Sha256: c6a6e60dc75ce4978aca9770b3c9509f96f42f3fb8eff0f91cb74984523e9abd
Contents?: true
Size: 1.28 KB
Versions: 3
Compression:
Stored size: 1.28 KB
Contents
module RubyStatistics module Distribution class LogSeries def self.density_function(k, p) return if k <= 0 k = k.to_i left = (-1.0 / Math.log(1.0 - p)) right = (p ** k).to_r left * right / k end def self.cumulative_function(k, p) return if k <= 0 # Sadly, the incomplete beta function is converging # too fast to zero and breaking the calculation on logs. # So, we default to the basic definition of the CDF which is # the integral (-Inf, K) of the PDF, with P(X <= x) which can # be solved as a summation of all PDFs from 1 to K. Note that the summation approach # only applies to discrete distributions. # # right = Math.incomplete_beta_function(p, (k + 1).floor, 0) / Math.log(1.0 - p) # 1.0 + right result = 0.0 1.upto(k) do |number| result += self.density_function(number, p) end result end def self.mode 1.0 end def self.mean(p) (-1.0 / Math.log(1.0 - p)) * (p / (1.0 - p)) end def self.variance(p) up = p + Math.log(1.0 - p) down = ((1.0 - p) ** 2) * (Math.log(1.0 - p) ** 2) (-1.0 * p) * (up / down.to_r) end end end end
Version data entries
3 entries across 3 versions & 1 rubygems