// Copyright (C) 2010 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #undef DLIB_SVm_EPSILON_REGRESSION_TRAINER_ABSTRACT_ #ifdef DLIB_SVm_EPSILON_REGRESSION_TRAINER_ABSTRACT_ #include <cmath> #include <limits> #include "../matrix/matrix_abstract.h" #include "../algs.h" #include "function_abstract.h" #include "kernel_abstract.h" #include "../optimization/optimization_solve_qp3_using_smo_abstract.h" namespace dlib { // ---------------------------------------------------------------------------------------- template < typename K > class svr_trainer { /*! REQUIREMENTS ON K is a kernel function object as defined in dlib/svm/kernel_abstract.h WHAT THIS OBJECT REPRESENTS This object implements a trainer for performing epsilon-insensitive support vector regression. It is implemented using the SMO algorithm. The implementation of the eps-SVR training algorithm used by this object is based on the following paper: - Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm !*/ public: typedef K kernel_type; typedef typename kernel_type::scalar_type scalar_type; typedef typename kernel_type::sample_type sample_type; typedef typename kernel_type::mem_manager_type mem_manager_type; typedef decision_function<kernel_type> trained_function_type; svr_trainer ( ); /*! ensures - This object is properly initialized and ready to be used to train a support vector machine. - #get_c() == 1 - #get_epsilon_insensitivity() == 0.1 - #get_cache_size() == 200 - #get_epsilon() == 0.001 !*/ void set_cache_size ( long cache_size ); /*! requires - cache_size > 0 ensures - #get_cache_size() == cache_size !*/ const long get_cache_size ( ) const; /*! ensures - returns the number of megabytes of cache this object will use when it performs training via the this->train() function. (bigger values of this may make training go faster but won't affect the result. However, too big a value will cause you to run out of memory, obviously.) !*/ void set_epsilon ( scalar_type eps ); /*! requires - eps > 0 ensures - #get_epsilon() == eps !*/ const scalar_type get_epsilon ( ) const; /*! ensures - returns the error epsilon that determines when training should stop. Generally a good value for this is 0.001. Smaller values may result in a more accurate solution but take longer to execute. !*/ void set_epsilon_insensitivity ( scalar_type eps ); /*! requires - eps > 0 ensures - #get_epsilon_insensitivity() == eps !*/ const scalar_type get_epsilon_insensitivity ( ) const; /*! ensures - This object tries to find a function which minimizes the regression error on a training set. This error is measured in the following way: - if (abs(predicted_value - true_labeled_value) < eps) then - The error is 0. That is, any function which gets within eps of the correct output is good enough. - else - The error grows linearly once it gets bigger than eps So epsilon-insensitive regression means we do regression but stop trying to fit a data point once it is "close enough". This function returns that eps value which controls what we mean by "close enough". !*/ void set_kernel ( const kernel_type& k ); /*! ensures - #get_kernel() == k !*/ const kernel_type& get_kernel ( ) const; /*! ensures - returns a copy of the kernel function in use by this object !*/ void set_c ( scalar_type C ); /*! requires - C > 0 ensures - #get_c() == C !*/ const scalar_type get_c ( ) const; /*! ensures - returns the SVR regularization parameter. It is the parameter that determines the trade-off between trying to reduce the training error or allowing more errors but hopefully improving the generalization of the resulting decision_function. Larger values encourage exact fitting while smaller values of C may encourage better generalization. !*/ template < typename in_sample_vector_type, typename in_scalar_vector_type > const decision_function<kernel_type> train ( const in_sample_vector_type& x, const in_scalar_vector_type& y ) const; /*! requires - is_learning_problem(x,y) == true - x == a matrix or something convertible to a matrix via mat(). Also, x should contain sample_type objects. - y == a matrix or something convertible to a matrix via mat(). Also, y should contain scalar_type objects. ensures - performs support vector regression given the training samples in x and target values in y. - returns a decision_function F with the following properties: - F(new_x) == predicted y value !*/ void swap ( svr_trainer& item ); /*! ensures - swaps *this and item !*/ }; template <typename K> void swap ( svr_trainer<K>& a, svr_trainer<K>& b ) { a.swap(b); } /*! provides a global swap !*/ // ---------------------------------------------------------------------------------------- } #endif // DLIB_SVm_EPSILON_REGRESSION_TRAINER_ABSTRACT_