if (arg2) { arg1->product = (PLI_BYTE8 *) malloc(strlen(arg2)+1); strcpy((char*)arg1->product,arg2); } else { arg1->product = 0; } } return Qnil; } static VALUE _wrap_s_vpi_error_info_product_get(int argc, VALUE *argv, VALUE self) { s_vpi_error_info *arg1 = (s_vpi_error_info *) 0 ; PLI_BYTE8 *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_error_info, 0); result = (PLI_BYTE8 *) ((arg1)->product); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_s_vpi_error_info_code_set(int argc, VALUE *argv, VALUE self) { s_vpi_error_info *arg1 = (s_vpi_error_info *) 0 ; PLI_BYTE8 *arg2 = (PLI_BYTE8 *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_error_info, 0); arg2 = StringValuePtr(argv[0]); { if (arg1->code) free((char*)arg1->code); if (arg2) { arg1->code = (PLI_BYTE8 *) malloc(strlen(arg2)+1); strcpy((char*)arg1->code,arg2); } else { arg1->code = 0; } } return Qnil; } static VALUE _wrap_s_vpi_error_info_code_get(int argc, VALUE *argv, VALUE self) { s_vpi_error_info *arg1 = (s_vpi_error_info *) 0 ; PLI_BYTE8 *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_error_info, 0); result = (PLI_BYTE8 *) ((arg1)->code); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_s_vpi_error_info_file_set(int argc, VALUE *argv, VALUE self) { s_vpi_error_info *arg1 = (s_vpi_error_info *) 0 ; PLI_BYTE8 *arg2 = (PLI_BYTE8 *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_error_info, 0); arg2 = StringValuePtr(argv[0]); { if (arg1->file) free((char*)arg1->file); if (arg2) { arg1->file = (PLI_BYTE8 *) malloc(strlen(arg2)+1); strcpy((char*)arg1->file,arg2); } else { arg1->file = 0; } } return Qnil; } static VALUE _wrap_s_vpi_error_info_file_get(int argc, VALUE *argv, VALUE self) { s_vpi_error_info *arg1 = (s_vpi_error_info *) 0 ; PLI_BYTE8 *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_error_info, 0); result = (PLI_BYTE8 *) ((arg1)->file); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_s_vpi_error_info_line_set(int argc, VALUE *argv, VALUE self) { s_vpi_error_info *arg1 = (s_vpi_error_info *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_error_info, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->line = arg2; return Qnil; } static VALUE _wrap_s_vpi_error_info_line_get(int argc, VALUE *argv, VALUE self) { s_vpi_error_info *arg1 = (s_vpi_error_info *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_vpi_error_info, 0); result = (PLI_INT32) ((arg1)->line); vresult = INT2NUM(result); return vresult; } #ifdef HAVE_RB_DEFINE_ALLOC_FUNC static VALUE _wrap_s_vpi_error_info_allocate(VALUE self) { #else static VALUE _wrap_s_vpi_error_info_allocate(int argc, VALUE *argv, VALUE self) { #endif VALUE vresult = SWIG_NewClassInstance(self, SWIGTYPE_p_t_vpi_error_info); #ifndef HAVE_RB_DEFINE_ALLOC_FUNC rb_obj_call_init(vresult, argc, argv); #endif return vresult; } static VALUE _wrap_new_s_vpi_error_info(int argc, VALUE *argv, VALUE self) { s_vpi_error_info *result; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); result = (s_vpi_error_info *)(s_vpi_error_info *) calloc(1, sizeof(s_vpi_error_info)); DATA_PTR(self) = result; return self; } static void free_s_vpi_error_info(s_vpi_error_info *arg1) { free((char *) arg1); } swig_class cS_cb_data; static VALUE _wrap_s_cb_data_reason_set(int argc, VALUE *argv, VALUE self) { s_cb_data *arg1 = (s_cb_data *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_cb_data, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->reason = arg2; return Qnil; } static VALUE _wrap_s_cb_data_reason_get(int argc, VALUE *argv, VALUE self) { s_cb_data *arg1 = (s_cb_data *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_cb_data, 0); result = (PLI_INT32) ((arg1)->reason); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_cb_data_cb_rtn_set(int argc, VALUE *argv, VALUE self) { s_cb_data *arg1 = (s_cb_data *) 0 ; PLI_INT32 (*arg2)(struct t_cb_data *) = (PLI_INT32 (*)(struct t_cb_data *)) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_cb_data, 0); SWIG_ConvertPtr(argv[0], (void **) &arg2, SWIGTYPE_p_f_p_struct_t_cb_data__int, 0); if (arg1) (arg1)->cb_rtn = arg2; return Qnil; } static VALUE _wrap_s_cb_data_cb_rtn_get(int argc, VALUE *argv, VALUE self) { s_cb_data *arg1 = (s_cb_data *) 0 ; PLI_INT32 (*result)(struct t_cb_data *); VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_cb_data, 0); result = (PLI_INT32 (*)(struct t_cb_data *)) ((arg1)->cb_rtn); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_f_p_struct_t_cb_data__int,0); return vresult; } static VALUE _wrap_s_cb_data_obj_set(int argc, VALUE *argv, VALUE self) { s_cb_data *arg1 = (s_cb_data *) 0 ; vpiHandle arg2 = (vpiHandle) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_cb_data, 0); SWIG_ConvertPtr(argv[0], (void **) &arg2, SWIGTYPE_p_unsigned_int, SWIG_POINTER_DISOWN); if (arg1) (arg1)->obj = arg2; return Qnil; } static VALUE _wrap_s_cb_data_obj_get(int argc, VALUE *argv, VALUE self) { s_cb_data *arg1 = (s_cb_data *) 0 ; vpiHandle result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_cb_data, 0); result = (vpiHandle) ((arg1)->obj); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_unsigned_int,0); return vresult; } static VALUE _wrap_s_cb_data_time_set(int argc, VALUE *argv, VALUE self) { s_cb_data *arg1 = (s_cb_data *) 0 ; p_vpi_time arg2 = (p_vpi_time) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_cb_data, 0); SWIG_ConvertPtr(argv[0], (void **) &arg2, SWIGTYPE_p_t_vpi_time, SWIG_POINTER_DISOWN); if (arg1) (arg1)->time = arg2; return Qnil; } static VALUE _wrap_s_cb_data_time_get(int argc, VALUE *argv, VALUE self) { s_cb_data *arg1 = (s_cb_data *) 0 ; p_vpi_time result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_cb_data, 0); result = (p_vpi_time) ((arg1)->time); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_t_vpi_time,0); return vresult; } static VALUE _wrap_s_cb_data_value_set(int argc, VALUE *argv, VALUE self) { s_cb_data *arg1 = (s_cb_data *) 0 ; p_vpi_value arg2 = (p_vpi_value) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_cb_data, 0); SWIG_ConvertPtr(argv[0], (void **) &arg2, SWIGTYPE_p_t_vpi_value, SWIG_POINTER_DISOWN); if (arg1) (arg1)->value = arg2; return Qnil; } static VALUE _wrap_s_cb_data_value_get(int argc, VALUE *argv, VALUE self) { s_cb_data *arg1 = (s_cb_data *) 0 ; p_vpi_value result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_cb_data, 0); result = (p_vpi_value) ((arg1)->value); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_t_vpi_value,0); return vresult; } static VALUE _wrap_s_cb_data_index_set(int argc, VALUE *argv, VALUE self) { s_cb_data *arg1 = (s_cb_data *) 0 ; PLI_INT32 arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_cb_data, 0); arg2 = NUM2INT(argv[0]); if (arg1) (arg1)->index = arg2; return Qnil; } static VALUE _wrap_s_cb_data_index_get(int argc, VALUE *argv, VALUE self) { s_cb_data *arg1 = (s_cb_data *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_cb_data, 0); result = (PLI_INT32) ((arg1)->index); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_s_cb_data_user_data_set(int argc, VALUE *argv, VALUE self) { s_cb_data *arg1 = (s_cb_data *) 0 ; PLI_BYTE8 *arg2 = (PLI_BYTE8 *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_cb_data, 0); arg2 = StringValuePtr(argv[0]); { if (arg1->user_data) free((char*)arg1->user_data); if (arg2) { arg1->user_data = (PLI_BYTE8 *) malloc(strlen(arg2)+1); strcpy((char*)arg1->user_data,arg2); } else { arg1->user_data = 0; } } return Qnil; } static VALUE _wrap_s_cb_data_user_data_get(int argc, VALUE *argv, VALUE self) { s_cb_data *arg1 = (s_cb_data *) 0 ; PLI_BYTE8 *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_t_cb_data, 0); result = (PLI_BYTE8 *) ((arg1)->user_data); vresult = rb_str_new2(result); return vresult; } #ifdef HAVE_RB_DEFINE_ALLOC_FUNC static VALUE _wrap_s_cb_data_allocate(VALUE self) { #else static VALUE _wrap_s_cb_data_allocate(int argc, VALUE *argv, VALUE self) { #endif VALUE vresult = SWIG_NewClassInstance(self, SWIGTYPE_p_t_cb_data); #ifndef HAVE_RB_DEFINE_ALLOC_FUNC rb_obj_call_init(vresult, argc, argv); #endif return vresult; } static VALUE _wrap_new_s_cb_data(int argc, VALUE *argv, VALUE self) { s_cb_data *result; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); result = (s_cb_data *)(s_cb_data *) calloc(1, sizeof(s_cb_data)); DATA_PTR(self) = result; return self; } static void free_s_cb_data(s_cb_data *arg1) { free((char *) arg1); } static VALUE _wrap_vpi_register_cb(int argc, VALUE *argv, VALUE self) { p_cb_data arg1 = (p_cb_data) 0 ; vpiHandle result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_t_cb_data, 0); result = (vpiHandle)vpi_register_cb(arg1); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_unsigned_int,0); return vresult; } static VALUE _wrap_vpi_remove_cb(int argc, VALUE *argv, VALUE self) { vpiHandle arg1 = (vpiHandle) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_unsigned_int, 