/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Patrick Pekczynski * * Contributing authors: * Christian Schulte * Guido Tack * * Copyright: * Patrick Pekczynski, 2004/2005 * Christian Schulte, 2009 * Guido Tack, 2009 * * Last modified: * $Date: 2010-03-04 03:32:21 +1100 (Thu, 04 Mar 2010) $ by $Author: schulte $ * $Revision: 10364 $ * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ namespace Gecode { namespace Int { namespace GCC { template forceinline Bnd:: Bnd(Home home, ViewArray& x0, ViewArray& k0, bool cf, bool nolbc) : Propagator(home), x(x0), y(home, x0), k(k0), card_fixed(cf), skip_lbc(nolbc) { y.subscribe(home, *this, PC_INT_BND); k.subscribe(home, *this, PC_INT_BND); } template forceinline Bnd:: Bnd(Space& home, bool share, Bnd& p) : Propagator(home, share, p), card_fixed(p.card_fixed), skip_lbc(p.skip_lbc) { x.update(home, share, p.x); y.update(home, share, p.y); k.update(home, share, p.k); } template forceinline size_t Bnd::dispose(Space& home) { y.cancel(home,*this, PC_INT_BND); k.cancel(home,*this, PC_INT_BND); (void) Propagator::dispose(home); return sizeof(*this); } template Actor* Bnd::copy(Space& home, bool share) { return new (home) Bnd(home,share,*this); } template PropCost Bnd::cost(const Space&, const ModEventDelta& med) const { int n_k = Card::propagate ? k.size() : 0; if (IntView::me(med) == ME_INT_VAL) return PropCost::linear(PropCost::LO, y.size() + n_k); else return PropCost::quadratic(PropCost::LO, x.size() + n_k); } template forceinline ExecStatus Bnd::lbc(Space& home, int& nb, HallInfo hall[], Rank rank[], int mu[], int nu[]) { int n = x.size(); /* * Let I(S) denote the number of variables whose domain intersects * the set S and C(S) the number of variables whose domain is containded * in S. Let further min_cap(S) be the minimal number of variables * that must be assigned to values, that is * min_cap(S) is the sum over all l[i] for a value v_i that is an * element of S. * * A failure set is a set F if * I(F) < min_cap(F) * An unstable set is a set U if * I(U) = min_cap(U) * A stable set is a set S if * C(S) > min_cap(S) and S intersetcs nor * any failure set nor any unstable set * forall unstable and failure sets * * failure sets determine the satisfiability of the LBC * unstable sets have to be pruned * stable set do not have to be pruned * * hall[].ps ~ stores the unstable * sets that have to be pruned * hall[].s ~ stores sets that must not be pruned * hall[].h ~ contains stable and unstable sets * hall[].d ~ contains the difference between interval bounds, i.e. * the minimal capacity of the interval * hall[].t ~ contains the critical capacity pointer, pointing to the * values */ // LBC lower bounds int i = 0; int j = 0; int w = 0; int z = 0; int v = 0; //initialization of the tree structure int rightmost = nb + 1; // rightmost accesible value in bounds int bsize = nb + 2; w = rightmost; // test // unused but uninitialized hall[0].d = 0; hall[0].s = 0; hall[0].ps = 0; for (i = bsize; --i; ) { // i must not be zero int pred = i - 1; hall[i].s = pred; hall[i].ps = pred; hall[i].d = lps.sumup(hall[pred].bounds, hall[i].bounds - 1); /* Let [hall[i].bounds,hall[i-1].bounds]=:I * If the capacity is zero => min_cap(I) = 0 * => I cannot be a failure set * => I is an unstable set */ if (hall[i].d == 0) { hall[pred].h = w; } else { hall[w].h = pred; w = pred; } } w = rightmost; for (i = bsize; i--; ) { // i can be zero hall[i].t = i - 1; if (hall[i].d == 0) { hall[i].t = w; } else { hall[w].t = i; w = i; } } /* * The algorithm assigns to each value v in bounds * empty buckets corresponding to the minimal capacity l[i] to be * filled for v. (the buckets correspond to hall[].d containing the * difference between the interval bounds) Processing it * searches for the smallest value v in dom(x_i) that has an * empty bucket, i.e. if all buckets are filled it is guaranteed * that there are at least l[i] variables that