module ClosureTree module Finders extend ActiveSupport::Concern # Find a descendant node whose +ancestry_path+ will be ```self.ancestry_path + path``` def find_by_path(path, attributes = {}) return self if path.empty? self.class.find_by_path(path, attributes, id) end # Find or create a descendant node whose +ancestry_path+ will be ```self.ancestry_path + path``` def find_or_create_by_path(path, attributes = {}) subpath = _ct.build_ancestry_attr_path(path, attributes) return self if subpath.empty? found = find_by_path(subpath, attributes) return found if found attrs = subpath.shift _ct.with_advisory_lock do # shenanigans because children.create is bound to the superclass # (in the case of polymorphism): child = self.children.where(attrs).first || begin # Support STI creation by using base_class: _ct.create(self.class, attrs).tap do |ea| # We know that there isn't a cycle, because we just created it, and # cycle detection is expensive when the node is deep. ea._ct_skip_cycle_detection! self.children << ea end end child.find_or_create_by_path(subpath, attributes) end end def find_all_by_generation(generation_level) s = _ct.base_class.joins(<<-SQL.strip_heredoc) INNER JOIN ( SELECT descendant_id FROM #{_ct.quoted_hierarchy_table_name} WHERE ancestor_id = #{_ct.quote(self.id)} GROUP BY descendant_id HAVING MAX(#{_ct.quoted_hierarchy_table_name}.generations) = #{generation_level.to_i} ) #{ _ct.t_alias_keyword } descendants ON (#{_ct.quoted_table_name}.#{_ct.base_class.primary_key} = descendants.descendant_id) SQL _ct.scope_with_order(s) end def without_self(scope) scope.without_instance(self) end module ClassMethods def without_instance(instance) if instance.new_record? all else where(["#{_ct.quoted_table_name}.#{_ct.quoted_id_column_name} != ?", instance.id]) end end def roots _ct.scope_with_order(where(_ct.parent_column_name => nil)) end # Returns an arbitrary node that has no parents. def root roots.first end def leaves s = joins(<<-SQL.strip_heredoc) INNER JOIN ( SELECT ancestor_id FROM #{_ct.quoted_hierarchy_table_name} GROUP BY ancestor_id HAVING MAX(#{_ct.quoted_hierarchy_table_name}.generations) = 0 ) #{ _ct.t_alias_keyword } leaves ON (#{_ct.quoted_table_name}.#{primary_key} = leaves.ancestor_id) SQL _ct.scope_with_order(s.readonly(false)) end def with_ancestor(*ancestors) ancestor_ids = ancestors.map { |ea| ea.is_a?(ActiveRecord::Base) ? ea._ct_id : ea } scope = ancestor_ids.blank? ? all : joins(:ancestor_hierarchies). where("#{_ct.hierarchy_table_name}.ancestor_id" => ancestor_ids). where("#{_ct.hierarchy_table_name}.generations > 0"). readonly(false) _ct.scope_with_order(scope) end def with_descendant(*descendants) descendant_ids = descendants.map { |ea| ea.is_a?(ActiveRecord::Base) ? ea._ct_id : ea } scope = descendant_ids.blank? ? all : joins(:descendant_hierarchies). where("#{_ct.hierarchy_table_name}.descendant_id" => descendant_ids). where("#{_ct.hierarchy_table_name}.generations > 0"). readonly(false) _ct.scope_with_order(scope) end def lowest_common_ancestor(*descendants) descendants = descendants.first if descendants.length == 1 && descendants.first.respond_to?(:each) ancestor_id = hierarchy_class .where(descendant_id: descendants) .group(:ancestor_id) .having("COUNT(ancestor_id) = #{descendants.count}") .order(Arel.sql('MIN(generations) ASC')) .limit(1) .pluck(:ancestor_id).first find_by(primary_key => ancestor_id) if ancestor_id end def find_all_by_generation(generation_level) s = joins(<<-SQL.strip_heredoc) INNER JOIN ( SELECT #{primary_key} as root_id FROM #{_ct.quoted_table_name} WHERE #{_ct.quoted_parent_column_name} IS NULL ) #{ _ct.t_alias_keyword } roots ON (1 = 1) INNER JOIN ( SELECT ancestor_id, descendant_id FROM #{_ct.quoted_hierarchy_table_name} GROUP BY ancestor_id, descendant_id HAVING MAX(generations) = #{generation_level.to_i} ) #{ _ct.t_alias_keyword } descendants ON ( #{_ct.quoted_table_name}.#{primary_key} = descendants.descendant_id AND roots.root_id = descendants.ancestor_id ) SQL _ct.scope_with_order(s) end # Find the node whose +ancestry_path+ is +path+ def find_by_path(path, attributes = {}, parent_id = nil) return nil if path.blank? path = _ct.build_ancestry_attr_path(path, attributes) if path.size > _ct.max_join_tables return _ct.find_by_large_path(path, attributes, parent_id) end scope = where(path.pop) last_joined_table = _ct.table_name path.reverse.each_with_index do |ea, idx| next_joined_table = "p#{idx}" scope = scope.joins(<<-SQL.strip_heredoc) INNER JOIN #{_ct.quoted_table_name} #{ _ct.t_alias_keyword } #{next_joined_table} ON #{next_joined_table}.#{_ct.quoted_id_column_name} = #{connection.quote_table_name(last_joined_table)}.#{_ct.quoted_parent_column_name} SQL scope = _ct.scoped_attributes(scope, ea, next_joined_table) last_joined_table = next_joined_table end scope.where("#{last_joined_table}.#{_ct.parent_column_name}" => parent_id).readonly(false).first end # Find or create nodes such that the +ancestry_path+ is +path+ def find_or_create_by_path(path, attributes = {}) attr_path = _ct.build_ancestry_attr_path(path, attributes) find_by_path(attr_path) || begin root_attrs = attr_path.shift _ct.with_advisory_lock do # shenanigans because find_or_create can't infer that we want the same class as this: # Note that roots will already be constrained to this subclass (in the case of polymorphism): root = roots.where(root_attrs).first || _ct.create!(self, root_attrs) root.find_or_create_by_path(attr_path) end end end end end end