# frozen_string_literal: true require 'rumale/linear_model/base_sgd' require 'rumale/base/regressor' module Rumale module LinearModel # LinearRegression is a class that implements ordinary least square linear regression # with stochastic gradient descent (SGD) optimization, # singular value decomposition (SVD), or L-BFGS optimization. # # @example # estimator = # Rumale::LinearModel::LinearRegression.new(max_iter: 1000, batch_size: 20, random_seed: 1) # estimator.fit(training_samples, traininig_values) # results = estimator.predict(testing_samples) # # # If Numo::Linalg is installed, you can specify 'svd' for the solver option. # require 'numo/linalg/autoloader' # estimator = Rumale::LinearModel::LinearRegression.new(solver: 'svd') # estimator.fit(training_samples, traininig_values) # results = estimator.predict(testing_samples) # # *Reference* # - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010. class LinearRegression < BaseSGD include Base::Regressor # Return the weight vector. # @return [Numo::DFloat] (shape: [n_outputs, n_features]) attr_reader :weight_vec # Return the bias term (a.k.a. intercept). # @return [Numo::DFloat] (shape: [n_outputs]) attr_reader :bias_term # Return the random generator for random sampling. # @return [Random] attr_reader :rng # Create a new ordinary least square linear regressor. # # @param learning_rate [Float] The initial value of learning rate. # The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t). # If solver is not 'sgd', this parameter is ignored. # @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds. # If nil is given, the decay sets to 'learning_rate'. # If solver is not 'sgd', this parameter is ignored. # @param momentum [Float] The momentum factor. # If solver is not 'sgd', this parameter is ignored. # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # @param max_iter [Integer] The maximum number of epochs that indicates # how many times the whole data is given to the training process. # If solver is 'svd', this parameter is ignored. # @param batch_size [Integer] The size of the mini batches. # If solver is not 'sgd', this parameter is ignored. # @param tol [Float] The tolerance of loss for terminating optimization. # If solver is 'svd', this parameter is ignored. # @param solver [String] The algorithm to calculate weights. ('auto', 'sgd', 'svd' or 'lbfgs'). # 'auto' chooses the 'svd' solver if Numo::Linalg is loaded. Otherwise, it chooses the 'sgd' solver. # 'sgd' uses the stochastic gradient descent optimization. # 'svd' performs singular value decomposition of samples. # 'lbfgs' uses the L-BFGS method for optimization. # @param n_jobs [Integer] The number of jobs for running the fit method in parallel. # If nil is given, the method does not execute in parallel. # If zero or less is given, it becomes equal to the number of processors. # This parameter is ignored if the Parallel gem is not loaded or solver is not 'sgd'. # @param verbose [Boolean] The flag indicating whether to output loss during iteration. # If solver is 'svd', this parameter is ignored. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9, fit_bias: true, bias_scale: 1.0, max_iter: 1000, batch_size: 50, tol: 1e-4, solver: 'auto', n_jobs: nil, verbose: false, random_seed: nil) check_params_numeric(learning_rate: learning_rate, momentum: momentum, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size) check_params_boolean(fit_bias: fit_bias, verbose: verbose) check_params_string(solver: solver) check_params_numeric_or_nil(decay: decay, n_jobs: n_jobs, random_seed: random_seed) check_params_positive(learning_rate: learning_rate, max_iter: max_iter, batch_size: batch_size) super() @params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h) @params[:solver] = if solver == 'auto' enable_linalg?(warning: false) ? 'svd' : 'sgd' else solver.match?(/^svd$|^sgd$|^lbfgs$/) ? solver : 'sgd' end @params[:decay] ||= @params[:learning_rate] @params[:random_seed] ||= srand @rng = Random.new(@params[:random_seed]) @loss_func = LinearModel::Loss::MeanSquaredError.new @weight_vec = nil @bias_term = nil end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model. # @return [LinearRegression] The learned regressor itself. def fit(x, y) x = check_convert_sample_array(x) y = check_convert_tvalue_array(y) check_sample_tvalue_size(x, y) if @params[:solver] == 'svd' && enable_linalg?(warning: false) fit_svd(x, y) elsif @params[:solver] == 'lbfgs' fit_lbfgs(x, y) else fit_sgd(x, y) end self end # Predict values for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values. # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample. def predict(x) x = check_convert_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end private def fit_svd(x, y) x = expand_feature(x) if fit_bias? w = Numo::Linalg.pinv(x, driver: 'svd').dot(y) @weight_vec, @bias_term = single_target?(y) ? split_weight(w) : split_weight_mult(w) end def fit_lbfgs(x, y) fnc = proc do |w, x, y| # rubocop:disable Lint/ShadowingOuterLocalVariable n_samples, n_features = x.shape w = w.reshape(y.shape[1], n_features) unless y.shape[1].nil? z = x.dot(w.transpose) d = z - y loss = (d**2).sum.fdiv(n_samples) gradient = 2.fdiv(n_samples) * d.transpose.dot(x) [loss, gradient.flatten.dup] end x = expand_feature(x) if fit_bias? n_features = x.shape[1] n_outputs = single_target?(y) ? 1 : y.shape[1] res = Lbfgsb.minimize( fnc: fnc, jcb: true, x_init: init_weight(n_features, n_outputs), args: [x, y], maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, verbose: @params[:verbose] ? 1 : -1 ) @weight_vec, @bias_term = if single_target?(y) split_weight(res[:x]) else split_weight_mult(res[:x].reshape(n_outputs, n_features).transpose) end end def fit_sgd(x, y) if single_target?(y) @weight_vec, @bias_term = partial_fit(x, y) else n_outputs = y.shape[1] n_features = x.shape[1] @weight_vec = Numo::DFloat.zeros(n_outputs, n_features) @bias_term = Numo::DFloat.zeros(n_outputs) if enable_parallel? models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) } n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] } else n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) } end end end def single_target?(y) y.ndim == 1 end def init_weight(n_features, n_outputs) Rumale::Utils.rand_normal([n_outputs, n_features], @rng.dup).flatten.dup end def split_weight_mult(w) if fit_bias? [w[0...-1, true].dup, w[-1, true].dup] else [w.dup, Numo::DFloat.zeros(w.shape[1])] end end end end end