0); result = (PLI_INT32)vpi_remove_cb(arg1); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_get_cb_info(int argc, VALUE *argv, VALUE self) { vpiHandle arg1 = (vpiHandle) 0 ; p_cb_data arg2 = (p_cb_data) 0 ; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_unsigned_int, 0); SWIG_ConvertPtr(argv[1], (void **) &arg2, SWIGTYPE_p_t_cb_data, 0); vpi_get_cb_info(arg1,arg2); return Qnil; } static VALUE _wrap_vpi_register_systf(int argc, VALUE *argv, VALUE self) { p_vpi_systf_data arg1 = (p_vpi_systf_data) 0 ; vpiHandle result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_t_vpi_systf_data, 0); result = (vpiHandle)vpi_register_systf(arg1); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_unsigned_int,0); return vresult; } static VALUE _wrap_vpi_get_systf_info(int argc, VALUE *argv, VALUE self) { vpiHandle arg1 = (vpiHandle) 0 ; p_vpi_systf_data arg2 = (p_vpi_systf_data) 0 ; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_unsigned_int, 0); SWIG_ConvertPtr(argv[1], (void **) &arg2, SWIGTYPE_p_t_vpi_systf_data, 0); vpi_get_systf_info(arg1,arg2); return Qnil; } static VALUE _wrap_vpi_handle_by_name(int argc, VALUE *argv, VALUE self) { PLI_BYTE8 *arg1 = (PLI_BYTE8 *) 0 ; vpiHandle arg2 = (vpiHandle) 0 ; vpiHandle result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); arg1 = StringValuePtr(argv[0]); SWIG_ConvertPtr(argv[1], (void **) &arg2, SWIGTYPE_p_unsigned_int, 0); result = (vpiHandle)vpi_handle_by_name(arg1,arg2); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_unsigned_int,0); return vresult; } static VALUE _wrap_vpi_handle_by_index(int argc, VALUE *argv, VALUE self) { vpiHandle arg1 = (vpiHandle) 0 ; PLI_INT32 arg2 ; vpiHandle result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_unsigned_int, 0); arg2 = NUM2INT(argv[1]); result = (vpiHandle)vpi_handle_by_index(arg1,arg2); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_unsigned_int,0); return vresult; } static VALUE _wrap_vpi_handle(int argc, VALUE *argv, VALUE self) { PLI_INT32 arg1 ; vpiHandle arg2 = (vpiHandle) 0 ; vpiHandle result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); arg1 = NUM2INT(argv[0]); SWIG_ConvertPtr(argv[1], (void **) &arg2, SWIGTYPE_p_unsigned_int, 0); result = (vpiHandle)vpi_handle(arg1,arg2); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_unsigned_int,0); return vresult; } static VALUE _wrap_vpi_handle_multi(int argc, VALUE *argv, VALUE self) { PLI_INT32 arg1 ; vpiHandle arg2 = (vpiHandle) 0 ; vpiHandle arg3 = (vpiHandle) 0 ; void *arg4 = 0 ; vpiHandle result; VALUE vresult = Qnil; if (argc < 3) rb_raise(rb_eArgError, "wrong # of arguments(%d for 3)",argc); arg1 = NUM2INT(argv[0]); SWIG_ConvertPtr(argv[1], (void **) &arg2, SWIGTYPE_p_unsigned_int, 0); SWIG_ConvertPtr(argv[2], (void **) &arg3, SWIGTYPE_p_unsigned_int, 0); result = (vpiHandle)vpi_handle_multi(arg1,arg2,arg3,arg4); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_unsigned_int,0); return vresult; } static VALUE _wrap_vpi_iterate(int argc, VALUE *argv, VALUE self) { PLI_INT32 arg1 ; vpiHandle arg2 = (vpiHandle) 0 ; vpiHandle result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); arg1 = NUM2INT(argv[0]); SWIG_ConvertPtr(argv[1], (void **) &arg2, SWIGTYPE_p_unsigned_int, 0); result = (vpiHandle)vpi_iterate(arg1,arg2); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_unsigned_int,0); return vresult; } static VALUE _wrap_vpi_scan(int argc, VALUE *argv, VALUE self) { vpiHandle arg1 = (vpiHandle) 0 ; vpiHandle result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_unsigned_int, 0); result = (vpiHandle)vpi_scan(arg1); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_unsigned_int,0); return vresult; } static VALUE _wrap_vpi_get(int argc, VALUE *argv, VALUE self) { PLI_INT32 arg1 ; vpiHandle arg2 = (vpiHandle) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); arg1 = NUM2INT(argv[0]); SWIG_ConvertPtr(argv[1], (void **) &arg2, SWIGTYPE_p_unsigned_int, 0); result = (PLI_INT32)vpi_get(arg1,arg2); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_get_str(int argc, VALUE *argv, VALUE self) { PLI_INT32 arg1 ; vpiHandle arg2 = (vpiHandle) 0 ; PLI_BYTE8 *result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); arg1 = NUM2INT(argv[0]); SWIG_ConvertPtr(argv[1], (void **) &arg2, SWIGTYPE_p_unsigned_int, 0); result = (PLI_BYTE8 *)vpi_get_str(arg1,arg2); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_vpi_get_delays(int argc, VALUE *argv, VALUE self) { vpiHandle arg1 = (vpiHandle) 0 ; p_vpi_delay arg2 = (p_vpi_delay) 0 ; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_unsigned_int, 0); SWIG_ConvertPtr(argv[1], (void **) &arg2, SWIGTYPE_p_t_vpi_delay, 0); vpi_get_delays(arg1,arg2); return Qnil; } static VALUE _wrap_vpi_put_delays(int argc, VALUE *argv, VALUE self) { vpiHandle arg1 = (vpiHandle) 0 ; p_vpi_delay arg2 = (p_vpi_delay) 0 ; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_unsigned_int, 0); SWIG_ConvertPtr(argv[1], (void **) &arg2, SWIGTYPE_p_t_vpi_delay, 0); vpi_put_delays(arg1,arg2); return Qnil; } static VALUE _wrap_vpi_get_value(int argc, VALUE *argv, VALUE self) { vpiHandle arg1 = (vpiHandle) 0 ; p_vpi_value arg2 = (p_vpi_value) 0 ; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_unsigned_int, 0); SWIG_ConvertPtr(argv[1], (void **) &arg2, SWIGTYPE_p_t_vpi_value, 0); vpi_get_value(arg1,arg2); return Qnil; } static VALUE _wrap_vpi_put_value(int argc, VALUE *argv, VALUE self) { vpiHandle arg1 = (vpiHandle) 0 ; p_vpi_value arg2 = (p_vpi_value) 0 ; p_vpi_time arg3 = (p_vpi_time) 0 ; PLI_INT32 arg4 ; vpiHandle result; VALUE vresult = Qnil; if ((argc < 4) || (argc > 4)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 4)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_unsigned_int, 0); SWIG_ConvertPtr(argv[1], (void **) &arg2, SWIGTYPE_p_t_vpi_value, 0); SWIG_ConvertPtr(argv[2], (void **) &arg3, SWIGTYPE_p_t_vpi_time, 0); arg4 = NUM2INT(argv[3]); result = (vpiHandle)vpi_put_value(arg1,arg2,arg3,arg4); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_unsigned_int,0); return vresult; } static VALUE _wrap_vpi_get_time(int argc, VALUE *argv, VALUE self) { vpiHandle arg1 = (vpiHandle) 0 ; p_vpi_time arg2 = (p_vpi_time) 0 ; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_unsigned_int, 0); SWIG_ConvertPtr(argv[1], (void **) &arg2, SWIGTYPE_p_t_vpi_time, 0); vpi_get_time(arg1,arg2); return Qnil; } static VALUE _wrap_vpi_mcd_open(int argc, VALUE *argv, VALUE self) { PLI_BYTE8 *arg1 = (PLI_BYTE8 *) 0 ; PLI_UINT32 result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = StringValuePtr(argv[0]); result = (PLI_UINT32)vpi_mcd_open(arg1); vresult = UINT2NUM(result); return vresult; } static VALUE _wrap_vpi_mcd_close(int argc, VALUE *argv, VALUE self) { PLI_UINT32 arg1 ; PLI_UINT32 result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = NUM2UINT(argv[0]); result = (PLI_UINT32)vpi_mcd_close(arg1); vresult = UINT2NUM(result); return vresult; } static VALUE _wrap_vpi_mcd_name(int argc, VALUE *argv, VALUE self) { PLI_UINT32 arg1 ; PLI_BYTE8 *result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = NUM2UINT(argv[0]); result = (PLI_BYTE8 *)vpi_mcd_name(arg1); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_vpi_mcd_printf(int argc, VALUE *argv, VALUE self) { PLI_UINT32 arg1 ; PLI_BYTE8 *arg2 = (PLI_BYTE8 *) 0 ; void *arg3 = 0 ; PLI_INT32 result; VALUE vresult = Qnil; if (argc < 2) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); arg1 = NUM2UINT(argv[0]); arg2 = StringValuePtr(argv[1]); result = (PLI_INT32)vpi_mcd_printf(arg1,arg2,arg3); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_printf(int argc, VALUE *argv, VALUE self) { PLI_BYTE8 *arg1 = (PLI_BYTE8 *) 0 ; void *arg2 = 0 ; PLI_INT32 result; VALUE vresult = Qnil; if (argc < 1) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = StringValuePtr(argv[0]); result = (PLI_INT32)vpi_printf(arg1,arg2); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_compare_objects(int argc, VALUE *argv, VALUE self) { vpiHandle arg1 = (vpiHandle) 0 ; vpiHandle arg2 = (vpiHandle) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_unsigned_int, 0); SWIG_ConvertPtr(argv[1], (void **) &arg2, SWIGTYPE_p_unsigned_int, 0); result = (PLI_INT32)vpi_compare_objects(arg1,arg2); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_chk_error(int argc, VALUE *argv, VALUE self) { p_vpi_error_info arg1 = (p_vpi_error_info) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_t_vpi_error_info, 0); result = (PLI_INT32)vpi_chk_error(arg1); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_free_object(int argc, VALUE *argv, VALUE self) { vpiHandle arg1 = (vpiHandle) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_unsigned_int, 0); result = (PLI_INT32)vpi_free_object(arg1); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_get_vlog_info(int