Sha256: c331711e6847d832d03ef42de9186517605f8c2175cfddad243f20c73335dccc
Contents?: true
Size: 1.49 KB
Versions: 6
Compression:
Stored size: 1.49 KB
Contents
require "dnn" require "numo/linalg/autoloader" include DNN::Models include DNN::Layers include DNN::Optimizers include DNN::Losses class ConvNet < Model def self.create(input_shape) convnet = ConvNet.new(input_shape, 32) convnet.setup(Adam.new, SoftmaxCrossEntropy.new) convnet end def initialize(input_shape, base_filter_size) super() @input_shape = input_shape @cv1 = Conv2D.new(base_filter_size, 3, padding: true) @cv2 = Conv2D.new(base_filter_size, 3, padding: true) @cv3 = Conv2D.new(base_filter_size * 2, 3, padding: true) @cv4 = Conv2D.new(base_filter_size * 2, 3, padding: true) @cv5 = Conv2D.new(base_filter_size * 4, 3, padding: true) @cv6 = Conv2D.new(base_filter_size * 4, 3, padding: true) @bn1 = BatchNormalization.new @bn2 = BatchNormalization.new @bn3 = BatchNormalization.new @bn4 = BatchNormalization.new @d1 = Dense.new(512) @d2 = Dense.new(10) end def forward(x) x = InputLayer.new(@input_shape).(x) x = @cv1.(x) x = ReLU.(x) x = Dropout.(x, 0.25) x = @cv2.(x) x = @bn1.(x) x = ReLU.(x) x = MaxPool2D.(x, 2) x = @cv3.(x) x = ReLU.(x) x = Dropout.(x, 0.25) x = @cv4.(x) x = @bn2.(x) x = ReLU.(x) x = MaxPool2D.(x, 2) x = @cv5.(x) x = ReLU.(x) x = Dropout.(x, 0.25) x = @cv6.(x) x = @bn3.(x) x = ReLU.(x) x = MaxPool2D.(x, 2) x = Flatten.(x) x = @d1.(x) x = @bn4.(x) x = ReLU.(x) x = @d2.(x) x end end
Version data entries
6 entries across 6 versions & 1 rubygems