Sha256: c37e950fcd8064c544f394e966fa4062123c606ab25a3448fd138c99501903e8

Contents?: true

Size: 985 Bytes

Versions: 5

Compression:

Stored size: 985 Bytes

Contents

require "dnn"
require "dnn/datasets/mnist"
# If you use numo/linalg then please uncomment out.
# require "numo/linalg/autoloader"

include DNN::Models
include DNN::Layers
include DNN::Optimizers
include DNN::Losses

x_train, y_train = DNN::MNIST.load_train
x_test, y_test = DNN::MNIST.load_test

x_train = x_train.reshape(x_train.shape[0], 28, 28)
x_test = x_test.reshape(x_test.shape[0], 28, 28)

x_train = Numo::SFloat.cast(x_train) / 255
x_test = Numo::SFloat.cast(x_test) / 255

y_train = DNN::Utils.to_categorical(y_train, 10, Numo::SFloat)
y_test = DNN::Utils.to_categorical(y_test, 10, Numo::SFloat)

model = Sequential.new

model << InputLayer.new([28, 28])

model << LSTM.new(200)
model << LSTM.new(200, return_sequences: false)

model << Dense.new(10)

model.setup(Adam.new, SoftmaxCrossEntropy.new)

model.train(x_train, y_train, 10, batch_size: 128, test: [x_test, y_test])

accuracy, loss = model.evaluate(x_test, y_test)
puts "accuracy: #{accuracy}"
puts "loss: #{loss}"

Version data entries

5 entries across 5 versions & 1 rubygems

Version Path
ruby-dnn-1.3.0 examples/mnist_lstm_example.rb
ruby-dnn-1.2.3 examples/mnist_lstm_example.rb
ruby-dnn-1.2.2 examples/mnist_lstm_example.rb
ruby-dnn-1.2.1 examples/mnist_lstm_example.rb
ruby-dnn-1.2.0 examples/mnist_lstm_example.rb