argc, VALUE *argv, VALUE self) { p_vpi_vlog_info arg1 = (p_vpi_vlog_info) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_t_vpi_vlog_info, 0); result = (PLI_INT32)vpi_get_vlog_info(arg1); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_get_data(int argc, VALUE *argv, VALUE self) { PLI_INT32 arg1 ; PLI_BYTE8 *arg2 = (PLI_BYTE8 *) 0 ; PLI_INT32 arg3 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 3) || (argc > 3)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 3)",argc); arg1 = NUM2INT(argv[0]); arg2 = StringValuePtr(argv[1]); arg3 = NUM2INT(argv[2]); result = (PLI_INT32)vpi_get_data(arg1,arg2,arg3); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_put_data(int argc, VALUE *argv, VALUE self) { PLI_INT32 arg1 ; PLI_BYTE8 *arg2 = (PLI_BYTE8 *) 0 ; PLI_INT32 arg3 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 3) || (argc > 3)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 3)",argc); arg1 = NUM2INT(argv[0]); arg2 = StringValuePtr(argv[1]); arg3 = NUM2INT(argv[2]); result = (PLI_INT32)vpi_put_data(arg1,arg2,arg3); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_get_userdata(int argc, VALUE *argv, VALUE self) { vpiHandle arg1 = (vpiHandle) 0 ; void *result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_unsigned_int, 0); result = (void *)vpi_get_userdata(arg1); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_void,0); return vresult; } static VALUE _wrap_vpi_put_userdata(int argc, VALUE *argv, VALUE self) { vpiHandle arg1 = (vpiHandle) 0 ; void *arg2 = (void *) 0 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_unsigned_int, 0); SWIG_ConvertPtr(argv[1], (void **) &arg2, 0, SWIG_POINTER_EXCEPTION|0); result = (PLI_INT32)vpi_put_userdata(arg1,arg2); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_vprintf(int argc, VALUE *argv, VALUE self) { PLI_BYTE8 *arg1 = (PLI_BYTE8 *) 0 ; int arg2 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); arg1 = StringValuePtr(argv[0]); arg2 = NUM2INT(argv[1]); result = (PLI_INT32)vpi_vprintf(arg1,arg2); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_mcd_vprintf(int argc, VALUE *argv, VALUE self) { PLI_UINT32 arg1 ; PLI_BYTE8 *arg2 = (PLI_BYTE8 *) 0 ; int arg3 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 3) || (argc > 3)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 3)",argc); arg1 = NUM2UINT(argv[0]); arg2 = StringValuePtr(argv[1]); arg3 = NUM2INT(argv[2]); result = (PLI_INT32)vpi_mcd_vprintf(arg1,arg2,arg3); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_flush(int argc, VALUE *argv, VALUE self) { PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); result = (PLI_INT32)vpi_flush(); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_mcd_flush(int argc, VALUE *argv, VALUE self) { PLI_UINT32 arg1 ; PLI_INT32 result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = NUM2UINT(argv[0]); result = (PLI_INT32)vpi_mcd_flush(arg1); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_control(int argc, VALUE *argv, VALUE self) { PLI_INT32 arg1 ; void *arg2 = 0 ; PLI_INT32 result; VALUE vresult = Qnil; if (argc < 1) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = NUM2INT(argv[0]); result = (PLI_INT32)vpi_control(arg1,arg2); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_vpi_handle_by_multi_index(int argc, VALUE *argv, VALUE self) { vpiHandle arg1 = (vpiHandle) 0 ; PLI_INT32 arg2 ; PLI_INT32 *arg3 = (PLI_INT32 *) 0 ; vpiHandle result; VALUE vresult = Qnil; if ((argc < 3) || (argc > 3)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 3)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_unsigned_int, 0); arg2 = NUM2INT(argv[1]); SWIG_ConvertPtr(argv[2], (void **) &arg3, SWIGTYPE_p_int, 0); result = (vpiHandle)vpi_handle_by_multi_index(arg1,arg2,arg3); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_unsigned_int,0); return vresult; } static VALUE vlog_startup_routines_get(VALUE self) { VALUE _val; _val = SWIG_NewPointerObj((void *) vlog_startup_routines, SWIGTYPE_p_p_f___void,0); return _val; } static VALUE vlog_startup_routines_set(VALUE self, VALUE _val) { { rb_raise(rb_eTypeError, "C/C++ variable 'vlog_startup_routines' is readonly"); } return _val; } /* -------- TYPE CONVERSION AND EQUIVALENCE RULES (BEGIN) -------- */ static swig_type_info _swigt__p_char = {"_p_char", "char *|PLI_BYTE8 *", 0, 0, 0}; static swig_type_info _swigt__p_f_p_char__int = {"_p_f_p_char__int", "int (*)(char *)|PLI_INT32 (*)(PLI_BYTE8 *)", 0, 0, 0}; static swig_type_info _swigt__p_f_p_struct_t_cb_data__int = {"_p_f_p_struct_t_cb_data__int", "int (*)(struct t_cb_data *)|PLI_INT32 (*)(struct t_cb_data *)", 0, 0, 0}; static swig_type_info _swigt__p_int = {"_p_int", "int *|PLI_INT32 *", 0, 0, 0}; static swig_type_info _swigt__p_p_char = {"_p_p_char", "char **|PLI_BYTE8 **", 0, 0, 0}; static swig_type_info _swigt__p_p_f___void = {"_p_p_f___void", "void (**)()", 0, 0, 0}; static swig_type_info _swigt__p_s_vpi_value_value = {"_p_s_vpi_value_value", "s_vpi_value_value *", 0, 0, 0}; static swig_type_info _swigt__p_short = {"_p_short", "short *|PLI_INT16 *", 0, 0, 0}; static swig_type_info _swigt__p_t_cb_data = {"_p_t_cb_data", "struct t_cb_data *|p_cb_data", 0, 0, 0}; static swig_type_info _swigt__p_t_vpi_delay = {"_p_t_vpi_delay", "struct t_vpi_delay *|p_vpi_delay", 0, 0, 0}; static swig_type_info _swigt__p_t_vpi_error_info = {"_p_t_vpi_error_info", "struct t_vpi_error_info *|p_vpi_error_info", 0, 0, 0}; static swig_type_info _swigt__p_t_vpi_strengthval = {"_p_t_vpi_strengthval", "struct t_vpi_strengthval *", 0, 0, 0}; static swig_type_info _swigt__p_t_vpi_systf_data = {"_p_t_vpi_systf_data", "struct t_vpi_systf_data *|p_vpi_systf_data", 0, 0, 0}; static swig_type_info _swigt__p_t_vpi_time = {"_p_t_vpi_time", "struct t_vpi_time *|p_vpi_time", 0, 0, 0}; static swig_type_info _swigt__p_t_vpi_value = {"_p_t_vpi_value", "struct t_vpi_value *|p_vpi_value", 0, 0, 0}; static swig_type_info _swigt__p_t_vpi_vecval = {"_p_t_vpi_vecval", "struct t_vpi_vecval *", 0, 0, 0}; static swig_type_info _swigt__p_t_vpi_vlog_info = {"_p_t_vpi_vlog_info", "struct t_vpi_vlog_info *|p_vpi_vlog_info", 0, 0, 0}; static swig_type_info _swigt__p_unsigned_char = {"_p_unsigned_char", "unsigned char *|PLI_UBYTE8 *", 0, 0, 0}; static swig_type_info _swigt__p_unsigned_int = {"_p_unsigned_int", "unsigned int *|vpiHandle", 0, 0, 0}; static swig_type_info _swigt__p_unsigned_long = {"_p_unsigned_long", "unsigned long *|VALUE *", 0, 0, 0}; static swig_type_info _swigt__p_unsigned_short = {"_p_unsigned_short", "unsigned short *|PLI_UINT16 *", 0, 0, 0}; static swig_type_info _swigt__p_void = {"_p_void", "void *", 0, 0, 0}; static swig_type_info *swig_type_initial[] = { &_swigt__p_char, &_swigt__p_f_p_char__int, &_swigt__p_f_p_struct_t_cb_data__int, &_swigt__p_int, &_swigt__p_p_char, &_swigt__p_p_f___void, &_swigt__p_s_vpi_value_value, &_swigt__p_short, &_swigt__p_t_cb_data, &_swigt__p_t_vpi_delay, &_swigt__p_t_vpi_error_info, &_swigt__p_t_vpi_strengthval, &_swigt__p_t_vpi_systf_data, &_swigt__p_t_vpi_time, &_swigt__p_t_vpi_value, &_swigt__p_t_vpi_vecval, &_swigt__p_t_vpi_vlog_info, &_swigt__p_unsigned_char, &_swigt__p_unsigned_int, &_swigt__p_unsigned_long, &_swigt__p_unsigned_short, &_swigt__p_void, }; static swig_cast_info _swigc__p_char[] = { {&_swigt__p_char, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_f_p_char__int[] = { {&_swigt__p_f_p_char__int, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_f_p_struct_t_cb_data__int[] = { {&_swigt__p_f_p_struct_t_cb_data__int, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_int[] = { {&_swigt__p_int, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_p_char[] = { {&_swigt__p_p_char, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_p_f___void[] = { {&_swigt__p_p_f___void, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_s_vpi_value_value[] = { {&_swigt__p_s_vpi_value_value, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_short[] = { {&_swigt__p_short, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_t_cb_data[] = { {&_swigt__p_t_cb_data, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_t_vpi_delay[] = { {&_swigt__p_t_vpi_delay, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_t_vpi_error_info[] = { {&_swigt__p_t_vpi_error_info, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_t_vpi_strengthval[] = { {&_swigt__p_t_vpi_strengthval, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_t_vpi_systf_data[] = { {&_swigt__p_t_vpi_systf_data, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_t_vpi_time[] = { {&_swigt__p_t_vpi_time, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_t_vpi_value[] = { {&_swigt__p_t_vpi_value, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_t_vpi_vecval[] = { {&_swigt__p_t_vpi_vecval, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_t_vpi_vlog_info[] = { {&_swigt__p_t_vpi_vlog_info, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_unsigned_char[] = { {&_swigt__p_unsigned_char, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_unsigned_int[] = { {&_swigt__p_unsigned_int, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_unsigned_long[] = { {&_swigt__p_unsigned_long, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_unsigned_short[] = { {&_swigt__p_unsigned_short, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_void[] = { {&_swigt__p_void, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info *swig_cast_initial[] = { _swigc__p_char, _swigc__p_f_p_char__int, _swigc__p_f_p_struct_t_cb_data__int, _swigc__p_int, _swigc__p_p_char, _swigc__p_p_f___void, _swigc__p_s_vpi_value_value, _swigc__p_short, _swigc__p_t_cb_data, _swigc__p_t_vpi_delay, _swigc__p_t_vpi_error_info, _swigc__p_t_vpi_strengthval, _swigc__p_t_vpi_systf_data, _swigc__p_t_vpi_time, _swigc__p_t_vpi_value, _swigc__p_t_vpi_vecval, _swigc__p_t_vpi_vlog_info, _swigc__p_unsigned_char, _swigc__p_unsigned_int, _swigc__p_unsigned_long, _swigc__p_unsigned_short, _swigc__p_void, }; /* -------- TYPE CONVERSION AND EQUIVALENCE RULES (END) -------- */ /************************************************************************* * Type initialization: * This problem is tough by the requirement that no dynamic * memory is used. Also, since swig_type_info structures store pointers to * swig_cast_info structures and swig_cast_info structures store pointers back * to swig_type_info structures, we need some lookup code at initialization. * The idea is that swig generates all the structures that are needed. * The runtime then collects these partially filled structures. * The SWIG_InitializeModule function takes these initial arrays out of * swig_module, and does all the lookup, filling in the swig_module.types * array with the correct data and linking the correct swig_cast_info * structures together. * The generated swig_type_info structures are assigned staticly to an initial * array. We just loop though that array, and handle each type individually. * First we lookup if this type has been already loaded, and if so, use the * loaded structure instead of the generated one. Then we have to fill in the * cast linked list. The cast data is initially stored in something like a * two-dimensional array. Each row corresponds to a type (there are the same * number of rows as there are in the swig_type_initial array). Each entry in * a column is one of the swig_cast_info structures for that type. * The cast_initial array is actually an array of arrays, because each row has * a variable number of columns. So to actually build the cast linked list, * we find the array of casts associated with the type, and loop through it * adding the casts to the list. The one last trick we need to do is making * sure the type pointer in the swig_cast_info struct is correct. * First off, we lookup the cast->type name to see if it is already loaded. * There are three cases to handle: * 1) If the cast->type has already been loaded AND the type we are adding * casting info to has not been loaded (it is in this module), THEN we * replace the cast->type pointer with the type pointer that has already * been loaded. * 2) If BOTH types (the one we are adding casting info to, and the * cast->type) are loaded, THEN the cast info has already been loaded by * the previous module so we just ignore it. * 3) Finally, if cast->type has not already been loaded, then we add that * swig_cast_info to the linked list (because the cast->type) pointer will * be correct. **/ #ifdef __cplusplus extern "C" { #endif SWIGRUNTIME void SWIG_InitializeModule(void *clientdata) { swig_type_info *type, *ret; swig_cast_info *cast; size_t i; swig_module_info *module_head; static int init_run = 0; clientdata = clientdata; if (init_run) return; init_run = 1; /* Initialize the swig_module */ swig_module.type_initial = swig_type_initial; swig_module.cast_initial = swig_cast_initial; /* Try and load any already created modules */ module_head = SWIG_GetModule(clientdata); if (module_head) { swig_module.next = module_head->next; module_head->next = &swig_module; } else { /* This is the first module loaded */ swig_module.next = &swig_module; SWIG_SetModule(clientdata, &swig_module); } /* Now work on filling in swig_module.types */ for (i = 0; i < swig_module.size; ++i) { type = 0; /* if there is another module already loaded */ if (swig_module.next != &swig_module) { type = SWIG_MangledTypeQueryModule(swig_module.next, &swig_module, swig_module.type_initial[i]->name); } if (type) { /* Overwrite clientdata field */ if (swig_module.type_initial[i]->clientdata) type->clientdata = swig_module.type_initial[i]->clientdata; } else { type = swig_module.type_initial[i]; } /* Insert casting types */ cast = swig_module.cast_initial[i]; while (cast->type) { /* Don't need to add information already in the list */ ret = 0; if (swig_module.next != &swig_module) { ret = SWIG_MangledTypeQueryModule(swig_module.next, &swig_module, cast->type->name); } if (ret && type == swig_module.type_initial[i]) { cast->type = ret; ret = 0; } if (!ret) { if (type->cast) { type->cast->prev = cast; cast->next = type->cast; } type->cast = cast; } cast++; } /* Set entry in modules->types array equal to the type */ swig_module.types[i] = type; } swig_module.types[i] = 0; } /* This function will propagate the clientdata field of type to * any new swig_type_info structures that have been added into the list * of equivalent types. It is like calling * SWIG_TypeClientData(type, clientdata) a second time. */ SWIGRUNTIME void SWIG_PropagateClientData(void) { size_t i; swig_cast_info *equiv; static int init_run = 0; if (init_run) return; init_run = 1; for (i = 0; i < swig_module.size; i++) { if (swig_module.types[i]->clientdata) { equiv = swig_module.types[i]->cast; while (equiv) { if (!equiv->converter) { if (equiv->type && !equiv->type->clientdata) SWIG_TypeClientData(equiv->type, swig_module.types[i]->clientdata); } equiv = equiv->next; } } } } #ifdef __cplusplus } #endif #ifdef __cplusplus extern "C" #endif SWIGEXPORT void Init_vpi(void) { size_t i; SWIG_InitRuntime(); mVpi = rb_define_module("Vpi"); SWIG_InitializeModule(0); for (i = 0; i < swig_module.size; i++) { SWIG_define_class(swig_module.types[i]); } SWIG_RubyInitializeTrackings(); rb_define_const(mVpi,"VpiAlways", INT2NUM(1)); rb_define_const(mVpi,"VpiAssignStmt", INT2NUM(2)); rb_define_const(mVpi,"VpiAssignment", INT2NUM(3)); rb_define_const(mVpi,"VpiBegin", INT2NUM(4)); rb_define_const(mVpi,"VpiCase", INT2NUM(5)); rb_define_const(mVpi,"VpiCaseItem", INT2NUM(6)); rb_define_const(mVpi,"VpiConstant", INT2NUM(7)); rb_define_const(mVpi,"VpiContAssign", INT2NUM(8)); rb_define_const(mVpi,"VpiDeassign", INT2NUM(9)); rb_define_const(mVpi,"VpiDefParam", INT2NUM(10)); rb_define_const(mVpi,"VpiDelayControl", INT2NUM(11)); rb_define_const(mVpi,"VpiDisable", INT2NUM(12)); rb_define_const(mVpi,"VpiEventControl", INT2NUM(13)); rb_define_const(mVpi,"VpiEventStmt", INT2NUM(14)); rb_define_const(mVpi,"VpiFor", INT2NUM(15)); rb_define_const(mVpi,"VpiForce", INT2NUM(16)); rb_define_const(mVpi,"VpiForever", INT2NUM(17)); rb_define_const(mVpi,"VpiFork", INT2NUM(18)); rb_define_const(mVpi,"VpiFuncCall", INT2NUM(19)); rb_define_const(mVpi,"VpiFunction", INT2NUM(20)); rb_define_const(mVpi,"VpiGate", INT2NUM(21)); rb_define_const(mVpi,"VpiIf", INT2NUM(22)); rb_define_const(mVpi,"VpiIfElse", INT2NUM(23)); rb_define_const(mVpi,"VpiInitial", INT2NUM(24)); rb_define_const(mVpi,"VpiIntegerVar", INT2NUM(25)); rb_define_const(mVpi,"VpiInterModPath", INT2NUM(26)); rb_define_const(mVpi,"VpiIterator", INT2NUM(27)); rb_define_const(mVpi,"VpiIODecl", INT2NUM(28)); rb_define_const(mVpi,"VpiMemory", INT2NUM(29)); rb_define_const(mVpi,"VpiMemoryWord", INT2NUM(30)); rb_define_const(mVpi,"VpiModPath", INT2NUM(31)); rb_define_const(mVpi,"VpiModule", INT2NUM(32)); rb_define_const(mVpi,"VpiNamedBegin", INT2NUM(33)); rb_define_const(mVpi,"VpiNamedEvent", INT2NUM(34)); rb_define_const(mVpi,"VpiNamedFork", INT2NUM(35)); rb_define_const(mVpi,"VpiNet", INT2NUM(36)); rb_define_const(mVpi,"VpiNetBit", INT2NUM(37)); rb_define_const(mVpi,"VpiNullStmt", INT2NUM(38)); rb_define_const(mVpi,"VpiOperation", INT2NUM(39)); rb_define_const(mVpi,"VpiParamAssign", INT2NUM(40)); rb_define_const(mVpi,"VpiParameter", INT2NUM(41)); rb_define_const(mVpi,"VpiPartSelect", INT2NUM(42)); rb_define_const(mVpi,"VpiPathTerm", INT2NUM(43)); rb_define_const(mVpi,"VpiPort", INT2NUM(44)); rb_define_const(mVpi,"VpiPortBit", INT2NUM(45)); rb_define_const(mVpi,"VpiPrimTerm", INT2NUM(46)); rb_define_const(mVpi,"VpiRealVar", INT2NUM(47)); rb_define_const(mVpi,"VpiReg", INT2NUM(48)); rb_define_const(mVpi,"VpiRegBit", INT2NUM(49)); rb_define_const(mVpi,"VpiRelease", INT2NUM(50)); rb_define_const(mVpi,"VpiRepeat", INT2NUM(51)); rb_define_const(mVpi,"VpiRepeatControl", INT2NUM(52)); rb_define_const(mVpi,"VpiSchedEvent", INT2NUM(53)); rb_define_const(mVpi,"VpiSpecParam", INT2NUM(54)); rb_define_const(mVpi,"VpiSwitch", INT2NUM(55)); rb_define_const(mVpi,"VpiSysFuncCall", INT2NUM(56)); rb_define_const(mVpi,"VpiSysTaskCall", INT2NUM(57)); rb_define_const(mVpi,"VpiTableEntry", INT2NUM(58)); rb_define_const(mVpi,"VpiTask", INT2NUM(59)); rb_define_const(mVpi,"VpiTaskCall", INT2NUM(60)); rb_define_const(mVpi,"VpiTchk", INT2NUM(61)); rb_define_const(mVpi,"VpiTchkTerm", INT2NUM(62)); rb_define_const(mVpi,"VpiTimeVar", INT2NUM(63)); rb_define_const(mVpi,"VpiTimeQueue", INT2NUM(64)); rb_define_const(mVpi,"VpiUdp", INT2NUM(65)); rb_define_const(mVpi,"VpiUdpDefn", INT2NUM(66)); rb_define_const(mVpi,"VpiUserSystf", INT2NUM(67)); rb_define_const(mVpi,"VpiVarSelect", INT2NUM(68)); rb_define_const(mVpi,"VpiWait", INT2NUM(69)); rb_define_const(mVpi,"VpiWhile", INT2NUM(70)); rb_define_const(mVpi,"VpiAttribute", INT2NUM(105)); rb_define_const(mVpi,"VpiBitSelect", INT2NUM(106)); rb_define_const(mVpi,"VpiCallback", INT2NUM(107)); rb_define_const(mVpi,"VpiDelayTerm", INT2NUM(108)); rb_define_const(mVpi,"VpiDelayDevice", INT2NUM(109)); rb_define_const(mVpi,"VpiFrame", INT2NUM(110)); rb_define_const(mVpi,"VpiGateArray", INT2NUM(111)); rb_define_const(mVpi,"VpiModuleArray", INT2NUM(112)); rb_define_const(mVpi,"VpiPrimitiveArray", INT2NUM(113)); rb_define_const(mVpi,"VpiNetArray", INT2NUM(114)); rb_define_const(mVpi,"VpiRange", INT2NUM(115)); rb_define_const(mVpi,"VpiRegArray", INT2NUM(116)); rb_define_const(mVpi,"VpiSwitchArray", INT2NUM(117)); rb_define_const(mVpi,"VpiUdpArray", INT2NUM(118)); rb_define_const(mVpi,"VpiContAssignBit", INT2NUM(128)); rb_define_const(mVpi,"VpiNamedEventArray", INT2NUM(129)); rb_define_const(mVpi,"VpiIndexedPartSelect", INT2NUM(130)); rb_define_const(mVpi,"VpiGenScopeArray", INT2NUM(133)); rb_define_const(mVpi,"VpiGenScope", INT2NUM(134)); rb_define_const(mVpi,"VpiGenVar", INT2NUM(135)); rb_define_const(mVpi,"VpiCondition", INT2NUM(71)); rb_define_const(mVpi,"VpiDelay", INT2NUM(72)); rb_define_const(mVpi,"VpiElseStmt", INT2NUM(73)); rb_define_const(mVpi,"VpiForIncStmt", INT2NUM(74)); rb_define_const(mVpi,"VpiForInitStmt", INT2NUM(75)); rb_define_const(mVpi,"VpiHighConn", INT2NUM(76)); rb_define_const(mVpi,"VpiLhs", INT2NUM(77)); rb_define_const(mVpi,"VpiIndex", INT2NUM(78)); rb_define_const(mVpi,"VpiLeftRange", INT2NUM(79)); rb_define_const(mVpi,"VpiLowConn", INT2NUM(80)); rb_define_const(mVpi,"VpiParent", INT2NUM(81)); rb_define_const(mVpi,"VpiRhs", INT2NUM(82)); rb_define_const(mVpi,"VpiRightRange", INT2NUM(83)); rb_define_const(mVpi,"VpiScope", INT2NUM(84)); rb_define_const(mVpi,"VpiSysTfCall", INT2NUM(85)); rb_define_const(mVpi,"VpiTchkDataTerm", INT2NUM(86)); rb_define_const(mVpi,"VpiTchkNotifier", INT2NUM(87)); rb_define_const(mVpi,"VpiTchkRefTerm", INT2NUM(88)); rb_define_const(mVpi,"VpiArgument", INT2NUM(89)); rb_define_const(mVpi,"VpiBit", INT2NUM(90)); rb_define_const(mVpi,"VpiDriver", INT2NUM(91)); rb_define_const(mVpi,"VpiInternalScope", INT2NUM(92)); rb_define_const(mVpi,"VpiLoad", INT2NUM(93)); rb_define_const(mVpi,"VpiModDataPathIn", INT2NUM(94)); rb_define_const(mVpi,"VpiModPathIn", INT2NUM(95)); rb_define_const(mVpi,"VpiModPathOut", INT2NUM(96)); rb_define_const(mVpi,"VpiOperand", INT2NUM(97)); rb_define_const(mVpi,"VpiPortInst", INT2NUM(98)); rb_define_const(mVpi,"VpiProcess", INT2NUM(99)); rb_define_const(mVpi,"VpiVariables", INT2NUM(100)); rb_define_const(mVpi,"VpiUse", INT2NUM(101)); rb_define_const(mVpi,"VpiExpr", INT2NUM(102)); rb_define_const(mVpi,"VpiPrimitive", INT2NUM(103)); rb_define_const(mVpi,"VpiStmt", INT2NUM(104)); rb_define_const(mVpi,"VpiActiveTimeFormat", INT2NUM(119)); rb_define_const(mVpi,"VpiInTerm", INT2NUM(120)); rb_define_const(mVpi,"VpiInstanceArray", INT2NUM(121)); rb_define_const(mVpi,"VpiLocalDriver", INT2NUM(122)); rb_define_const(mVpi,"VpiLocalLoad", INT2NUM(123)); rb_define_const(mVpi,"VpiOutTerm", INT2NUM(124)); rb_define_const(mVpi,"VpiPorts", INT2NUM(125)); rb_define_const(mVpi,"VpiSimNet", INT2NUM(126)); rb_define_const(mVpi,"VpiTaskFunc", INT2NUM(127)); rb_define_const(mVpi,"VpiBaseExpr", INT2NUM(131)); rb_define_const(mVpi,"VpiWidthExpr", INT2NUM(132)); rb_define_const(mVpi,"VpiUndefined", INT2NUM(-1)); rb_define_const(mVpi,"VpiType", INT2NUM(1)); rb_define_const(mVpi,"VpiName", INT2NUM(2)); rb_define_const(mVpi,"VpiFullName", INT2NUM(3)); rb_define_const(mVpi,"VpiSize", INT2NUM(4)); rb_define_const(mVpi,"VpiFile", INT2NUM(5)); rb_define_const(mVpi,"VpiLineNo", INT2NUM(6)); rb_define_const(mVpi,"VpiTopModule", INT2NUM(7)); rb_define_const(mVpi,"VpiCellInstance", INT2NUM(8)); rb_define_const(mVpi,"VpiDefName", INT2NUM(9)); rb_define_const(mVpi,"VpiProtected", INT2NUM(10)); rb_define_const(mVpi,"VpiTimeUnit", INT2NUM(11)); rb_define_const(mVpi,"VpiTimePrecision", INT2NUM(12)); rb_define_const(mVpi,"VpiDefNetType", INT2NUM(13)); rb_define_const(mVpi,"VpiUnconnDrive", INT2NUM(14)); rb_define_const(mVpi,"VpiHighZ", INT2NUM(1)); rb_define_const(mVpi,"VpiPull1", INT2NUM(2)); rb_define_const(mVpi,"VpiPull0", INT2NUM(3)); rb_define_const(mVpi,"VpiDefFile", INT2NUM(15)); rb_define_const(mVpi,"VpiDefLineNo", INT2NUM(16)); rb_define_const(mVpi,"VpiDefDelayMode", INT2NUM(47)); rb_define_const(mVpi,"VpiDelayModeNone", INT2NUM(1)); rb_define_const(mVpi,"VpiDelayModePath", INT2NUM(2)); rb_define_const(mVpi,"VpiDelayModeDistrib", INT2NUM(3)); rb_define_const(mVpi,"VpiDelayModeUnit", INT2NUM(4)); rb_define_const(mVpi,"VpiDelayModeZero", INT2NUM(5)); rb_define_const(mVpi,"VpiDelayModeMTM", INT2NUM(6)); rb_define_const(mVpi,"VpiDefDecayTime", INT2NUM(48)); rb_define_const(mVpi,"VpiScalar", INT2NUM(17)); rb_define_const(mVpi,"VpiVector", INT2NUM(18)); rb_define_const(mVpi,"VpiExplicitName", INT2NUM(19)); rb_define_const(mVpi,"VpiDirection", INT2NUM(20)); rb_define_const(mVpi,"VpiInput", INT2NUM(1)); rb_define_const(mVpi,"VpiOutput", INT2NUM(2)); rb_define_const(mVpi,"VpiInout", INT2NUM(3)); rb_define_const(mVpi,"VpiMixedIO", INT2NUM(4)); rb_define_const(mVpi,"VpiNoDirection", INT2NUM(5)); rb_define_const(mVpi,"VpiConnByName", INT2NUM(21)); rb_define_const(mVpi,"VpiNetType", INT2NUM(22)); rb_define_const(mVpi,"VpiWire", INT2NUM(1)); rb_define_const(mVpi,"VpiWand", INT2NUM(2)); rb_define_const(mVpi,"VpiWor", INT2NUM(3)); rb_define_const(mVpi,"VpiTri", INT2NUM(4)); rb_define_const(mVpi,"VpiTri0", INT2NUM(5)); rb_define_const(mVpi,"VpiTri1", INT2NUM(6)); rb_define_const(mVpi,"VpiTriReg", INT2NUM(7)); rb_define_const(mVpi,"VpiTriAnd", INT2NUM(8)); rb_define_const(mVpi,"VpiTriOr", INT2NUM(9)); rb_define_const(mVpi,"VpiSupply1", INT2NUM(10)); rb_define_const(mVpi,"VpiSupply0", INT2NUM(11)); rb_define_const(mVpi,"VpiNone", INT2NUM(12)); rb_define_const(mVpi,"VpiUwire", INT2NUM(13)); rb_define_const(mVpi,"VpiExplicitScalared", INT2NUM(23)); rb_define_const(mVpi,"VpiExplicitVectored", INT2NUM(24)); rb_define_const(mVpi,"VpiExpanded", INT2NUM(25)); rb_define_const(mVpi,"VpiImplicitDecl", INT2NUM(26)); rb_define_const(mVpi,"VpiChargeStrength", INT2NUM(27)); rb_define_const(mVpi,"VpiArray", INT2NUM(28)); rb_define_const(mVpi,"VpiPortIndex", INT2NUM(29)); rb_define_const(mVpi,"VpiTermIndex", INT2NUM(30)); rb_define_const(mVpi,"VpiStrength0", INT2NUM(31)); rb_define_const(mVpi,"VpiStrength1", INT2NUM(32)); rb_define_const(mVpi,"VpiPrimType", INT2NUM(33)); rb_define_const(mVpi,"VpiAndPrim", INT2NUM(1)); rb_define_const(mVpi,"VpiNandPrim", INT2NUM(2)); rb_define_const(mVpi,"VpiNorPrim", INT2NUM(3)); rb_define_const(mVpi,"VpiOrPrim", INT2NUM(4)); rb_define_const(mVpi,"VpiXorPrim", INT2NUM(5)); rb_define_const(mVpi,"VpiXnorPrim", INT2NUM(6)); rb_define_const(mVpi,"VpiBufPrim", INT2NUM(7)); rb_define_const(mVpi,"VpiNotPrim", INT2NUM(8)); rb_define_const(mVpi,"VpiBufif0Prim", INT2NUM(9)); rb_define_const(mVpi,"VpiBufif1Prim", INT2NUM(10)); rb_define_const(mVpi,"VpiNotif0Prim", INT2NUM(11)); rb_define_const(mVpi,"VpiNotif1Prim", INT2NUM(12)); rb_define_const(mVpi,"VpiNmosPrim", INT2NUM(13)); rb_define_const(mVpi,"VpiPmosPrim", INT2NUM(14)); rb_define_const(mVpi,"VpiCmosPrim", INT2NUM(15)); rb_define_const(mVpi,"VpiRnmosPrim", INT2NUM(16)); rb_define_const(mVpi,"VpiRpmosPrim", INT2NUM(17)); rb_define_const(mVpi,"VpiRcmosPrim", INT2NUM(18)); rb_define_const(mVpi,"VpiRtranPrim", INT2NUM(19)); rb_define_const(mVpi,"VpiRtranif0Prim", INT2NUM(20)); rb_define_const(mVpi,"VpiRtranif1Prim", INT2NUM(21)); rb_define_const(mVpi,"VpiTranPrim", INT2NUM(22)); rb_define_const(mVpi,"VpiTranif0Prim", INT2NUM(23)); rb_define_const(mVpi,"VpiTranif1Prim", INT2NUM(24)); rb_define_const(mVpi,"VpiPullupPrim", INT2NUM(25)); rb_define_const(mVpi,"VpiPulldownPrim", INT2NUM(26)); rb_define_const(mVpi,"VpiSeqPrim", INT2NUM(27)); rb_define_const(mVpi,"VpiCombPrim", INT2NUM(28)); rb_define_