/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project 1999. */ /* ==================================================================== * Copyright (c) 1999 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../bytestring/internal.h" #include "../internal.h" static int pkcs12_encode_password(const char *in, size_t in_len, uint8_t **out, size_t *out_len) { CBB cbb; if (!CBB_init(&cbb, in_len * 2)) { return 0; } // Convert the password to BMPString, or UCS-2. See // https://tools.ietf.org/html/rfc7292#appendix-B.1. CBS cbs; CBS_init(&cbs, (const uint8_t *)in, in_len); while (CBS_len(&cbs) != 0) { uint32_t c; if (!cbs_get_utf8(&cbs, &c) || !cbb_add_ucs2_be(&cbb, c)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); goto err; } } // Terminate the result with a UCS-2 NUL. if (!cbb_add_ucs2_be(&cbb, 0) || !CBB_finish(&cbb, out, out_len)) { goto err; } return 1; err: CBB_cleanup(&cbb); return 0; } int pkcs12_key_gen(const char *pass, size_t pass_len, const uint8_t *salt, size_t salt_len, uint8_t id, uint32_t iterations, size_t out_len, uint8_t *out, const EVP_MD *md) { // See https://tools.ietf.org/html/rfc7292#appendix-B. Quoted parts of the // specification have errata applied and other typos fixed. if (iterations < 1) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); return 0; } int ret = 0; EVP_MD_CTX ctx; EVP_MD_CTX_init(&ctx); uint8_t *pass_raw = NULL, *I = NULL; size_t pass_raw_len = 0, I_len = 0; // If |pass| is NULL, we use the empty string rather than {0, 0} as the raw // password. if (pass != NULL && !pkcs12_encode_password(pass, pass_len, &pass_raw, &pass_raw_len)) { goto err; } // In the spec, |block_size| is called "v", but measured in bits. size_t block_size = EVP_MD_block_size(md); // 1. Construct a string, D (the "diversifier"), by concatenating v/8 copies // of ID. uint8_t D[EVP_MAX_MD_BLOCK_SIZE]; OPENSSL_memset(D, id, block_size); // 2. Concatenate copies of the salt together to create a string S of length // v(ceiling(s/v)) bits (the final copy of the salt may be truncated to // create S). Note that if the salt is the empty string, then so is S. // // 3. Concatenate copies of the password together to create a string P of // length v(ceiling(p/v)) bits (the final copy of the password may be // truncated to create P). Note that if the password is the empty string, // then so is P. // // 4. Set I=S||P to be the concatenation of S and P. if (salt_len + block_size - 1 < salt_len || pass_raw_len + block_size - 1 < pass_raw_len) { OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); goto err; } size_t S_len = block_size * ((salt_len + block_size - 1) / block_size); size_t P_len = block_size * ((pass_raw_len + block_size - 1) / block_size); I_len = S_len + P_len; if (I_len < S_len) { OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); goto err; } I = OPENSSL_malloc(I_len); if (I_len != 0 && I == NULL) { goto err; } for (size_t i = 0; i < S_len; i++) { I[i] = salt[i % salt_len]; } for (size_t i = 0; i < P_len; i++) { I[i + S_len] = pass_raw[i % pass_raw_len]; } while (out_len != 0) { // A. Set A_i=H^r(D||I). (i.e., the r-th hash of D||I, // H(H(H(... H(D||I)))) uint8_t A[EVP_MAX_MD_SIZE]; unsigned A_len; if (!EVP_DigestInit_ex(&ctx, md, NULL) || !EVP_DigestUpdate(&ctx, D, block_size) || !EVP_DigestUpdate(&ctx, I, I_len) || !EVP_DigestFinal_ex(&ctx, A, &A_len)) { goto err; } for (uint32_t iter = 1; iter < iterations; iter++) { if (!EVP_DigestInit_ex(&ctx, md, NULL) || !EVP_DigestUpdate(&ctx, A, A_len) || !EVP_DigestFinal_ex(&ctx, A, &A_len)) { goto err; } } size_t todo = out_len < A_len ? out_len : A_len; OPENSSL_memcpy(out, A, todo); out += todo; out_len -= todo; if (out_len == 0) { break; } // B. Concatenate copies of A_i to create a string B of length v bits (the // final copy of A_i may be truncated to create B). uint8_t B[EVP_MAX_MD_BLOCK_SIZE]; for (size_t i = 0; i < block_size; i++) { B[i] = A[i % A_len]; } // C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit blocks, // where k=ceiling(s/v)+ceiling(p/v), modify I by setting I_j=(I_j+B+1) mod // 2^v for each j. assert(I_len % block_size == 0); for (size_t i = 0; i < I_len; i += block_size) { unsigned carry = 1; for (size_t j = block_size - 1; j < block_size; j--) { carry += I[i + j] + B[j]; I[i + j] = (uint8_t)carry; carry >>= 8; } } } ret = 1; err: OPENSSL_free(I); OPENSSL_free(pass_raw); EVP_MD_CTX_cleanup(&ctx); return ret; } static int pkcs12_pbe_cipher_init(const struct pbe_suite *suite, EVP_CIPHER_CTX *ctx, uint32_t iterations, const char *pass, size_t pass_len, const uint8_t *salt, size_t salt_len, int is_encrypt) { const EVP_CIPHER *cipher = suite->cipher_func(); const EVP_MD *md = suite->md_func(); uint8_t key[EVP_MAX_KEY_LENGTH]; uint8_t iv[EVP_MAX_IV_LENGTH]; if (!pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_KEY_ID, iterations, EVP_CIPHER_key_length(cipher), key, md) || !pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_IV_ID, iterations, EVP_CIPHER_iv_length(cipher), iv, md)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEY_GEN_ERROR); return 0; } int ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt); OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH); return ret; } static int pkcs12_pbe_decrypt_init(const struct pbe_suite *suite, EVP_CIPHER_CTX *ctx, const char *pass, size_t pass_len, CBS *param) { CBS pbe_param, salt; uint64_t iterations; if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&pbe_param, &salt, CBS_ASN1_OCTETSTRING) || !CBS_get_asn1_uint64(&pbe_param, &iterations) || CBS_len(&pbe_param) != 0 || CBS_len(param) != 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); return 0; } if (!pkcs12_iterations_acceptable(iterations)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); return 0; } return pkcs12_pbe_cipher_init(suite, ctx, (uint32_t)iterations, pass, pass_len, CBS_data(&salt), CBS_len(&salt), 0 /* decrypt */); } static const struct pbe_suite kBuiltinPBE[] = { { NID_pbe_WithSHA1And40BitRC2_CBC, // 1.2.840.113549.1.12.1.6 {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x06}, 10, EVP_rc2_40_cbc, EVP_sha1, pkcs12_pbe_decrypt_init, }, { NID_pbe_WithSHA1And128BitRC4, // 1.2.840.113549.1.12.1.1 {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x01}, 10, EVP_rc4, EVP_sha1, pkcs12_pbe_decrypt_init, }, { NID_pbe_WithSHA1And3_Key_TripleDES_CBC, // 1.2.840.113549.1.12.1.3 {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x03}, 10, EVP_des_ede3_cbc, EVP_sha1, pkcs12_pbe_decrypt_init, }, { NID_pbes2, // 1.2.840.113549.1.5.13 {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x05, 0x0d}, 9, NULL, NULL, PKCS5_pbe2_decrypt_init, }, }; static const struct pbe_suite *get_pkcs12_pbe_suite(int pbe_nid) { for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) { if (kBuiltinPBE[i].pbe_nid == pbe_nid && // If |cipher_func| or |md_func| are missing, this is a PBES2 scheme. kBuiltinPBE[i].cipher_func != NULL && kBuiltinPBE[i].md_func != NULL) { return &kBuiltinPBE[i]; } } return NULL; } int pkcs12_pbe_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, int alg, uint32_t iterations, const char *pass, size_t pass_len, const uint8_t *salt, size_t salt_len) { const struct pbe_suite *suite = get_pkcs12_pbe_suite(alg); if (suite == NULL) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM); return 0; } // See RFC 2898, appendix A.3. CBB algorithm, oid, param, salt_cbb; if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) || !CBB_add_bytes(&oid, suite->oid, suite->oid_len) || !CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(¶m, &salt_cbb, CBS_ASN1_OCTETSTRING) || !CBB_add_bytes(&salt_cbb, salt, salt_len) || !CBB_add_asn1_uint64(¶m, iterations) || !CBB_flush(out)) { return 0; } return pkcs12_pbe_cipher_init(suite, ctx, iterations, pass, pass_len, salt, salt_len, 1 /* encrypt */); } int pkcs8_pbe_decrypt(uint8_t **out, size_t *out_len, CBS *algorithm, const