module TensorStream # Class that defines all available ops supported by TensorStream module Ops if File.exists?(File.join(__dir__, 'generated_stub', 'ops.rb')) require 'tensor_stream/generated_stub/ops' include TensorStream::OpStub end class OutputHolder def initialize(op) @op = op end end FLOATING_POINT_TYPES = %i[float32 float64 float float16].freeze INTEGER_TYPES = %i[uint8 int32 int int16 uint16 int64 uint32 uint64].freeze NUMERIC_TYPES = FLOATING_POINT_TYPES + INTEGER_TYPES ## # Assert the condition x == y holds element-wise. # # Argmuments # # +x+ Numeric Tensor. # +y+ Numeric Tensor, same dtype as and broadcastable to x. # # Returns # Op that raises InvalidArgumentError if x == y is false def assert_equal(x, y, data: nil, summarize: nil, message: nil, name: nil) _op(:assert_equal, x, y, data: data, summarize: summarize, message: message, name: name) end ## # Constructs symbolic derivatives of ys of input w.r.t. x in wrt_xs. # # ys and xs are each a Tensor or a list of tensors. grad_ys is a list of Tensor, holding the gradients received by the ys. The list must be the same length as ys. # # Arguments: # +tensor_ys+ : A Tensor or list of tensors to be differentiated. # +wrt_xs+ : A Tensor or list of tensors to be used for differentiation. # +stop_gradients+ : Optional. A Tensor or list of tensors not to differentiate through def gradients(tensor_ys, wrt_xs, name: "gradients", stop_gradients: nil) tensor_ys = tensor_ys.op gs = wrt_xs.map(&:op).collect { |x| stops = stop_gradients ? stop_gradients.map(&:name).join("_") : "" gradient_program_name = "grad_#{tensor_ys.name}_#{x.name}_#{stops}".to_sym tensor_graph = tensor_ys.graph tensor_program = if tensor_graph.node_added?(gradient_program_name) tensor_graph.get_node(gradient_program_name) else tensor_graph.name_scope("gradient_wrt_#{x.name}") do derivative_ops = TensorStream::MathGradients.derivative(tensor_ys, x, graph: tensor_graph, stop_gradients: stop_gradients) tensor_graph.add_node!(gradient_program_name, derivative_ops) end end tensor_program } gs end ## # Outputs random values from a normal distribution. def random_normal(shape, dtype: :float32, mean: 0.0, stddev: 1.0, seed: nil, name: nil) options = {dtype: dtype, mean: mean, stddev: stddev, seed: seed, name: name} _op(:random_standard_normal, shape, options) end ## # Outputs random values from a truncated normal distribution. def truncated_normal(shape, dtype: :float32, mean: 0.0, stddev: 1.0, seed: nil, name: nil, pre_gen_table_size: nil) _op(:truncated_normal, shape, dtype: dtype, mean: mean, stddev: stddev, seed: seed, name: name, pre_gen_table_size: pre_gen_table_size) end ## # Stops gradient computation. # # When executed in a graph, this op outputs its input tensor as-is. def stop_gradient(tensor, options = {}) _op(:stop_gradient, tensor, options) end ## # Construct an identity matrix def eye(num_rows, num_columns: nil, dtype: :float32, name: nil) _op(:eye, num_rows, num_columns || num_rows, data_type: dtype, name: name) end def expand_dims(input, axis = nil, name: nil) _op(:expand_dims, input, axis, name: name) end def shape_n(inputs, name: nil, out_type: :int32) shapes_known = true inputs.each do |input| unless input.shape.known? shapes_known = false break end end if shapes_known inputs.collect { |input| cons(input.shape.shape, dtype: out_type).op } else res = _op(:shape_n, *inputs, out_type: out_type, name: name) Array.new(inputs.size) do |index| res[index] end end end ## # initializer that generates tensors initialized to 0. # def zeros_initializer(dtype: :float32) TensorStream::Initializer.new(-> { _op(:zeros, data_type: dtype) }) end ## # initializer that generates tensors initialized to 1. # def ones_initializer(dtype: :float32) TensorStream::Initializer.new(-> { _op(:ones, data_type: dtype) }) end def constant_initializer(value, dtype: nil, verify_shape: false) TensorStream::Initializer.new(-> { _op(:fill, nil, convert_to_tensor(value, dtype: dtype)) }) end ## # The Glorot uniform initializer, also called Xavier uniform initializer. # # It draws samples from a uniform distribution within [-limit, limit] # where limit is sqrt(6 / (fan_in + fan_out)) where fan_in is the number # of input units in the weight tensor and fan_out is the number of output units in the weight tensor. def glorot_uniform_initializer(seed: nil, dtype: nil) TensorStream::Initializer.new(-> { _op(:glorot_uniform, seed: seed, data_type: dtype) }) end ## # Initializer that generates tensors with a uniform distribution. def random_uniform_initializer(minval: 0, maxval: 1, seed: nil, dtype: nil) TensorStream::Initializer.new(-> { _op(:random_uniform, minval: 0, maxval: 1, seed: seed, data_type: dtype) }) end ## # Extracts a slice from a tensor. # # This operation extracts a slice of size size from a tensor input starting at the location specified by begin. # The slice size is represented as a tensor shape, where size[i] is the number of elements of the 'i'th dimension of input that you want to slice. The starting location (begin) for the slice is # represented as an offset in each dimension of input. In other words, begin[i] is the offset into the 'i'th dimension of input that you want to slice from. def slice(input, start, size, name: nil) _op(:slice, input, start, size: size, name: name) end ## # Creates a tensor with all elements set to 1. def ones(shape, dtype: :float32, name: nil) _op(:ones, shape, data_type: dtype, name: name) end ## # Returns the truth value of x AND y element-wise. def logical_and(input_a, input_b, name: nil) check_data_types(input_a, input_b) _op(:logical_and, input_a, input_b, name: name) end ## # Computes the mean of elements across dimensions of a tensor. def reduce_mean(input_tensor, axis = nil, keepdims: false, name: nil) reduce(:mean, input_tensor, axis, keepdims: keepdims, name: name) end def reduce(op, input, axis = nil, keepdims: false, name: nil) input = TensorStream.convert_to_tensor(input) return input if input.shape.scalar? axis = cast_axis(input, axis) _op(op, input, axis, keepdims: keepdims, name: name) end ## # Concatenates tensors along one dimension. def concat(values, axis, name: "concat") if values.is_a?(Array) _op(:concat, axis, *values, name: name) else _op(:concat, axis, values, name: name) end end ## # Partitions data into num_partitions tensors using indices from partitions def dynamic_partition(data, partitions, num_partitions, name: nil) result = _op(:dynamic_partition, data, partitions, num_partitions: num_partitions, name: nil) num_partitions.times.map do |index| result[index] end end def split(value, num_or_size_splits, axis: 0, num: nil, name: "split") value = convert_to_tensor(value) num_or_size_splits = convert_to_tensor(num_or_size_splits) axis = convert_to_tensor(axis) raise TensorStream::ValueError, "num_or_size_splits must be integer dtype" unless INTEGER_TYPES.include?(num_or_size_splits.data_type) res = _op(:split, value, num_or_size_splits, axis, name: name) pieces = if value.shape.known? && num_or_size_splits.is_const && num_or_size_splits.value && axis.is_const if num_or_size_splits.shape.scalar? raise TensorStream::ValueError, "num_or_size_splits must divide dimension #{value.shape.shape[axis.value]} evenly" unless (value.shape.shape[axis.value] % num_or_size_splits.value).zero? div = num_or_size_splits.value n = value.shape.shape[axis.value] / div Array.new(div) do new_shape = value.shape.shape.dup new_shape[axis.value] = n new_shape end elsif num_or_size_splits.shape.ndims == 1 raise TensorStream::ValueError, "Sum of splits do not match total dimen in axis #{value.shape.shape[axis.value]} != #{num_or_size_splits.value.reduce(:+)}" if value.shape.shape[axis.value] != num_or_size_splits.value.reduce(:+) num_or_size_splits.value.collect do |v| new_shape = value.shape.shape.dup new_shape[axis.value] = v new_shape end else raise TensorStream::ValueError, "Scalar or 1D Tensor expected for num_or_size_splits" end else raise TensorStream::ValueError, "Cannot automatically determine num, please specify num: in options" if num.nil? Array.new(num) { nil } end pieces.collect.with_index do |shape, i| op = index(res, i, name: "split/index:#{i}") op.shape = TensorShape.new(shape) if shape op end end ## # select an index in an array or a set of tensor outputs def index(tensor, sel, name: nil) _op(:index, tensor, sel, name: name) end ## # Reshapes a tensor. # # Given tensor, this operation returns a tensor that has the same values as tensor with shape shape. def reshape(tensor, shape, name: nil) _op(:reshape, tensor, shape, name: name) end ## # Computes square of x element-wise. def square(tensor, name: nil) _op(:square, tensor, name: name) end ## # Computes the reciprocal