module PropCheck ## # A `Generator` is a special kind of 'proc' that, # given a size an random number generator state, # will generate a (finite) LazyTree of output values: # # The root of this tree is the value to be used during testing, # and the children are 'smaller' values related to the root, # to be used during the shrinking phase. class Generator @@default_size = 10 @@default_rng = Random.new @@max_consecutive_attempts = 100 @@default_kwargs = { size: @@default_size, rng: @@default_rng, max_consecutive_attempts: @@max_consecutive_attempts } ## # Being a special kind of Proc, a Generator wraps a block. def initialize(&block) @block = block end ## # Given a `size` (integer) and a random number generator state `rng`, # generate a LazyTree. def generate(**kwargs) kwargs = @@default_kwargs.merge(kwargs) max_consecutive_attempts = kwargs[:max_consecutive_attempts] (0..max_consecutive_attempts).each do res = @block.call(**kwargs) next if res.root == :"_PropCheck.filter_me" return res end raise Errors::GeneratorExhaustedError, ''" Exhausted #{max_consecutive_attempts} consecutive generation attempts. Probably too few generator results were adhering to a `where` condition. "'' end ## # Generates a value, and only return this value # (drop information for shrinking) # # >> Generators.integer.call(size: 1000, rng: Random.new(42)) # => 126 def call(**kwargs) generate(**@@default_kwargs.merge(kwargs)).root end ## # Returns `num_of_samples` values from calling this Generator. # This is mostly useful for debugging if a generator behaves as you intend it to. def sample(num_of_samples = 10, **kwargs) num_of_samples.times.map do call(**@@default_kwargs.merge(kwargs)) end end ## # Creates a 'constant' generator that always returns the same value, # regardless of `size` or `rng`. # # Keen readers may notice this as the Monadic 'pure'/'return' implementation for Generators. # # >> Generators.integer.bind { |a| Generators.integer.bind { |b| Generator.wrap([a , b]) } }.call(size: 100, rng: Random.new(42)) # => [2, 79] def self.wrap(val) Generator.new { LazyTree.wrap(val) } end ## # Create a generator whose implementation depends on the output of another generator. # this allows us to compose multiple generators. # # Keen readers may notice this as the Monadic 'bind' (sometimes known as '>>=') implementation for Generators. # # >> Generators.integer.bind { |a| Generators.integer.bind { |b| Generator.wrap([a , b]) } }.call(size: 100, rng: Random.new(42)) # => [2, 79] def bind(&generator_proc) # Generator.new do |size, rng| # outer_result = generate(size, rng) # outer_result.map do |outer_val| # inner_generator = generator_proc.call(outer_val) # inner_generator.generate(size, rng) # end.flatten # end Generator.new do |**kwargs| outer_result = generate(**kwargs) outer_result.bind do |outer_val| inner_generator = generator_proc.call(outer_val) inner_generator.generate(**kwargs) end end end ## # Creates a new Generator that returns a value by running `proc` on the output of the current Generator. # # >> Generators.choose(32..128).map(&:chr).call(size: 10, rng: Random.new(42)) # => "S" def map(&proc) Generator.new do |**kwargs| result = generate(**kwargs) result.map(&proc) end end ## # Turns a generator returning `x` into a generator returning `[x, config]` # where `config` is the current `PropCheck::Property::Configuration`. # This can be used to inspect the configuration inside a `#map` or `#where` # and act on it. # # >> Generators.choose(0..100).with_config.map { |int, conf| Date.jd(conf[:default_epoch].jd + int) }.call(size: 10, rng: Random.new(42), config: PropCheck::Property::Configuration.new) # => Date.new(2023, 01, 10) def with_config Generator.new do |**kwargs| result = generate(**kwargs) result.map { |val| [val, kwargs[:config]] } end end ## # Creates a new Generator that only produces a value when the block `condition` returns a truthy value. def where(&condition) map do |result| # if condition.call(*result) if PropCheck::Helper.call_splatted(result, &condition) result else :"_PropCheck.filter_me" end end end ## # Resizes the generator to either grow faster or smaller than normal. # # `proc` takes the current size as input and is expected to return the new size. # a size should always be a nonnegative integer. # # >> Generators.integer.resize{} def resize(&proc) Generator.new do |size:, **other_kwargs| new_size = proc.call(size) generate(**other_kwargs, size: new_size) end end end end