will be * instantiated to v. Since the buckets are initially empty, * they are considered as FAILURE SETS */ for (i = 0; i < n; i++) { // visit intervals in increasing max order int x0 = rank[mu[i]].min; int y = rank[mu[i]].max; int succ = x0 + 1; z = pathmax_t(hall, succ); j = hall[z].t; /* * POTENTIALLY STABLE SET: * z \neq succ \Leftrigharrow z>succ, i.e. * min(D_{\mu(i)}) is guaranteed to occur min(K_i) times * \Rightarrow [x0, min(y,z)] is potentially stable */ if (z != succ) { w = pathmax_ps(hall, succ); v = hall[w].ps; pathset_ps(hall, succ, w, w); w = std::min(y, z); pathset_ps(hall, hall[w].ps, v, w); hall[w].ps = v; } /* * STABLE SET: * being stable implies being potentially stable, i.e. * [hall[y].ps, hall[y].bounds-1] is the largest stable subset of * [hall[j].bounds, hall[y].bounds-1]. */ if (hall[z].d <= lps.sumup(hall[y].bounds, hall[z].bounds - 1)) { w = pathmax_s(hall, hall[y].ps); pathset_s(hall, hall[y].ps, w, w); // Path compression v = hall[w].s; pathset_s(hall, hall[y].s, v, y); hall[y].s = v; } else { /* * FAILURE SET: * If the considered interval [x0,y] is neither POTENTIALLY STABLE * nor STABLE there are still buckets that can be filled, * therefore d can be decreased. If d equals zero the intervals * minimum capacity is met and thepath can be compressed to the * next value having an empty bucket. * see DOMINATION in "ubc" */ if (--hall[z].d == 0) { hall[z].t = z + 1; z = pathmax_t(hall, hall[z].t); hall[z].t = j; } /* * FINDING NEW LOWER BOUND: * If the lower bound belongs to an unstable or a stable set, * remind the new value we might assigned to the lower bound * in case the variable doesn't belong to a stable set. */ if (hall[x0].h > x0) { hall[i].newBound = pathmax_h(hall, x0); w = hall[i].newBound; pathset_h(hall, x0, w, w); // path compression } else { // Do not shrink the variable: take old min as new min hall[i].newBound = x0; } /* UNSTABLE SET * If an unstable set is discovered * the difference between the interval bounds is equal to the * number of variables whose domain intersect the interval * (see ZEROTEST in "gcc") */ // CLEARLY THIS WAS NOT STABLE == UNSTABLE if (hall[z].d == lps.sumup(hall[y].bounds, hall[z].bounds - 1)) { if (hall[y].h > y) /* * y is not the end of the potentially stable set * thus ensure that the potentially stable superset is marked */ y = hall[y].h; // Equivalent to pathmax since the path is fully compressed pathset_h(hall, hall[y].h, j-1, y); // mark the new unstable set [j,y] hall[y].h = j-1; } } pathset_t(hall, succ, z, z); // path compression } /* If there is a FAILURE SET left the minimum occurences of the values * are not guaranteed. In order to satisfy the LBC the last value * in the stable and unstable datastructure hall[].h must point to * the sentinel at the beginning of bounds. */ if (hall[nb].h != 0) return ES_FAILED; // Perform path compression over all elements in // the stable interval data structure. This data // structure will no longer be modified and will be // accessed n or 2n times. Therefore, we can afford // a linear time compression. for (i = bsize; --i;) if (hall[i].s > i) hall[i].s = w; else w = i; /* * UPDATING LOWER BOUND: * For all variables that are not a subset of a stable set, * shrink the lower bound, i.e. forall stable sets S we have: * x0 < S_min <= y <=S_max or S_min <= x0 <= S_max < y * that is [x0,y] is NOT a proper subset of any stable set S */ for (i = n; i--; ) { int x0 = rank[mu[i]].min; int y = rank[mu[i]].max; // update only those variables that are not contained in a stable set if ((hall[x0].s <= x0) || (y > hall[x0].s)) { // still have to check this out, how skipping works (consider dominated indices) int m = lps.skipNonNullElementsRight(hall[hall[i].newBound].bounds); GECODE_ME_CHECK(x[mu[i]].gq(home, m)); } } // LBC narrow upper bounds w = 0; for (i = 0; i <= nb; i++) { hall[i].d = lps.sumup(hall[i].bounds, hall[i + 1].bounds - 1); if (hall[i].d == 0) { hall[i].t = w; } else { hall[w].t = i; w = i; } } hall[w].t = i; w = 0; for (i = 1; i <= nb; i++) if (hall[i - 1].d == 0) { hall[i].h = w; } else { hall[w].h = i; w = i; } hall[w].h = i; for (i = n; i--; ) { // visit intervals in decreasing min order // i.e. minsorted from right to left int x0 = rank[nu[i]].max; int y = rank[nu[i]].min; int pred = x0 - 1; // predecessor of x0 in the indices z = pathmin_t(hall, pred); j = hall[z].t; /* If the variable is not in a discovered stable set * (see above condition for STABLE SET) */ if (hall[z].d > lps.sumup(hall[z].bounds, hall[y].bounds - 1)) { // FAILURE SET if (--hall[z].d == 0) { hall[z].t = z - 1; z = pathmin_t(hall, hall[z].t); hall[z].t = j; } // FINDING NEW UPPER BOUND if (hall[x0].h < x0) { w = pathmin_h(hall, hall[x0].h); hall[i].newBound = w; pathset_h(hall, x0, w, w); // path compression } else { hall[i].newBound = x0; } // UNSTABLE SET if (hall[z].d == lps.sumup(hall[z].bounds, hall[y].bounds - 1)) { if (hall[y].h < y) { y = hall[y].h; } int succj = j + 1; // mark new unstable set [y,j] pathset_h(hall, hall[y].h, succj, y); hall[y].h = succj; } } pathset_t(hall, pred, z, z); } // UPDATING UPPER BOUND for (i = n; i--; ) { int x0 = rank[nu[i]].min; int y = rank[nu[i]].max; if ((hall[x0].s <= x0) || (y > hall[x0].s)) { int m = lps.skipNonNullElementsLeft(hall[hall[i].newBound].bounds - 1); GECODE_ME_CHECK(x[nu[i]].lq(home, m)); } } return ES_OK; } template forceinline ExecStatus Bnd::ubc(Space& home, int& nb, HallInfo hall[], Rank rank[], int mu[], int nu[]) { int rightmost = nb + 1; // rightmost accesible value in bounds int bsize = nb + 2; // number of unique bounds including sentinels //Narrow lower bounds (UBC) /* * Initializing tree structure with the values from bounds * and the interval capacities of neighboured values * from left to right */ hall[0].h = 0; hall[0].t = 0; hall[0].d = 0; for (int i = bsize; --i; ) { hall[i].h = hall[i].t = i-1; hall[i].d = ups.sumup(hall[i-1].bounds, hall[i].bounds - 1); } int n = x.size(); for (int i = 0; i < n; i++) { // visit intervals in increasing max order int x0 = rank[mu[i]].min; int succ = x0 + 1; int y = rank[mu[i]].max; int z = pathmax_t(hall, succ); int j = hall[z].t; /* DOMINATION: * v^i_j denotes * unused values in the current interval. If the difference d * between to critical capacities v^i_j and v^i_z * is equal to zero, j dominates z * * i.e. [hall[l].bounds, hall[nb+1].bounds] is not left-maximal and * [hall[j].bounds, hall[l].bounds] is a Hall set iff * [hall[j].bounds, hall[l].bounds] processing a variable x_i uses up a value in the interval * [hall[z].bounds,hall[z+1].bounds] according to the intervals * capacity. Therefore, if d = 0 * the considered value has already been used by processed variables * m-times, where m = u[i] for value v_i. Since this value must not * be reconsidered the path can be compressed */ if (--hall[z].d == 0) { hall[z].t = z + 1; z = pathmax_t(hall, hall[z].t); if (z >= bsize) z--; hall[z].t = j; } pathset_t(hall, succ, z, z); // path compression /* NEGATIVE CAPACITY: * A negative capacity results in a failure.Since a * negative capacity signals that the number of variables * whose domain is contained in the set S is larger than * the maximum capacity of S => UBC is not satisfiable, * i.e. there are more variables than values to instantiate them */ if (hall[z].d < ups.sumup(hall[y].bounds, hall[z].bounds - 1)) return ES_FAILED; /* UPDATING LOWER BOUND: * If the lower bound min_i lies inside a Hall interval [a,b] * i.e. a <= min_i <=b <= max_i * min_i is set to min_i := b+1 */ if (hall[x0].h > x0) { int w = pathmax_h(hall, hall[x0].h); int m = hall[w].bounds; GECODE_ME_CHECK(x[mu[i]].gq(home, m)); pathset_h(hall, x0, w, w); // path compression } /* ZEROTEST: * (using the difference between capacity pointers) * zero capacity => the difference between critical capacity * pointers is equal to