of x element-wise. def reciprocal(tensor, name: nil) _op(:reciprocal, tensor, name: name) end ## # Return true_fn() if the predicate pred is true else false_fn(). def cond(pred, true_fn, false_fn, name: nil) _op(:case, [pred], false_fn, true_fn, name: name) end ## # Return the elements, either from x or y, depending on the condition. def where(condition, true_t = nil, false_t = nil, name: nil) _op(:where, condition, true_t, false_t, name: name) end ## # Adds all input tensors element-wise. # # Elements must all be the same shape and type def add_n(inputs, name: nil) _op(:add_n, *inputs, name: name) end ## # Computes asin of input element-wise def asin(input, name: nil) check_allowed_types(input, FLOATING_POINT_TYPES) _op(:asin, input, name: name) end ## # Computes acos of input element-wise def acos(input, name: nil) check_allowed_types(input, FLOATING_POINT_TYPES) _op(:acos, input, name: name) end ## # Computes atan of input element-wise def atan(input, name: nil) check_allowed_types(input, FLOATING_POINT_TYPES) _op(:atan, input, name: name) end ## # Returns element-wise integer divistion. def floor_div(input_a, input_b, name: nil) check_data_types(input_a, input_b) _op(:floor_div, input_a, input_b, name: name) end ## # Casts a tensor to a new type, if needed def cast(input, dtype, name: nil) input = convert_to_tensor(input) return input if input.data_type == dtype _op(:cast, input, data_type: dtype, name: name) end ## # Returns the max of x and y (i.e. x > y ? x : y) element-wise. def maximum(input_a, input_b, name: nil) max(input_a, input_b, name: name) end ## # Returns the min of x and y (i.e. x < y ? x : y) element-wise. def minimum(input_a, input_b, name: nil) min(input_a, input_b, name: name) end ## # Prints a list of tensors. # # This is an identity op (behaves like tf.identity) with the side effect of printing data when evaluating. def print(input, data, message: nil, name: nil) _op(:print, input, data, message: message, name: name) end ## # Computes numerical negative value element-wise. def negative(input, name: nil) negate(input, name: name) end ## # Returns the truth value of (x != y) element-wise. # This ops supports broadcasting def not_equal(input_a, input_b, name: nil) check_data_types(input_a, input_b) _op(:not_equal, input_a, input_b, name: name) end ## # reates a tensor with all elements set to zero. # Given a single tensor (tensor), this operation returns a tensor # of the same type and shape as tensor with all elements set to zero. # Optionally, you can use dtype to specify a new type for the returned tensor. def zeros_like(tensor, dtype: nil, name: nil) _op(:zeros_like, tensor, data_type: dtype, name: name) end ## # Creates a tensor with all elements set to 1. # Given a single tensor (tensor), this operation returns a # tensor of the same type and shape as tensor with all elements set to 1. # Optionally, you can specify a new type (dtype) for the returned tensor. def ones_like(tensor, dtype: nil, name: nil) _op(:ones_like, tensor, data_type: dtype, name: name) end ## # Return a tensor with the same shape and contents as input. def identity(input, name: nil) _op(:identity, input, name: name) end ## # Returns x * y element-wise. # This operation supports broadcasting def multiply(input_a, input_b, name: nil) check_data_types(input_a, input_b) _op(:mul, input_a, input_b, name: name) end ## # Computes the absolute value of a tensor. def abs(input, name: nil) _op(:abs, input, name: name) end ## # Computes sec of input element-wise. def sec(input, name: nil) check_allowed_types(input, FLOATING_POINT_TYPES) _op(:sec, input, name: name) end ## # Computes sqrt of input element-wise. def sqrt(input, name: nil) check_allowed_types(input, FLOATING_POINT_TYPES) _op(:sqrt, input, name: name) end ## # Computes natural logarithm of x element-wise. def log(input, name: nil) check_allowed_types(input, FLOATING_POINT_TYPES) _op(:log, input, name: name) end ## # Computes natural logarithm of (1 + x) element-wise. def log1p(input, name: nil) check_allowed_types(input, FLOATING_POINT_TYPES) _op(:log1p, input, name: name) end ## # Computes exponential of x element-wise. def exp(input, name: nil) check_allowed_types(input, FLOATING_POINT_TYPES) _op(:exp, input, name: name) end ## # Transposes a. Permutes the dimensions according to perm. def transpose(tensor, perm = nil, name: "transpose") _op(:transpose, tensor, perm, name: name) end ## # Pads a tensor. # This operation pads a tensor according to the paddings you specify. def pad(tensor, paddings, mode: "CONSTANT", name: nil) _op(:pad, tensor, paddings, mode: mode, name: name) end ## # Checks a tensor for NaN and Inf values. # When run, reports an InvalidArgument error if tensor has any values that are not a number (NaN) or infinity (Inf). Otherwise, passes tensor as-is. def check_numerics(tensor, message, name: nil) _op(:check_numerics, tensor, message: message, name: name) end def squared_difference(input_a, input_b, name: nil) _op(:squared_difference, input_a, input_b, name: name) end def broadcast_gradient_args(shape_a, shape_b, name: nil) op_result = _op(:broadcast_gradient_args, shape_a, shape_b, name: name) [op_result[0], op_result[1]] end ## # Gather slices from params and axis according to indices. # def gather(params, indices, validate_indices: nil, name: nil, axis: 0) _op(:gather, params, indices, validate_indices: validate_indices, name: name, axis: axis) end ## # Stacks a list of rank-R tensors into one rank-(R+1) tensor. # def stack(values, axis: 0, name: "stack") _op(:stack, *values, axis: axis, name: name) end ## # Unpacks the given dimension of a rank-R tensor into rank-(R-1) tensors. # def unstack(value, num: nil, axis: 0, name: "unstack") res = _op(:unstack, value, num: num, axis: axis, name: name) num_vars = if value.shape.known? new_shape = value.shape.shape.dup rank = new_shape.size - 1 axis = rank + axis if axis < 0 rotated_shape = Array.new(axis + 1) { new_shape.shift } new_shape = rotated_shape.rotate!(-1) + new_shape new_shape[0] else raise TensorStream::ValueError, "num is unspecified and cannot be inferred." if num.nil? num end return res[0] if num_vars == 1 Array.new(num_vars) do |i| index(res, i, name: "unstack/index:#{i}") end end ## # Same as stack def pack(values, axis: 0, name: "pack") _op(:stack, *values, axis: axis, name: name) end ## # Same as unstack # def unpack(value, num: nil, axis: 0, name: "unpack") unstack(value, num: num, axis: axis, name: name) end ## # Removes dimensions of size 1 from the shape of a tensor. # # Given a tensor input, this operation returns a tensor of the same type with all dimensions of size 1 removed. # If you don't want to remove all size 1 dimensions, you can remove specific size 1 dimensions by specifying axis. def squeeze(value, axis: [], name: nil) _op(:squeeze, value, axis: axis, name: nil) end def clip_by_norm(tensor, clip_norm, axes: nil, name: nil) end ## # Computes the difference between two lists of numbers or strings. # Given a list x and a list y, this operation returns a list out that represents all values # that are in x but not in y. The returned list out is sorted in the same order that the numbers appear # in x (duplicates are preserved). This operation also returns a list idx that represents the position of # each out element in x. In other words: # def setdiff1d(x, y, index_dtype: :int32, name: nil) result = _op(:setdiff1d, x, y, index_dtype: index_dtype, name: name) [result[0], result[1]] end ## # Create a case operation. # # The pred_fn_pairs parameter is a dict or list of pairs of size N. # Each pair contains a boolean scalar tensor and a proc that creates the tensors to be returned if the boolean evaluates to true. # default is a proc generating a list of tensors. All the proc in pred_fn_pairs as well as default (if provided) should return the # same number and types of tensors. # def case(args = {}) args = args.dup default = args.delete(:default) exclusive = args.delete(:exclusive) strict = args.delete(:strict) name = args.delete(:name) predicates = [] functions = [] args.each do |k, v| raise "Invalid argment or option #{k}" unless k.is_a?(Tensor) predicates << k functions << (v.is_a?(Proc) ? v.call : v) end _op(:case, predicates, default, *functions, exclusive: exclusive, strict: strict, name: name) end def cumprod(x, axis: 0, exclusive: false, reverse: false, name: nil) _op(:cumprod, x, axis: axis, exclusive: exclusive, reverse: reverse, name: name) end def invert_permutation(x, name: nil) _op(:invert_permutation, x, name: name) end def cast_axis(input, axis) if !axis.nil? axis elsif input.shape.known? (0...input.shape.ndims).to_a else range(0, rank(input)) end end end end