module DNN module Layers # Super class of all optimizer classes. class Layer # @return [Bool] learning_phase Return the true if learning. attr_accessor :learning_phase # @return [Array] Return the shape of the input data. attr_reader :input_shape def initialize @built = false end # Build the layer. # @param [Array] input_shape Setting the shape of the input data. def build(input_shape) @input_shape = input_shape @learning_phase = true @built = true end # Does the layer have already been built? # @return [Bool] If layer have already been built then return true. def built? @built end # Forward propagation. def forward(x) raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'forward'") end # Backward propagation. def backward(dy) raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'backward'") end # Please reimplement this method as needed. # The default implementation return input_shape. # @return [Array] Return the shape of the output data. def output_shape @input_shape end # Layer to a hash. def to_hash(merge_hash = nil) hash = {class: self.class.name} hash.merge!(merge_hash) if merge_hash hash end end # This class is a superclass of all classes with learning parameters. class HasParamLayer < Layer # @return [Bool] trainable Setting false prevents learning of parameters. attr_accessor :trainable # @return [Array] The parameters of the layer. attr_reader :params def initialize super() @params = {} @trainable = true end end class InputLayer < Layer def self.from_hash(hash) self.new(hash[:input_shape]) end def initialize(input_dim_or_shape) super() @input_shape = input_dim_or_shape.is_a?(Array) ? input_dim_or_shape : [input_dim_or_shape] end def build @built = true @input_shape end def forward(x) x end def backward(dy) dy end def to_hash super({input_shape: @input_shape}) end end # It is a superclass of all connection layers. class Connection < HasParamLayer # @return [DNN::Initializers::Initializer] Weight initializer. attr_reader :weight_initializer # @return [DNN::Initializers::Initializer] Bias initializer. attr_reader :bias_initializer # @return [DNN::Regularizers::Regularizer] Weight regularization. attr_reader :weight_regularizer # @return [DNN::Regularizers::Regularizer] Bias regularization. attr_reader :bias_regularizer # @param [DNN::Initializers::Initializer] weight_initializer Weight initializer. # @param [DNN::Initializers::Initializer] bias_initializer Bias initializer. # @param [DNN::Regularizers::Regularizer] weight_regularizer Weight regularization. # @param [DNN::Regularizers::Regularizer] bias_regularizer Bias regularization. # @param [Bool] use_bias whether to use bias. def initialize(weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, bias_regularizer: nil, use_bias: true) super() @weight_initializer = weight_initializer @bias_initializer = bias_initializer @weight_regularizer = weight_regularizer @bias_regularizer = bias_regularizer @params[:weight] = @weight = Param.new(nil, 0) if use_bias @params[:bias] = @bias = Param.new(nil, 0) else @bias = nil end end def regularizers regularizers = [] regularizers << @weight_regularizer if @weight_regularizer regularizers << @bias_regularizer if @bias_regularizer regularizers end # @return [Bool] Return whether to use bias. def use_bias @bias ? true : false end def to_hash(merge_hash) super({weight_initializer: @weight_initializer.to_hash, bias_initializer: @bias_initializer.to_hash, weight_regularizer: @weight_regularizer&.to_hash, bias_regularizer: @bias_regularizer&.to_hash, use_bias: use_bias}.merge(merge_hash)) end private def init_weight_and_bias @weight_initializer.init_param(self, @weight) @weight_regularizer.param = @weight if @weight_regularizer if @bias @bias_initializer.init_param(self, @bias) @bias_regularizer.param = @bias if @bias_regularizer end end end # Full connnection layer. class Dense < Connection # @return [Integer] number of nodes. attr_reader :num_nodes def self.from_hash(hash) self.new(hash[:num_nodes], weight_initializer: Utils.from_hash(hash[:weight_initializer]), bias_initializer: Utils.from_hash(hash[:bias_initializer]), weight_regularizer: Utils.from_hash(hash[:weight_regularizer]), bias_regularizer: Utils.from_hash(hash[:bias_regularizer]), use_bias: hash[:use_bias]) end # @param [Integer] num_nodes number of nodes. def initialize(num_nodes, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, bias_regularizer: nil, use_bias: true) super(weight_initializer: weight_initializer, bias_initializer: bias_initializer, weight_regularizer: weight_regularizer, bias_regularizer: bias_regularizer, use_bias: use_bias) @num_nodes = num_nodes end def build(input_shape) super num_prev_nodes = input_shape[0] @weight.data = Xumo::SFloat.new(num_prev_nodes, @num_nodes) @bias.data = Xumo::SFloat.new(@num_nodes) if @bias init_weight_and_bias end def forward(x) @x = x y = x.dot(@weight.data) y += @bias.data if @bias y end def backward(dy) if @trainable @weight.grad += @x.transpose.dot(dy) @bias.grad += dy.sum(0) if @bias end dy.dot(@weight.data.transpose) end def output_shape [@num_nodes] end def to_hash super({num_nodes: @num_nodes}) end end class Flatten < Layer def forward(x) x.reshape(x.shape[0], *output_shape) end def backward(dy) dy.reshape(dy.shape[0], *@input_shape) end def output_shape [@input_shape.reduce(:*)] end end class Reshape < Layer def self.from_hash(hash) self.new(hash[:output_shape]) end def initialize(output_shape) super() @output_shape = output_shape end def forward(x) x.reshape(x.shape[0], *@output_shape) end def backward(dy) dy.reshape(dy.shape[0], *@input_shape) end def output_shape @output_shape end def to_hash super({output_shape: @output_shape}) end end class Dropout < Layer # @return [Float] dropout ratio. attr_accessor :dropout_ratio # @return [Float] Use 'weight scaling inference rule'. attr_reader :use_scale def self.from_hash(hash) self.new(hash[:dropout_ratio], seed: hash[:seed], use_scale: hash[:use_scale]) end def initialize(dropout_ratio = 0.5, seed: rand(1 << 31), use_scale: true) super() @dropout_ratio = dropout_ratio @seed = seed @use_scale = use_scale @mask = nil end def forward(x) if learning_phase Xumo::SFloat.srand(@seed) @mask = Xumo::SFloat.ones(*x.shape).rand < @dropout_ratio x[@mask] = 0 else x *= (1 - @dropout_ratio) if @use_scale end x end def backward(dy) dy[@mask] = 0 dy end def to_hash super({dropout_ratio: @dropout_ratio, seed: @seed, use_scale: @use_scale}) end end end end