const(mVpi,"VpiPolarity", INT2NUM(34)); rb_define_const(mVpi,"VpiDataPolarity", INT2NUM(35)); rb_define_const(mVpi,"VpiPositive", INT2NUM(1)); rb_define_const(mVpi,"VpiNegative", INT2NUM(2)); rb_define_const(mVpi,"VpiUnknown", INT2NUM(3)); rb_define_const(mVpi,"VpiEdge", INT2NUM(36)); rb_define_const(mVpi,"VpiNoEdge", INT2NUM(0x00)); rb_define_const(mVpi,"VpiEdge01", INT2NUM(0x01)); rb_define_const(mVpi,"VpiEdge10", INT2NUM(0x02)); rb_define_const(mVpi,"VpiEdge0x", INT2NUM(0x04)); rb_define_const(mVpi,"VpiEdgex1", INT2NUM(0x08)); rb_define_const(mVpi,"VpiEdge1x", INT2NUM(0x10)); rb_define_const(mVpi,"VpiEdgex0", INT2NUM(0x20)); rb_define_const(mVpi,"VpiPosedge", INT2NUM((0x08|0x01|0x04))); rb_define_const(mVpi,"VpiNegedge", INT2NUM((0x20|0x02|0x10))); rb_define_const(mVpi,"VpiAnyEdge", INT2NUM(((0x08|0x01|0x04)|(0x20|0x02|0x10)))); rb_define_const(mVpi,"VpiPathType", INT2NUM(37)); rb_define_const(mVpi,"VpiPathFull", INT2NUM(1)); rb_define_const(mVpi,"VpiPathParallel", INT2NUM(2)); rb_define_const(mVpi,"VpiTchkType", INT2NUM(38)); rb_define_const(mVpi,"VpiSetup", INT2NUM(1)); rb_define_const(mVpi,"VpiHold", INT2NUM(2)); rb_define_const(mVpi,"VpiPeriod", INT2NUM(3)); rb_define_const(mVpi,"VpiWidth", INT2NUM(4)); rb_define_const(mVpi,"VpiSkew", INT2NUM(5)); rb_define_const(mVpi,"VpiRecovery", INT2NUM(6)); rb_define_const(mVpi,"VpiNoChange", INT2NUM(7)); rb_define_const(mVpi,"VpiSetupHold", INT2NUM(8)); rb_define_const(mVpi,"VpiFullskew", INT2NUM(9)); rb_define_const(mVpi,"VpiRecrem", INT2NUM(10)); rb_define_const(mVpi,"VpiRemoval", INT2NUM(11)); rb_define_const(mVpi,"VpiTimeskew", INT2NUM(12)); rb_define_const(mVpi,"VpiOpType", INT2NUM(39)); rb_define_const(mVpi,"VpiMinusOp", INT2NUM(1)); rb_define_const(mVpi,"VpiPlusOp", INT2NUM(2)); rb_define_const(mVpi,"VpiNotOp", INT2NUM(3)); rb_define_const(mVpi,"VpiBitNegOp", INT2NUM(4)); rb_define_const(mVpi,"VpiUnaryAndOp", INT2NUM(5)); rb_define_const(mVpi,"VpiUnaryNandOp", INT2NUM(6)); rb_define_const(mVpi,"VpiUnaryOrOp", INT2NUM(7)); rb_define_const(mVpi,"VpiUnaryNorOp", INT2NUM(8)); rb_define_const(mVpi,"VpiUnaryXorOp", INT2NUM(9)); rb_define_const(mVpi,"VpiUnaryXNorOp", INT2NUM(10)); rb_define_const(mVpi,"VpiSubOp", INT2NUM(11)); rb_define_const(mVpi,"VpiDivOp", INT2NUM(12)); rb_define_const(mVpi,"VpiModOp", INT2NUM(13)); rb_define_const(mVpi,"VpiEqOp", INT2NUM(14)); rb_define_const(mVpi,"VpiNeqOp", INT2NUM(15)); rb_define_const(mVpi,"VpiCaseEqOp", INT2NUM(16)); rb_define_const(mVpi,"VpiCaseNeqOp", INT2NUM(17)); rb_define_const(mVpi,"VpiGtOp", INT2NUM(18)); rb_define_const(mVpi,"VpiGeOp", INT2NUM(19)); rb_define_const(mVpi,"VpiLtOp", INT2NUM(20)); rb_define_const(mVpi,"VpiLeOp", INT2NUM(21)); rb_define_const(mVpi,"VpiLShiftOp", INT2NUM(22)); rb_define_const(mVpi,"VpiRShiftOp", INT2NUM(23)); rb_define_const(mVpi,"VpiAddOp", INT2NUM(24)); rb_define_const(mVpi,"VpiMultOp", INT2NUM(25)); rb_define_const(mVpi,"VpiLogAndOp", INT2NUM(26)); rb_define_const(mVpi,"VpiLogOrOp", INT2NUM(27)); rb_define_const(mVpi,"VpiBitAndOp", INT2NUM(28)); rb_define_const(mVpi,"VpiBitOrOp", INT2NUM(29)); rb_define_const(mVpi,"VpiBitXorOp", INT2NUM(30)); rb_define_const(mVpi,"VpiBitXNorOp", INT2NUM(31)); rb_define_const(mVpi,"VpiBitXnorOp", INT2NUM(31)); rb_define_const(mVpi,"VpiConditionOp", INT2NUM(32)); rb_define_const(mVpi,"VpiConcatOp", INT2NUM(33)); rb_define_const(mVpi,"VpiMultiConcatOp", INT2NUM(34)); rb_define_const(mVpi,"VpiEventOrOp", INT2NUM(35)); rb_define_const(mVpi,"VpiNullOp", INT2NUM(36)); rb_define_const(mVpi,"VpiListOp", INT2NUM(37)); rb_define_const(mVpi,"VpiMinTypMaxOp", INT2NUM(38)); rb_define_const(mVpi,"VpiPosedgeOp", INT2NUM(39)); rb_define_const(mVpi,"VpiNegedgeOp", INT2NUM(40)); rb_define_const(mVpi,"VpiArithLShiftOp", INT2NUM(41)); rb_define_const(mVpi,"VpiArithRShiftOp", INT2NUM(42)); rb_define_const(mVpi,"VpiPowerOp", INT2NUM(43)); rb_define_const(mVpi,"VpiConstType", INT2NUM(40)); rb_define_const(mVpi,"VpiDecConst", INT2NUM(1)); rb_define_const(mVpi,"VpiRealConst", INT2NUM(2)); rb_define_const(mVpi,"VpiBinaryConst", INT2NUM(3)); rb_define_const(mVpi,"VpiOctConst", INT2NUM(4)); rb_define_const(mVpi,"VpiHexConst", INT2NUM(5)); rb_define_const(mVpi,"VpiStringConst", INT2NUM(6)); rb_define_const(mVpi,"VpiIntConst", INT2NUM(7)); rb_define_const(mVpi,"VpiBlocking", INT2NUM(41)); rb_define_const(mVpi,"VpiCaseType", INT2NUM(42)); rb_define_const(mVpi,"VpiCaseExact", INT2NUM(1)); rb_define_const(mVpi,"VpiCaseX", INT2NUM(2)); rb_define_const(mVpi,"VpiCaseZ", INT2NUM(3)); rb_define_const(mVpi,"VpiNetDeclAssign", INT2NUM(43)); rb_define_const(mVpi,"VpiFuncType", INT2NUM(44)); rb_define_const(mVpi,"VpiIntFunc", INT2NUM(1)); rb_define_const(mVpi,"VpiRealFunc", INT2NUM(2)); rb_define_const(mVpi,"VpiTimeFunc", INT2NUM(3)); rb_define_const(mVpi,"VpiSizedFunc", INT2NUM(4)); rb_define_const(mVpi,"VpiSizedSignedFunc", INT2NUM(5)); rb_define_const(mVpi,"VpiSysFuncType", INT2NUM(44)); rb_define_const(mVpi,"VpiSysFuncInt", INT2NUM(1)); rb_define_const(mVpi,"VpiSysFuncReal", INT2NUM(2)); rb_define_const(mVpi,"VpiSysFuncTime", INT2NUM(3)); rb_define_const(mVpi,"VpiSysFuncSized", INT2NUM(4)); rb_define_const(mVpi,"VpiUserDefn", INT2NUM(45)); rb_define_const(mVpi,"VpiScheduled", INT2NUM(46)); rb_define_const(mVpi,"VpiActive", INT2NUM(49)); rb_define_const(mVpi,"VpiAutomatic", INT2NUM(50)); rb_define_const(mVpi,"VpiCell", INT2NUM(51)); rb_define_const(mVpi,"VpiConfig", INT2NUM(52)); rb_define_const(mVpi,"VpiConstantSelect", INT2NUM(53)); rb_define_const(mVpi,"VpiDecompile", INT2NUM(54)); rb_define_const(mVpi,"VpiDefAttribute", INT2NUM(55)); rb_define_const(mVpi,"VpiDelayType", INT2NUM(56)); rb_define_const(mVpi,"VpiModPathDelay", INT2NUM(1)); rb_define_const(mVpi,"VpiInterModPathDelay", INT2NUM(2)); rb_define_const(mVpi,"VpiMIPDelay", INT2NUM(3)); rb_define_const(mVpi,"VpiIteratorType", INT2NUM(57)); rb_define_const(mVpi,"VpiLibrary", INT2NUM(58)); rb_define_const(mVpi,"VpiMultiArray", INT2NUM(59)); rb_define_const(mVpi,"VpiOffset", INT2NUM(60)); rb_define_const(mVpi,"VpiResolvedNetType", INT2NUM(61)); rb_define_const(mVpi,"VpiSaveRestartID", INT2NUM(62)); rb_define_const(mVpi,"VpiSaveRestartLocation", INT2NUM(63)); rb_define_const(mVpi,"VpiValid", INT2NUM(64)); rb_define_const(mVpi,"VpiSigned", INT2NUM(65)); rb_define_const(mVpi,"VpiLocalParam", INT2NUM(70)); rb_define_const(mVpi,"VpiModPathHasIfNone", INT2NUM(71)); rb_define_const(mVpi,"VpiIndexedPartSelectType", INT2NUM(72)); rb_define_const(mVpi,"VpiPosIndexed", INT2NUM(1)); rb_define_const(mVpi,"VpiNegIndexed", INT2NUM(2)); rb_define_const(mVpi,"VpiIsMemory", INT2NUM(73)); rb_define_const(mVpi,"VpiStop", INT2NUM(66)); rb_define_const(mVpi,"VpiFinish", INT2NUM(67)); rb_define_const(mVpi,"VpiReset", INT2NUM(68)); rb_define_const(mVpi,"VpiSetInteractiveScope", INT2NUM(69)); rb_define_const(mVpi,"VPI_MCD_STDOUT", INT2NUM(0x00000001)); cS_vpi_time.klass = rb_define_class_under(mVpi, "S_vpi_time", rb_cObject); SWIG_TypeClientData(SWIGTYPE_p_t_vpi_time, (void *) &cS_vpi_time); rb_define_alloc_func(cS_vpi_time.klass, _wrap_s_vpi_time_allocate); rb_define_method(cS_vpi_time.klass, "initialize", _wrap_new_s_vpi_time, -1); rb_define_method(cS_vpi_time.klass, "type=", _wrap_s_vpi_time_type_set, -1); rb_define_method(cS_vpi_time.klass, "type", _wrap_s_vpi_time_type_get, -1); rb_define_method(cS_vpi_time.klass, "high=", _wrap_s_vpi_time_high_set, -1); rb_define_method(cS_vpi_time.klass, "high", _wrap_s_vpi_time_high_get, -1); rb_define_method(cS_vpi_time.klass, "low=", _wrap_s_vpi_time_low_set, -1); rb_define_method(cS_vpi_time.klass, "low", _wrap_s_vpi_time_low_get, -1); rb_define_method(cS_vpi_time.klass, "real=", _wrap_s_vpi_time_real_set, -1); rb_define_method(cS_vpi_time.klass, "real", _wrap_s_vpi_time_real_get, -1); cS_vpi_time.mark = 0; cS_vpi_time.destroy = (void (*)(void *)) free_s_vpi_time; rb_define_const(mVpi,"VpiScaledRealTime", INT2NUM(1)); rb_define_const(mVpi,"VpiSimTime", INT2NUM(2)); rb_define_const(mVpi,"VpiSuppressTime", INT2NUM(3)); cS_vpi_delay.klass = rb_define_class_under(mVpi, "S_vpi_delay", rb_cObject); SWIG_TypeClientData(SWIGTYPE_p_t_vpi_delay, (void *) &cS_vpi_delay); rb_define_alloc_func(cS_vpi_delay.klass, _wrap_s_vpi_delay_allocate); rb_define_method(cS_vpi_delay.klass, "initialize", _wrap_new_s_vpi_delay, -1); rb_define_method(cS_vpi_delay.klass, "da=", _wrap_s_vpi_delay_da_set, -1); rb_define_method(cS_vpi_delay.klass, "da", _wrap_s_vpi_delay_da_get, -1); rb_define_method(cS_vpi_delay.klass, "no_of_delays=", _wrap_s_vpi_delay_no_of_delays_set, -1); rb_define_method(cS_vpi_delay.klass, "no_of_delays", _wrap_s_vpi_delay_no_of_delays_get, -1); rb_define_method(cS_vpi_delay.klass, "time_type=", _wrap_s_vpi_delay_time_type_set, -1); rb_define_method(cS_vpi_delay.klass, "time_type", _wrap_s_vpi_delay_time_type_get, -1); rb_define_method(cS_vpi_delay.klass, "mtm_flag=", _wrap_s_vpi_delay_mtm_flag_set, -1); rb_define_method(cS_vpi_delay.klass, "mtm_flag", _wrap_s_vpi_delay_mtm_flag_get, -1); rb_define_method(cS_vpi_delay.klass, "append_flag=", _wrap_s_vpi_delay_append_flag_set, -1); rb_define_method(cS_vpi_delay.klass, "append_flag", _wrap_s_vpi_delay_append_flag_get, -1); rb_define_method(cS_vpi_delay.klass, "pulsere_flag=", _wrap_s_vpi_delay_pulsere_flag_set, -1); rb_define_method(cS_vpi_delay.klass, "pulsere_flag", _wrap_s_vpi_delay_pulsere_flag_get, -1); cS_vpi_delay.mark = 0; cS_vpi_delay.destroy = (void (*)(void *)) free_s_vpi_delay; cS_vpi_vecval.klass = rb_define_class_under(mVpi, "S_vpi_vecval", rb_cObject); SWIG_TypeClientData(SWIGTYPE_p_t_vpi_vecval, (void *) &cS_vpi_vecval); rb_define_alloc_func(cS_vpi_vecval.klass, _wrap_s_vpi_vecval_allocate); rb_define_method(cS_vpi_vecval.klass, "initialize", _wrap_new_s_vpi_vecval, -1); rb_define_method(cS_vpi_vecval.klass, "aval=", _wrap_s_vpi_vecval_aval_set, -1); rb_define_method(cS_vpi_vecval.klass, "aval", _wrap_s_vpi_vecval_aval_get, -1); rb_define_method(cS_vpi_vecval.klass, "bval=", _wrap_s_vpi_vecval_bval_set, -1); rb_define_method(cS_vpi_vecval.klass, "bval", _wrap_s_vpi_vecval_bval_get, -1); cS_vpi_vecval.mark = 0; cS_vpi_vecval.destroy = (void (*)(void *)) free_s_vpi_vecval; cS_vpi_strengthval.klass = rb_define_class_under(mVpi, "S_vpi_strengthval", rb_cObject); SWIG_TypeClientData(SWIGTYPE_p_t_vpi_strengthval, (void *) &cS_vpi_strengthval); rb_define_alloc_func(cS_vpi_strengthval.klass, _wrap_s_vpi_strengthval_allocate); rb_define_method(cS_vpi_strengthval.klass, "initialize", _wrap_new_s_vpi_strengthval, -1); rb_define_method(cS_vpi_strengthval.klass, "logic=", _wrap_s_vpi_strengthval_logic_set, -1); rb_define_method(cS_vpi_strengthval.klass, "logic", _wrap_s_vpi_strengthval_logic_get, -1); rb_define_method(cS_vpi_strengthval.klass, "s0=", _wrap_s_vpi_strengthval_s0_set, -1); rb_define_method(cS_vpi_strengthval.klass, "s0", _wrap_s_vpi_strengthval_s0_get, -1); rb_define_method(cS_vpi_strengthval.klass, "s1=", _wrap_s_vpi_strengthval_s1_set, -1); rb_define_method(cS_vpi_strengthval.klass, "s1", _wrap_s_vpi_strengthval_s1_get, -1); cS_vpi_strengthval.mark = 0; cS_vpi_strengthval.destroy = (void (*)(void *)) free_s_vpi_strengthval; rb_define_const(mVpi,"VpiSupplyDrive", INT2NUM(0x80)); rb_define_const(mVpi,"VpiStrongDrive", INT2NUM(0x40)); rb_define_const(mVpi,"VpiPullDrive", INT2NUM(0x20)); rb_define_const(mVpi,"VpiWeakDrive", INT2NUM(0x08)); rb_define_const(mVpi,"VpiLargeCharge", INT2NUM(0x10)); rb_define_const(mVpi,"VpiMediumCharge", INT2NUM(0x04)); rb_define_const(mVpi,"VpiSmallCharge", INT2NUM(0x02)); rb_define_const(mVpi,"VpiHiZ", INT2NUM(0x01)); cS_vpi_value.klass = rb_define_class_under(mVpi, "S_vpi_value", rb_cObject); SWIG_TypeClientData(SWIGTYPE_p_t_vpi_value, (void *) &cS_vpi_value); rb_define_alloc_func(cS_vpi_value.klass, _wrap_s_vpi_value_allocate); rb_define_method(cS_vpi_value.klass, "initialize", _wrap_new_s_vpi_value, -1); rb_define_method(cS_vpi_value.klass, "format=", _wrap_s_vpi_value_format_set, -1); rb_define_method(cS_vpi_value.klass, "format", _wrap_s_vpi_value_format_get, -1); rb_define_method(cS_vpi_value.klass, "value", _wrap_s_vpi_value_value_get, -1); cS_vpi_value.mark = 0; cS_vpi_value.destroy = (void (*)(void *)) free_s_vpi_value; cS_vpi_value_value.klass = rb_define_class_under(mVpi, "S_vpi_value_value", rb_cObject); SWIG_TypeClientData(SWIGTYPE_p_s_vpi_value_value, (void *) &cS_vpi_value_value); rb_define_alloc_func(cS_vpi_value_value.klass, _wrap_s_vpi_value_value_allocate); rb_define_method(cS_vpi_value_value.klass, "initialize", _wrap_new_s_vpi_value_value, -1); rb_define_method(cS_vpi_value_value.klass, "str=", _wrap_s_vpi_value_value_str_set, -1); rb_define_method(cS_vpi_value_value.klass, "str", _wrap_s_vpi_value_value_str_get, -1); rb_define_method(cS_vpi_value_value.klass, "scalar=", _wrap_s_vpi_value_value_scalar_set, -1); rb_define_method(cS_vpi_value_value.klass, "scalar", _wrap_s_vpi_value_value_scalar_get, -1); rb_define_method(cS_vpi_value_value.klass, "integer=", _wrap_s_vpi_value_value_integer_set, -1); rb_define_method(cS_vpi_value_value.klass, "integer", _wrap_s_vpi_value_value_integer_get, -1); rb_define_method(cS_vpi_value_value.klass, "real=", _wrap_s_vpi_value_value_real_set, -1); rb_define_method(cS_vpi_value_value.klass, "real", _wrap_s_vpi_value_value_real_get, -1); rb_define_method(cS_vpi_value_value.klass, "time=", _wrap_s_vpi_value_value_time_set, -1); rb_define_method(cS_vpi_value_value.klass, "time", _wrap_s_vpi_value_value_time_get, -1); rb_define_method(cS_vpi_value_value.klass, "vector=", _wrap_s_vpi_value_value_vector_set, -1); rb_define_method(cS_vpi_value_value.klass, "vector", _wrap_s_vpi_value_value_vector_get, -1); rb_define_method(cS_vpi_value_value.klass, "strength=", _wrap_s_vpi_value_value_strength_set, -1); rb_define_method(cS_vpi_value_value.klass, "strength", _wrap_s_vpi_value_value_strength_get, -1); rb_define_method(cS_vpi_value_value.klass, "misc=", _wrap_s_vpi_value_value_misc_set, -1); rb_define_method(cS_vpi_value_value.klass, "misc", _wrap_s_vpi_value_value_misc_get, -1); cS_vpi_value_value.mark = 0; cS_vpi_value_value.destroy = (void (*)(void *)) free_s_vpi_value_value; rb_define_const(mVpi,"VpiBinStrVal", INT2NUM(1)); rb_define_const(mVpi,"VpiOctStrVal", INT2NUM(2)); rb_define_const(mVpi,"VpiDecStrVal", INT2NUM(3)); rb_define_const(mVpi,"VpiHexStrVal", INT2NUM(4)); rb_define_const(mVpi,"VpiScalarVal", INT2NUM(5)); rb_define_const(mVpi,"VpiIntVal", INT2NUM(6)); rb_define_const(mVpi,"VpiRealVal", INT2NUM(7)); rb_define_const(mVpi,"VpiStringVal", INT2NUM(8)); rb_define_const(mVpi,"VpiVectorVal", INT2NUM(9)); rb_define_const(mVpi,"VpiStrengthVal", INT2NUM(10)); rb_define_const(mVpi,"VpiTimeVal", INT2NUM(11)); rb_define_const(mVpi,"VpiObjTypeVal", INT2NUM(12)); rb_define_const(mVpi,"VpiSuppressVal", INT2NUM(13)); rb_define_const(mVpi,"VpiNoDelay", INT2NUM(1)); rb_define_const(mVpi,"VpiInertialDelay", INT2NUM(2)); rb_define_const(mVpi,"VpiTransportDelay", INT2NUM(3)); rb_define_const(mVpi,"VpiPureTransportDelay", INT2NUM(4)); rb_define_const(mVpi,"VpiForceFlag", INT2NUM(5)); rb_define_const(mVpi,"VpiReleaseFlag", INT2NUM(6)); rb_define_const(mVpi,"VpiCancelEvent", INT2NUM(7)); rb_define_const(mVpi,"VpiReturnEvent", INT2NUM(0x1000)); rb_define_const(mVpi,"Vpi0", INT2NUM(0)); rb_define_const(mVpi,"Vpi1", INT2NUM(1)); rb_define_const(mVpi,"VpiZ", INT2NUM(2)); rb_define_const(mVpi,"VpiX", INT2NUM(3)); rb_define_const(mVpi,"VpiH", INT2NUM(4)); rb_define_const(mVpi,"VpiL", INT2NUM(5)); rb_define_const(mVpi,"VpiDontCare", INT2NUM(6)); cS_vpi_systf_data.klass = rb_define_class_under(mVpi, "S_vpi_systf_data", rb_cObject); SWIG_TypeClientData(SWIGTYPE_p_t_vpi_systf_data, (void *) &cS_vpi_systf_data); rb_define_alloc_func(cS_vpi_systf_data.klass, _wrap_s_vpi_systf_data_allocate); rb_define_method(cS_vpi_systf_data.klass, "initialize", _wrap_new_s_vpi_systf_data, -1); rb_define_method(cS_vpi_systf_data.klass, "type=", _wrap_s_vpi_systf_data_type_set, -1); rb_define_method(cS_vpi_systf_data.klass, "type", _wrap_s_vpi_systf_data_type_get, -1); rb_define_method(cS_vpi_systf_data.klass, "sysfunctype=", _wrap_s_vpi_systf_data_sysfunctype_set, -1); rb_define_method(cS_vpi_systf_data.klass, "sysfunctype", _wrap_s_vpi_systf_data_sysfunctype_get, -1); rb_define_method(cS_vpi_systf_data.klass, "tfname=", _wrap_s_vpi_systf_data_tfname_set, -1); rb_define_method(cS_vpi_systf_data.klass, "tfname", _wrap_s_vpi_systf_data_tfname_get, -1); rb_define_method(cS_vpi_systf_data.klass, "calltf=", _wrap_s_vpi_systf_data_calltf_set, -1); rb_define_method(cS_vpi_systf_data.klass, "calltf", _wrap_s_vpi_systf_data_calltf_get, -1); rb_define_method(cS_vpi_systf_data.klass, "compiletf=", _wrap_s_vpi_systf_data_compiletf_set, -1); rb_define_method(cS_vpi_systf_data.klass, "compiletf", _wrap_s_vpi_systf_data_compiletf_get, -1); rb_define_method(cS_vpi_systf_data.klass, "sizetf=", _wrap_s_vpi_systf_data_sizetf_set, -1); rb_define_method(cS_vpi_systf_data.klass, "sizetf", _wrap_s_vpi_systf_data_sizetf_get, -1); rb_define_method(cS_vpi_systf_data.klass, "user_data=", _wrap_s_vpi_systf_data_user_data_set, -1); rb_define_method(cS_vpi_systf_data.klass, "user_data", _wrap_s_vpi_systf_data_user_data_get, -1); cS_vpi_systf_data.mark = 0; cS_vpi_systf_data.destroy = (void (*)(void *)) free_s_vpi_systf_data; rb_define_const(mVpi,"VpiSysTask", INT2NUM(1)); rb_define_const(mVpi,"VpiSysFunc", INT2NUM(2)); cS_vpi_vlog_info.klass = rb_define_class_under(mVpi, "S_vpi_vlog_info", rb_cObject); SWIG_TypeClientData(SWIGTYPE_p_t_vpi_vlog_info, (void *) &cS_vpi_vlog_info); rb_define_alloc_func(cS_vpi_vlog_info.klass, _wrap_s_vpi_vlog_info_allocate); rb_define_method(cS_vpi_vlog_info.klass, "initialize", _wrap_new_s_vpi_vlog_info, -1); rb_define_method(cS_vpi_vlog_info.klass, "argc=", _wrap_s_vpi_vlog_info_argc_set, -1); rb_define_method(cS_vpi_vlog_info.klass, "argc", _wrap_s_vpi_vlog_info_argc_get, -1); rb_define_method(cS_vpi_vlog_info.klass, "argv=", _wrap_s_vpi_vlog_info_argv_set, -1); rb_define_method(cS_vpi_vlog_info.klass, "argv", _wrap_s_vpi_vlog_info_argv_get, -1); rb_define_method(cS_vpi_vlog_info.klass, "product=", _wrap_s_vpi_vlog_info_product_set, -1); rb_define_method(cS_vpi_vlog_info.klass, "product", _wrap_s_vpi_vlog_info_product_get, -1); rb_define_method(cS_vpi_vlog_info.klass, "version=", _wrap_s_vpi_vlog_info_version_set, -1); rb_define_method(cS_vpi_vlog_info.klass, "version", _wrap_s_vpi_vlog_info_version_get, -1); cS_vpi_vlog_info.mark = 0; cS_vpi_vlog_info.destroy = (void (*)(void *)) free_s_vpi_vlog_info; cS_vpi_error_info.klass = rb_define_class_under(mVpi, "S_vpi_error_info", rb_cObject); SWIG_TypeClientData(SWIGTYPE_p_t_vpi_error_info, (void *) &cS_vpi_error_info); rb_define_alloc_func(cS_vpi_error_info.klass, _wrap_s_vpi_error_info_allocate); rb_define_method(cS_vpi_error_info.klass, "initialize", _wrap_new_s_vpi_error_info, -1); rb_define_method(cS_vpi_error_info.klass, "state=", _wrap_s_vpi_error_info_state_set, -1); rb_define_method(cS_vpi_error_info.klass, "state", _wrap_s_vpi_error_info_state_get, -1); rb_define_method(cS_vpi_error_info.klass, "level=", _wrap_s_vpi_error_info_level_set, -1); rb_define_method(cS_vpi_error_info.klass, "level", _wrap_s_vpi_error_info_level_get, -1); rb_define_method(cS_vpi_error_info.klass, "message=", _wrap_s_vpi_error_info_message_set, -1); rb_define_method(cS_vpi_error_info.klass, "message", _wrap_s_vpi_error_info_message_get, -1); rb_define_method(cS_vpi_error_info.klass, "product=", _wrap_s_vpi_error_info_product_set, -1); rb_define_method(cS_vpi_error_info.klass, "product", _wrap_s_vpi_error_info_product_get, -1); rb_define_method(cS_vpi_error_info.klass, "code=", _wrap_s_vpi_error_info_code_set, -1); rb_define_method(cS_vpi_error_info.klass, "code", _wrap_s_vpi_error_info_code_get, -1); rb_define_method(cS_vpi_error_info.klass, "file=", _wrap_s_vpi_error_info_file_set, -1); rb_define_method(cS_vpi_error_info.klass, "file", _wrap_s_vpi_error_info_file_get, -1); rb_define_method(cS_vpi_error_info.klass, "line=", _wrap_s_vpi_error_info_line_set, -1); rb_define_method(cS_vpi_error_info.klass, "line", _wrap_s_vpi_error_info_line_get, -1); cS_vpi_error_info.mark = 0; cS_vpi_error_info.destroy = (void (*)(void *)) free_s_vpi_error_info; rb_define_const(mVpi,"VpiCompile", INT2NUM(1)); rb_define_const(mVpi,"VpiPLI", INT2NUM(2)); rb_define_const(mVpi,"VpiRun", INT2NUM(3)); rb_define_const(mVpi,"VpiNotice", INT2NUM(1)); rb_define_const(mVpi,"VpiWarning", INT2NUM(2)); rb_define_const(mVpi,"VpiError", INT2NUM(3)); rb_define_const(mVpi,"VpiSystem", INT2NUM(4)); rb_define_const(mVpi,"VpiInternal", INT2NUM(5)); cS_cb_data.klass = rb_define_class_under(mVpi, "S_cb_data", rb_cObject); SWIG_TypeClientData(SWIGTYPE_p_t_cb_data, (void *) &cS_cb_data); rb_define_alloc_func(cS_cb_data.klass, _wrap_s_cb_data_allocate); rb_define_method(cS_cb_data.klass, "initialize", _wrap_new_s_cb_data, -1); rb_define_method(cS_cb_data.klass, "reason=", _wrap_s_cb_data_reason_set, -1); rb_define_method(cS_cb_data.klass, "reason", _wrap_s_cb_data_reason_get, -1); rb_define_method(cS_cb_data.klass, "cb_rtn=", _wrap_s_cb_data_cb_rtn_set, -1); rb_define_method(cS_cb_data.klass, "cb_rtn", _wrap_s_cb_data_cb_rtn_get, -1); rb_define_method(cS_cb_data.klass, "obj=", _wrap_s_cb_data_obj_set, -1); rb_define_method(cS_cb_data.klass, "obj", _wrap_s_cb_data_obj_get, -1); rb_define_method(cS_cb_data.klass, "time=", _wrap_s_cb_data_time_set, -1); rb_define_method(cS_cb_data.klass, "time", _wrap_s_cb_data_time_get, -1); rb_define_method(cS_cb_data.klass, "value=", _wrap_s_cb_data_value_set, -1); rb_define_method(cS_cb_data.klass, "value", _wrap_s_cb_data_value_get, -1); rb_define_method(cS_cb_data.klass, "index=", _wrap_s_cb_data_index_set, -1); rb_define_method(cS_cb_data.klass, "index", _wrap_s_cb_data_index_get, -1); rb_define_method(cS_cb_data.klass, "user_data=", _wrap_s_cb_data_user_data_set, -1); rb_define_method(cS_cb_data.klass, "user_data", _wrap_s_cb_data_user_data_get, -1); cS_cb_data.mark = 0; cS_cb_data.destroy = (void (*)(void *)) free_s_cb_data; rb_define_const(mVpi,"CbValueChange", INT2NUM(1)); rb_define_const(mVpi,"CbStmt", INT2NUM(2)); rb_define_const(mVpi,"CbForce", INT2NUM(3)); rb_define_const(mVpi,"CbRelease", INT2NUM(4)); rb_define_const(mVpi,"CbAtStartOfSimTime", INT2NUM(5)); rb_define_const(mVpi,"CbReadWriteSynch", INT2NUM(6)); rb_define_const(mVpi,"CbReadOnlySynch", INT2NUM(7)); rb_define_const(mVpi,"CbNextSimTime", INT2NUM(8)); rb_define_const(mVpi,"CbAfterDelay", INT2NUM(9)); rb_define_const(mVpi,"CbEndOfCompile", INT2NUM(10)); rb_define_const(mVpi,"CbStartOfSimulation", INT2NUM(11)); rb_define_const(mVpi,"CbEndOfSimulation", INT2NUM(12)); rb_define_const(mVpi,"CbError", INT2NUM(13)); rb_define_const(mVpi,"CbTchkViolation", INT2NUM(14)); rb_define_const(mVpi,"CbStartOfSave", INT2NUM(15)); rb_define_const(mVpi,"CbEndOfSave", INT2NUM(16)); rb_define_const(mVpi,"CbStartOfRestart", INT2NUM(17)); rb_define_const(mVpi,"CbEndOfRestart", INT2NUM(18)); rb_define_const(mVpi,"CbStartOfReset", INT2NUM(19)); rb_define_const(mVpi,"CbEndOfReset", INT2NUM(20)); rb_define_const(mVpi,"CbEnterInteractive", INT2NUM(21)); rb_define_const(mVpi,"CbExitInteractive", INT2NUM(22)); rb_define_const(mVpi,"CbInteractiveScopeChange", INT2NUM(23)); rb_define_const(mVpi,"CbUnresolvedSystf", INT2NUM(24)); rb_define_const(mVpi,"CbAssign", INT2NUM(25)); rb_define_const(mVpi,"CbDeassign", INT2NUM(26)); rb_define_const(mVpi,"CbDisable", INT2NUM(27)); rb_define_const(mVpi,"CbPLIError", INT2NUM(28)); rb_define_const(mVpi,"CbSignal", INT2NUM(29)); rb_define_module_function(mVpi, "vpi_register_cb", _wrap_vpi_register_cb, -1); rb_define_module_function(mVpi, "vpi_remove_cb", _wrap_vpi_remove_cb, -1); rb_define_module_function(mVpi, "vpi_get_cb_info", _wrap_vpi_get_cb_info, -1); rb_define_module_function(mVpi, "vpi_register_systf", _wrap_vpi_register_systf, -1); rb_define_module_function(mVpi, "vpi_get_systf_info", _wrap_vpi_get_systf_info, -1); rb_define_module_function(mVpi, "vpi_handle_by_name", _wrap_vpi_handle_by_name, -1); rb_define_module_function(mVpi, "vpi_handle_by_index", _wrap_vpi_handle_by_index, -1); rb_define_module_function(mVpi, "vpi_handle", _wrap_vpi_handle, -1); rb_define_module_function(mVpi, "vpi_handle_multi", _wrap_vpi_handle_multi, -1); rb_define_module_function(mVpi, "vpi_iterate", _wrap_vpi_iterate, -1); rb_define_module_function(mVpi, "vpi_scan", _wrap_vpi_scan, -1); rb_define_module_function(mVpi, "vpi_get", _wrap_vpi_get, -1); rb_define_module_function(mVpi, "vpi_get_str", _wrap_vpi_get_str, -1); rb_define_module_function(mVpi, "vpi_get_delays", _wrap_vpi_get_delays, -1); rb_define_module_function(mVpi, "vpi_put_delays", _wrap_vpi_put_delays, -1); rb_define_module_function(mVpi, "vpi_get_value", _wrap_vpi_get_value, -1); rb_define_module_function(mVpi, "vpi_put_value", _wrap_vpi_put_value, -1); rb_define_module_function(mVpi, "vpi_get_time", _wrap_vpi_get_time, -1); rb_define_module_function(mVpi, "vpi_mcd_open", _wrap_vpi_mcd_open, -1); rb_define_module_function(mVpi, "vpi_mcd_close", _wrap_vpi_mcd_close, -1); rb_define_module_function(mVpi, "vpi_mcd_name", _wrap_vpi_mcd_name, -1); rb_define_module_function(mVpi, "vpi_mcd_printf", _wrap_vpi_mcd_printf, -1); rb_define_module_function(mVpi, "vpi_printf", _wrap_vpi_printf, -1); rb_define_module_function(mVpi, "vpi_compare_objects", _wrap_vpi_compare_objects, -1); rb_define_module_function(mVpi, "vpi_chk_error", _wrap_vpi_chk_error, -1); rb_define_module_function(mVpi, "vpi_free_object", _wrap_vpi_free_object, -1); rb_define_module_function(mVpi, "vpi_get_vlog_info", _wrap_vpi_get_vlog_info, -1); rb_define_module_function(mVpi, "vpi_get_data", _wrap_vpi_get_data, -1); rb_define_module_function(mVpi, "vpi_put_data", _wrap_vpi_put_data, -1); rb_define_module_function(mVpi, "vpi_get_userdata", _wrap_vpi_get_userdata, -1); rb_define_module_function(mVpi, "vpi_put_userdata", _wrap_vpi_put_userdata, -1); rb_define_module_function(mVpi, "vpi_vprintf", _wrap_vpi_vprintf, -1); rb_define_module_function(mVpi, "vpi_mcd_vprintf", _wrap_vpi_mcd_vprintf, -1); rb_define_module_function(mVpi, "vpi_flush", _wrap_vpi_flush, -1); rb_define_module_function(mVpi, "vpi_mcd_flush", _wrap_vpi_mcd_flush, -1); rb_define_module_function(mVpi, "vpi_control", _wrap_vpi_control, -1); rb_define_module_function(mVpi, "vpi_handle_by_multi_index", _wrap_vpi_handle_by_multi_index, -1); rb_define_singleton_method(mVpi, "vlog_startup_routines", vlog_startup_routines_get, 0); rb_define_singleton_method(mVpi, "vlog_startup_routines=", vlog_startup_routines_set, 1); }