/* * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * Copyright (c) 2011 Helge Bahmann * Copyright (c) 2013 Tim Blechmann * Copyright (c) 2014 Andrey Semashev */ /*! * \file atomic/detail/core_ops_gcc_sync.hpp * * This header contains implementation of the \c core_operations template. */ #ifndef BOOST_ATOMIC_DETAIL_CORE_OPS_GCC_SYNC_HPP_INCLUDED_ #define BOOST_ATOMIC_DETAIL_CORE_OPS_GCC_SYNC_HPP_INCLUDED_ #include #include #include #include #include #include #include #include #include #ifdef BOOST_HAS_PRAGMA_ONCE #pragma once #endif namespace boost { namespace atomics { namespace detail { struct core_operations_gcc_sync_base { static BOOST_CONSTEXPR_OR_CONST bool full_cas_based = false; static BOOST_CONSTEXPR_OR_CONST bool is_always_lock_free = true; static BOOST_FORCEINLINE void fence_before_store(memory_order order) BOOST_NOEXCEPT { if ((static_cast< unsigned int >(order) & static_cast< unsigned int >(memory_order_release)) != 0u) __sync_synchronize(); } static BOOST_FORCEINLINE void fence_after_store(memory_order order) BOOST_NOEXCEPT { if (order == memory_order_seq_cst) __sync_synchronize(); } static BOOST_FORCEINLINE void fence_after_load(memory_order order) BOOST_NOEXCEPT { if ((static_cast< unsigned int >(order) & (static_cast< unsigned int >(memory_order_acquire) | static_cast< unsigned int >(memory_order_consume))) != 0u) __sync_synchronize(); } }; template< std::size_t Size, bool Signed, bool Interprocess > struct core_operations_gcc_sync : public core_operations_gcc_sync_base { typedef typename storage_traits< Size >::type storage_type; static BOOST_CONSTEXPR_OR_CONST std::size_t storage_size = Size; static BOOST_CONSTEXPR_OR_CONST std::size_t storage_alignment = storage_traits< storage_size >::alignment; static BOOST_CONSTEXPR_OR_CONST bool is_signed = Signed; static BOOST_CONSTEXPR_OR_CONST bool is_interprocess = Interprocess; // In general, we cannot guarantee atomicity of plain loads and stores of anything larger than a single byte on // an arbitrary CPU architecture. However, all modern architectures seem to guarantee atomic loads and stores of // suitably aligned objects of up to a pointer size. For larger objects we should probably use intrinsics to guarantee // atomicity. If there appears an architecture where this doesn't hold, this threshold needs to be updated (patches are welcome). typedef atomics::detail::integral_constant< bool, storage_size <= sizeof(void*) > plain_stores_loads_are_atomic; static BOOST_FORCEINLINE void store(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { store(storage, v, order, plain_stores_loads_are_atomic()); } static BOOST_FORCEINLINE void store(storage_type volatile& storage, storage_type v, memory_order order, atomics::detail::true_type) BOOST_NOEXCEPT { fence_before_store(order); storage = v; fence_after_store(order); } static BOOST_FORCEINLINE void store(storage_type volatile& storage, storage_type v, memory_order order, atomics::detail::false_type) BOOST_NOEXCEPT { exchange(storage, v, order); } static BOOST_FORCEINLINE storage_type load(storage_type const volatile& storage, memory_order order) BOOST_NOEXCEPT { return load(storage, order, plain_stores_loads_are_atomic()); } static BOOST_FORCEINLINE storage_type load(storage_type const volatile& storage, memory_order order, atomics::detail::true_type) BOOST_NOEXCEPT { storage_type v = storage; fence_after_load(order); return v; } static BOOST_FORCEINLINE storage_type load(storage_type const volatile& storage, memory_order, atomics::detail::false_type) BOOST_NOEXCEPT { // Note: don't use fetch_add or other arithmetics here since storage_type may not be an arithmetic type. storage_type expected = storage_type(); storage_type desired = expected; // We don't care if CAS succeeds or not. If it does, it will just write the same value there was before. return __sync_val_compare_and_swap(const_cast< storage_type volatile* >(&storage), expected, desired); } static BOOST_FORCEINLINE storage_type fetch_add(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return __sync_fetch_and_add(&storage, v); } static BOOST_FORCEINLINE storage_type fetch_sub(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return __sync_fetch_and_sub(&storage, v); } static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { // GCC docs mention that not all architectures may support full exchange semantics for this intrinsic. However, GCC's implementation of // std::atomic<> uses this intrinsic unconditionally. We do so as well. In case if some architectures actually don't support this, we