Sha256: c833e02f7584eb720269ddfcabb330ea668f1d17546c69374d84709e93394767
Contents?: true
Size: 1.73 KB
Versions: 74
Compression:
Stored size: 1.73 KB
Contents
# Complex Numbers A complex number is a number in the form `a + b * i` where `a` and `b` are real and `i` satisfies `i^2 = -1`. `a` is called the real part and `b` is called the imaginary part of `z`. The conjugate of the number `a + b * i` is the number `a - b * i`. The absolute value of a complex number `z = a + b * i` is a real number `|z| = sqrt(a^2 + b^2)`. The square of the absolute value `|z|^2` is the result of multiplication of `z` by its complex conjugate. The sum/difference of two complex numbers involves adding/subtracting their real and imaginary parts separately: `(a + i * b) + (c + i * d) = (a + c) + (b + d) * i`, `(a + i * b) - (c + i * d) = (a - c) + (b - d) * i`. Multiplication result is by definition `(a + i * b) * (c + i * d) = (a * c - b * d) + (b * c + a * d) * i`. The reciprocal of a non-zero complex number is `1 / (a + i * b) = a/(a^2 + b^2) - b/(a^2 + b^2) * i`. Dividing a complex number `a + i * b` by another `c + i * d` gives: `(a + i * b) / (c + i * d) = (a * c + b * d)/(c^2 + d^2) + (b * c - a * d)/(c^2 + d^2) * i`. Exponent of a complex number can be expressed as `exp(a + i * b) = exp(a) * exp(i * b)`, and the last term is given by Euler's formula `exp(i * b) = cos(b) + i * sin(b)`. Implement the following operations: - addition, subtraction, multiplication and division of two complex numbers, - conjugate, absolute value, exponent of a given complex number. Assume the programming language you are using does not have an implementation of complex numbers. ## Source Wikipedia [https://en.wikipedia.org/wiki/Complex_number](https://en.wikipedia.org/wiki/Complex_number) ## Submitting Incomplete Solutions It's possible to submit an incomplete solution so you can see how others have completed the exercise.
Version data entries
74 entries across 74 versions & 1 rubygems