char *pass, size_t pass_len, const uint8_t *in, size_t in_len) { int ret = 0; uint8_t *buf = NULL;; EVP_CIPHER_CTX ctx; EVP_CIPHER_CTX_init(&ctx); CBS obj; if (!CBS_get_asn1(algorithm, &obj, CBS_ASN1_OBJECT)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); goto err; } const struct pbe_suite *suite = NULL; for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) { if (CBS_mem_equal(&obj, kBuiltinPBE[i].oid, kBuiltinPBE[i].oid_len)) { suite = &kBuiltinPBE[i]; break; } } if (suite == NULL) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM); goto err; } if (!suite->decrypt_init(suite, &ctx, pass, pass_len, algorithm)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEYGEN_FAILURE); goto err; } buf = OPENSSL_malloc(in_len); if (buf == NULL) { goto err; } if (in_len > INT_MAX) { OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); goto err; } int n1, n2; if (!EVP_DecryptUpdate(&ctx, buf, &n1, in, (int)in_len) || !EVP_DecryptFinal_ex(&ctx, buf + n1, &n2)) { goto err; } *out = buf; *out_len = n1 + n2; ret = 1; buf = NULL; err: OPENSSL_free(buf); EVP_CIPHER_CTX_cleanup(&ctx); return ret; } EVP_PKEY *PKCS8_parse_encrypted_private_key(CBS *cbs, const char *pass, size_t pass_len) { // See RFC 5208, section 6. CBS epki, algorithm, ciphertext; if (!CBS_get_asn1(cbs, &epki, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&epki, &algorithm, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) || CBS_len(&epki) != 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); return 0; } uint8_t *out; size_t out_len; if (!pkcs8_pbe_decrypt(&out, &out_len, &algorithm, pass, pass_len, CBS_data(&ciphertext), CBS_len(&ciphertext))) { return 0; } CBS pki; CBS_init(&pki, out, out_len); EVP_PKEY *ret = EVP_parse_private_key(&pki); OPENSSL_free(out); return ret; } int PKCS8_marshal_encrypted_private_key(CBB *out, int pbe_nid, const EVP_CIPHER *cipher, const char *pass, size_t pass_len, const uint8_t *salt, size_t salt_len, int iterations, const EVP_PKEY *pkey) { int ret = 0; uint8_t *plaintext = NULL, *salt_buf = NULL; size_t plaintext_len = 0; EVP_CIPHER_CTX ctx; EVP_CIPHER_CTX_init(&ctx); // Generate a random salt if necessary. if (salt == NULL) { if (salt_len == 0) { salt_len = PKCS5_SALT_LEN; } salt_buf = OPENSSL_malloc(salt_len); if (salt_buf == NULL || !RAND_bytes(salt_buf, salt_len)) { goto err; } salt = salt_buf; } if (iterations <= 0) { iterations = PKCS12_DEFAULT_ITER; } // Serialize the input key. CBB plaintext_cbb; if (!CBB_init(&plaintext_cbb, 128) || !EVP_marshal_private_key(&plaintext_cbb, pkey) || !CBB_finish(&plaintext_cbb, &plaintext, &plaintext_len)) { CBB_cleanup(&plaintext_cbb); goto err; } CBB epki; if (!CBB_add_asn1(out, &epki, CBS_ASN1_SEQUENCE)) { goto err; } // TODO(davidben): OpenSSL has since extended |pbe_nid| to control either the // PBES1 scheme or the PBES2 PRF. E.g. passing |NID_hmacWithSHA256| will // select PBES2 with HMAC-SHA256 as the PRF. Implement this if anything uses // it. See 5693a30813a031d3921a016a870420e7eb93ec90 in OpenSSL. int alg_ok; if (pbe_nid == -1) { alg_ok = PKCS5_pbe2_encrypt_init(&epki, &ctx, cipher, (uint32_t)iterations, pass, pass_len, salt, salt_len); } else { alg_ok = pkcs12_pbe_encrypt_init(&epki, &ctx, pbe_nid, (uint32_t)iterations, pass, pass_len, salt, salt_len); } if (!alg_ok) { goto err; } size_t max_out = plaintext_len + EVP_CIPHER_CTX_block_size(&ctx); if (max_out < plaintext_len) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG); goto err; } CBB ciphertext; uint8_t *ptr; int n1, n2; if (!CBB_add_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) || !CBB_reserve(&ciphertext, &ptr, max_out) || !EVP_CipherUpdate(&ctx, ptr, &n1, plaintext, plaintext_len) || !EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) || !CBB_did_write(&ciphertext, n1 + n2) || !CBB_flush(out)) { goto err; } ret = 1; err: OPENSSL_free(plaintext); OPENSSL_free(salt_buf); EVP_CIPHER_CTX_cleanup(&ctx); return ret; }