can always // add a check here and fall back to a CAS loop. if ((static_cast< unsigned int >(order) & static_cast< unsigned int >(memory_order_release)) != 0u) __sync_synchronize(); return __sync_lock_test_and_set(&storage, v); } static BOOST_FORCEINLINE bool compare_exchange_strong( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order, memory_order) BOOST_NOEXCEPT { storage_type expected2 = expected; storage_type old_val = __sync_val_compare_and_swap(&storage, expected2, desired); if (old_val == expected2) { return true; } else { expected = old_val; return false; } } static BOOST_FORCEINLINE bool compare_exchange_weak( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order success_order, memory_order failure_order) BOOST_NOEXCEPT { return compare_exchange_strong(storage, expected, desired, success_order, failure_order); } static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return __sync_fetch_and_and(&storage, v); } static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return __sync_fetch_and_or(&storage, v); } static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return __sync_fetch_and_xor(&storage, v); } static BOOST_FORCEINLINE bool test_and_set(storage_type volatile& storage, memory_order order) BOOST_NOEXCEPT { if ((static_cast< unsigned int >(order) & static_cast< unsigned int >(memory_order_release)) != 0u) __sync_synchronize(); return !!__sync_lock_test_and_set(&storage, 1); } static BOOST_FORCEINLINE void clear(storage_type volatile& storage, memory_order order) BOOST_NOEXCEPT { __sync_lock_release(&storage); if (order == memory_order_seq_cst) __sync_synchronize(); } }; #if BOOST_ATOMIC_INT8_LOCK_FREE > 0 template< bool Signed, bool Interprocess > struct core_operations< 1u, Signed, Interprocess > : #if defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1) public core_operations_gcc_sync< 1u, Signed, Interprocess > #elif defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2) public extending_cas_based_arithmetic< core_operations_gcc_sync< 2u, Signed, Interprocess >, 1u, Signed > #elif defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4) public extending_cas_based_arithmetic< core_operations_gcc_sync< 4u, Signed, Interprocess >, 1u, Signed > #elif defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8) public extending_cas_based_arithmetic< core_operations_gcc_sync< 8u, Signed, Interprocess >, 1u, Signed > #else public extending_cas_based_arithmetic< core_operations_gcc_sync< 16u, Signed, Interprocess >, 1u, Signed > #endif { }; #endif #if BOOST_ATOMIC_INT16_LOCK_FREE > 0 template< bool Signed, bool Interprocess > struct core_operations< 2u, Signed, Interprocess > : #if defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2) public core_operations_gcc_sync< 2u, Signed, Interprocess > #elif defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4) public extending_cas_based_arithmetic< core_operations_gcc_sync< 4u, Signed, Interprocess >, 2u, Signed > #elif defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8) public extending_cas_based_arithmetic< core_operations_gcc_sync< 8u, Signed, Interprocess >, 2u, Signed > #else public extending_cas_based_arithmetic< core_operations_gcc_sync< 16u, Signed, Interprocess >, 2u, Signed > #endif { }; #endif #if BOOST_ATOMIC_INT32_LOCK_FREE > 0 template< bool Signed, bool Interprocess > struct core_operations< 4u, Signed, Interprocess > : #if defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4) public core_operations_gcc_sync< 4u, Signed, Interprocess > #elif defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8) public extending_cas_based_arithmetic< core_operations_gcc_sync< 8u, Signed, Interprocess >, 4u, Signed > #else public extending_cas_based_arithmetic< core_operations_gcc_sync< 16u, Signed, Interprocess >, 4u, Signed > #endif { }; #endif #if BOOST_ATOMIC_INT64_LOCK_FREE > 0 template< bool Signed, bool Interprocess > struct core_operations< 8u, Signed, Interprocess > : #if defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8) public core_operations_gcc_sync< 8u, Signed, Interprocess > #else public extending_cas_based_arithmetic< core_operations_gcc_sync< 16u, Signed, Interprocess >, 8u, Signed > #endif { }; #endif #if BOOST_ATOMIC_INT128_LOCK_FREE > 0 template< bool Signed, bool Interprocess > struct core_operations< 16u, Signed, Interprocess > : public core_operations_gcc_sync< 16u, Signed, Interprocess > { }; #endif } // namespace detail } // namespace atomics } // namespace boost #include #endif // BOOST_ATOMIC_DETAIL_CORE_OPS_GCC_SYNC_HPP_INCLUDED_