// Copyright 2006-2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "bootstrapper.h" #include "debug.h" #include "deoptimizer.h" #include "heap-profiler.h" #include "hydrogen.h" #include "lithium-allocator.h" #include "log.h" #include "runtime-profiler.h" #include "serialize.h" #include "simulator.h" #include "stub-cache.h" namespace v8 { namespace internal { bool V8::is_running_ = false; bool V8::has_been_setup_ = false; bool V8::has_been_disposed_ = false; bool V8::has_fatal_error_ = false; bool V8::use_crankshaft_ = true; bool V8::Initialize(Deserializer* des) { bool create_heap_objects = des == NULL; if (has_been_disposed_ || has_fatal_error_) return false; if (IsRunning()) return true; #if defined(V8_TARGET_ARCH_ARM) && !defined(USE_ARM_EABI) use_crankshaft_ = false; #else use_crankshaft_ = FLAG_crankshaft; #endif // Peephole optimization might interfere with deoptimization. FLAG_peephole_optimization = !use_crankshaft_; is_running_ = true; has_been_setup_ = true; has_fatal_error_ = false; has_been_disposed_ = false; #ifdef DEBUG // The initialization process does not handle memory exhaustion. DisallowAllocationFailure disallow_allocation_failure; #endif // Enable logging before setting up the heap Logger::Setup(); CpuProfiler::Setup(); HeapProfiler::Setup(); // Setup the platform OS support. OS::Setup(); // Initialize other runtime facilities #if defined(USE_SIMULATOR) #if defined(V8_TARGET_ARCH_ARM) Simulator::Initialize(); #elif defined(V8_TARGET_ARCH_MIPS) ::assembler::mips::Simulator::Initialize(); #endif #endif { // NOLINT // Ensure that the thread has a valid stack guard. The v8::Locker object // will ensure this too, but we don't have to use lockers if we are only // using one thread. ExecutionAccess lock; StackGuard::InitThread(lock); } // Setup the object heap ASSERT(!Heap::HasBeenSetup()); if (!Heap::Setup(create_heap_objects)) { SetFatalError(); return false; } Bootstrapper::Initialize(create_heap_objects); Builtins::Setup(create_heap_objects); Top::Initialize(); if (FLAG_preemption) { v8::Locker locker; v8::Locker::StartPreemption(100); } #ifdef ENABLE_DEBUGGER_SUPPORT Debug::Setup(create_heap_objects); #endif StubCache::Initialize(create_heap_objects); // If we are deserializing, read the state into the now-empty heap. if (des != NULL) { des->Deserialize(); StubCache::Clear(); } // Deserializing may put strange things in the root array's copy of the // stack guard. Heap::SetStackLimits(); // Setup the CPU support. Must be done after heap setup and after // any deserialization because we have to have the initial heap // objects in place for creating the code object used for probing. CPU::Setup(); Deoptimizer::Setup(); LAllocator::Setup(); RuntimeProfiler::Setup(); // If we are deserializing, log non-function code objects and compiled // functions found in the snapshot. if (des != NULL && FLAG_log_code) { HandleScope scope; LOG(LogCodeObjects()); LOG(LogCompiledFunctions()); } return true; } void V8::SetFatalError() { is_running_ = false; has_fatal_error_ = true; } void V8::TearDown() { if (!has_been_setup_ || has_been_disposed_) return; if (FLAG_time_hydrogen) HStatistics::Instance()->Print(); // We must stop the logger before we tear down other components. Logger::EnsureTickerStopped(); Deoptimizer::TearDown(); if (FLAG_preemption) { v8::Locker locker; v8::Locker::StopPreemption(); } Builtins::TearDown(); Bootstrapper::TearDown(); Top::TearDown(); HeapProfiler::TearDown(); CpuProfiler::TearDown(); RuntimeProfiler::TearDown(); Logger::TearDown(); Heap::TearDown(); is_running_ = false; has_been_disposed_ = true; } static uint32_t random_seed() { if (FLAG_random_seed == 0) { return random(); } return FLAG_random_seed; } typedef struct { uint32_t hi; uint32_t lo; } random_state; // Random number generator using George Marsaglia's MWC algorithm. static uint32_t random_base(random_state *state) { // Initialize seed using the system random(). If one of the seeds // should ever become zero again, or if random() returns zero, we // avoid getting stuck with zero bits in hi or lo by re-initializing // them on demand. if (state->hi == 0) state->hi = random_seed(); if (state->lo == 0) state->lo = random_seed(); // Mix the bits. state->hi = 36969 * (state->hi & 0xFFFF) + (state->hi >> 16); state->lo = 18273 * (state->lo & 0xFFFF) + (state->lo >> 16); return (state->hi << 16) + (state->lo & 0xFFFF); } // Used by JavaScript APIs uint32_t V8::Random() { static random_state state = {0, 0}; return random_base(&state); } // Used internally by the JIT and memory allocator for security // purposes. So, we keep a different state to prevent informations // leaks that could be used in an exploit. uint32_t V8::RandomPrivate() { static random_state state = {0, 0}; return random_base(&state); } bool V8::IdleNotification() { // Returning true tells the caller that there is no need to call // IdleNotification again. if (!FLAG_use_idle_notification) return true; // Tell the heap that it may want to adjust. return Heap::IdleNotification(); } // Use a union type to avoid type-aliasing optimizations in GCC. typedef union { double double_value; uint64_t uint64_t_value; } double_int_union; Object* V8::FillHeapNumberWithRandom(Object* heap_number) { uint64_t random_bits = Random(); // Make a double* from address (heap_number + sizeof(double)). double_int_union* r = reinterpret_cast( reinterpret_cast(heap_number) + HeapNumber::kValueOffset - kHeapObjectTag); // Convert 32 random bits to 0.(32 random bits) in a double // by computing: // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). const double binary_million = 1048576.0; r->double_value = binary_million; r->uint64_t_value |= random_bits; r->double_value -= binary_million; return heap_number; } } } // namespace v8::internal