// Copyright (c) 2006-2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Remember a subset of a sequence of values, using a modest amount of memory /*** Design: Accumulate in powers of three, using 3-way median to collapse entries. At any given time, there is one most-dense (highest power of 3) range of entries and a series of less-dense ranges that hold 0..2 entries each. There is a bounded-size storage array of S cells for all the entries. The overflow detect is set up so that a new higher power of 3, K+1, is triggered precisely when range K has 3n entries and all ranges < K have zero entries. In general, think of the range sizes as a multi-digit base 3 number, except the highest digit may exceed 2: 3**6 3**5 3**4 3**3 3**2 3**1 3**0 K=2 0 0 0 0 3n-1 2 2 unused:1 There are a total of 3n-1 + 2 + 2 entries in use. Assume a size limit S at one more than that, and we add a new 3**0 entry and "carry" by performing medians on any group of 3 elements: 3**6 3**5 3**4 3**3 3**2 3**1 3**0 K=2 0 0 0 0 3n-1 2 3 unused:0 0 0 0 0 3n-1 3 0 carry unused:2 0 0 0 0 3n 0 0 carry unused:4 To accumulate 2 entries at all levels < K and 3 just before the first carry at level 0, we need 2*K + 1 unused cells after doing all carries, or five cells in this case. Since we only have 4 cells in the example above, we need to make room by starting a new power of three: 3**6 3**5 3**4 3**3 3**2 3**1 3**0 0 0 0 0 3n 0 0 K=2 unused:4 0 0 0 n 0 0 0 K=3 unused:2n+4 In the code below, we don't worry about overflow from the topmost place. ***/ #include "encodings/compact_lang_det/subsetsequence.h" #include #include "encodings/compact_lang_det/win/cld_logging.h" void DumpInts(const char* label, const int* v, int n) { printf("%s ", label); for (int i = 0; i < n; ++i) { printf("%d ", v[i]); } printf("\n"); } void DumpUint8s(const char* label, const uint8* v, int n) { printf("%s ", label); for (int i = 0; i < n; ++i) { printf("%d ", v[i]); } printf("\n"); } // Return median of seq_[sub] .. seq_[sub+2], favoring middle element uint8 SubsetSequence::Median3(int sub) { if (seq_[sub] == seq_[sub + 1]) { return seq_[sub]; } if (seq_[sub] == seq_[sub + 2]) { return seq_[sub]; } return seq_[sub + 1]; } void SubsetSequence::Init() { // printf("Init\n"); k_ = 0; count_[0] = 0; next_e_ = 0; seq_[0] = 0; // Default value if no calls to Add // Want largest <= kMaxSeq_ that allows reserve and makes count_[k_] = 0 mod 3 int reserve = (2 * k_ + 1); level_limit_e_ = kMaxSeq_ - reserve; level_limit_e_ = (level_limit_e_ / 3) * 3; // Round down to multiple of 3 limit_e_ = level_limit_e_; } // Compress level k by 3x, creating level k+1 void SubsetSequence::NewLevel() { // printf("NewLevel 3 ** %d\n", k_ + 1); //DumpUint8s("count[k]", count_, k_ + 1); //DumpUint8s("seq[next]", seq_, next_e_); // Incoming level must be an exact multiple of three in size CHECK((count_[k_] % 3) == 0); int k_size = count_[k_]; int new_size = k_size / 3; // Compress down by 3x, via median for (int j = 0; j < new_size; ++j) { seq_[j] = Median3(j * 3); } // Update counts count_[k_] = 0; // Else Overflow -- just continue with 3x dense Level K if (k_ < (kMaxLevel_ - 1)) {++k_;} count_[k_] = new_size; // Update limits next_e_ = new_size; limit_e_ = next_e_ + 3; // Want largest <= kMaxSeq_ that allows reserve and makes count_[k_] = 0 mod 3 int reserve = (2 * k_ + 1); level_limit_e_ = kMaxSeq_ - reserve; level_limit_e_ = (level_limit_e_ / 3) * 3; // Round down to multiple of 3 // //DumpUint8s("after: count[k]", count_, k_ + 1); //DumpUint8s("after: seq[next]", seq_, next_e_); } void SubsetSequence::DoCarries() { CHECK(count_[k_] > 3); // We depend on count_[k_] being > 3 to stop while // Make room by carrying //DumpUint8s("DoCarries count[k]", count_, k_ + 1); //DumpUint8s("DoCarries seq[next]", seq_, next_e_); int i = 0; while (count_[i] == 3) { next_e_ -= 3; seq_[next_e_] = Median3(next_e_); ++next_e_; count_[i] = 0; ++count_[i + 1]; ++i; } limit_e_ = next_e_ + 3; //DumpUint8s("after: DoCarries count[k]", count_, k_ + 1); //DumpUint8s("after: DoCarries seq[next]", seq_, next_e_); // If we just fully carried into level K, // Make sure there is now enough room, else start level K + 1 if (i >= k_) { CHECK(count_[k_] == next_e_); if (next_e_ >= level_limit_e_) { NewLevel(); } } } void SubsetSequence::Add(uint8 e) { // Add an entry then carry as needed seq_[next_e_] = e; ++next_e_; ++count_[0]; if (next_e_ >= limit_e_) { DoCarries(); } } // Collapse tail end by simple median across disparate-weight values, // dropping or duplicating last value if need be. // This routine is idempotent. void SubsetSequence::Flush() { // printf("Flush %d\n", count_[k_]); int start_tail = count_[k_]; int size_tail = next_e_ - start_tail; if ((size_tail % 3) == 2) { seq_[next_e_] = seq_[next_e_ - 1]; // Duplicate last value ++size_tail; } // Compress tail down by 3x, via median int new_size = size_tail / 3; // May delete last value for (int j = 0; j < new_size; ++j) { seq_[start_tail + j] = Median3(start_tail + j * 3); } next_e_ = start_tail + new_size; count_[k_] = next_e_; } // Extract representative pattern of exactly N values into dst[0..n-1] // This routine may be called multiple times, but it may downsample as a // side effect, causing subsequent calls with larger N to get poor answers. void SubsetSequence::Extract(int to_n, uint8* dst) { // Collapse partial-carries in tail Flush(); // Just use Bresenham to resample int from_n = next_e_; if (to_n >= from_n) { // Up-sample from_n => to_n int err = to_n - 1; // bias toward no overshoot int j = 0; for (int i = 0; i < to_n; ++i) { dst[i] = seq_[j]; err -= from_n; if (err < 0) { ++j; err += to_n; } } } else { // Get to the point that the number of samples is <= 3 * to_n while (next_e_ > (to_n * 3)) { // Compress down by 3x, via median // printf("Extract, median %d / 3\n", next_e_); if ((next_e_ % 3) == 2) { seq_[next_e_] = seq_[next_e_ - 1]; // Duplicate last value ++next_e_; } int new_size = next_e_ / 3; // May delete last value for (int j = 0; j < new_size; ++j) { seq_[j] = Median3(j * 3); } next_e_ = new_size; count_[k_] = next_e_; } from_n = next_e_; if (to_n == from_n) { // Copy verbatim for (int i = 0; i < to_n; ++i) { dst[i] = seq_[i]; } return; } // Down-sample from_n => to_n, using medians int err = 0; // Bias to immediate median sample int j = 0; for (int i = 0; i < from_n; ++i) { err -= to_n; if (err < 0) { if (i <= (next_e_ - 2)) { dst[j] = Median3(i); } else { dst[j] = seq_[i]; } ++j; err += from_n; } } } }