the maximum capacity of the interval,i.e. * the number of variables whose domain is contained in the * interval is equal to the sum over all u[i] for a value v_i that * lies in the Hall-Intervall which can also be thought of as a * Hall-Set * * ZeroTestLemma: Let k and l be succesive critical indices. * v^i_k=0 => v^i_k = max_i+1-l+d * <=> v^i_k = y + 1 - z + d * <=> d = z-1-y * if this equation holds the interval [j,z-1] is a hall intervall */ if (hall[z].d == ups.sumup(hall[y].bounds, hall[z].bounds - 1)) { /* *mark hall interval [j,z-1] * hall pointers form a path to the upper bound of the interval */ int predj = j - 1; pathset_h(hall, hall[y].h, predj, y); hall[y].h = predj; } } /* Narrow upper bounds (UBC) * symmetric to the narrowing of the lower bounds */ for (int i = 0; i < rightmost; i++) { hall[i].h = hall[i].t = i+1; hall[i].d = ups.sumup(hall[i].bounds, hall[i+1].bounds - 1); } for (int i = n; i--; ) { // visit intervals in decreasing min order int x0 = rank[nu[i]].max; int pred = x0 - 1; int y = rank[nu[i]].min; int z = pathmin_t(hall, pred); int j = hall[z].t; // DOMINATION: if (--hall[z].d == 0) { hall[z].t = z - 1; z = pathmin_t(hall, hall[z].t); hall[z].t = j; } pathset_t(hall, pred, z, z); // NEGATIVE CAPACITY: if (hall[z].d < ups.sumup(hall[z].bounds,hall[y].bounds-1)) return ES_FAILED; /* UPDATING UPPER BOUND: * If the upper bound max_i lies inside a Hall interval [a,b] * i.e. min_i <= a <= max_i < b * max_i is set to max_i := a-1 */ if (hall[x0].h < x0) { int w = pathmin_h(hall, hall[x0].h); int m = hall[w].bounds - 1; GECODE_ME_CHECK(x[nu[i]].lq(home, m)); pathset_h(hall, x0, w, w); } // ZEROTEST if (hall[z].d == ups.sumup(hall[z].bounds, hall[y].bounds - 1)) { //mark hall interval [y,j] pathset_h(hall, hall[y].h, j+1, y); hall[y].h = j+1; } } return ES_OK; } template ExecStatus Bnd::pruneCards(Space& home) { // Remove all values with 0 max occurrence // and remove corresponding occurrence variables from k // The number of zeroes int n_z = 0; for (int i=k.size(); i--;) if (k[i].max() == 0) n_z++; if (n_z > 0) { Region r(home); int* z = r.alloc(n_z); n_z = 0; int n_k = 0; for (int i=0; i ExecStatus Bnd::propagate(Space& home, const ModEventDelta& med) { if (IntView::me(med) == ME_INT_VAL) { GECODE_ES_CHECK(prop_val(home,*this,y,k)); return home.ES_NOFIX_PARTIAL(*this,IntView::med(ME_INT_BND)); } if (Card::propagate) GECODE_ES_CHECK(pruneCards(home)); Region r(home); int* count = r.alloc(k.size()); for (int i = k.size(); i--; ) count[i] = 0; bool all_assigned = true; int noa = 0; for (int i = x.size(); i--; ) { if (x[i].assigned()) { noa++; int idx; // reduction is essential for order on value nodes in dom // hence introduce test for failed lookup if (!lookupValue(k,x[i].val(),idx)) return ES_FAILED; count[idx]++; } else { all_assigned = false; // We only need the counts in the view case or when all // x are assigned if (!Card::propagate) break; } } if (Card::propagate) { // before propagation performs inferences on cardinality variables: if (noa > 0) for (int i = k.size(); i--; ) if (!k[i].assigned()) { GECODE_ME_CHECK(k[i].lq(home, x.size() - (noa - count[i]))); GECODE_ME_CHECK(k[i].gq(home, count[i])); } if (!card_consistent(x, k)) return ES_FAILED; GECODE_ES_CHECK(prop_card(home, x, k)); // Cardinalities may have been modified, so recompute // count and all_assigned for (int i = k.size(); i--; ) count[i] = 0; all_assigned = true; for (int i = x.size(); i--; ) { if (x[i].assigned()) { int idx; // reduction is essential for order on value nodes in dom // hence introduce test for failed lookup if (!lookupValue(k,x[i].val(),idx)) return ES_FAILED; count[idx]++; } else { // We won't need the remaining counts, they're only used when // all x are assigned all_assigned = false; break; } } } if (all_assigned) { for (int i = k.size(); i--; ) GECODE_ME_CHECK(k[i].eq(home, count[i])); return home.ES_SUBSUMED(*this); } if (Card::propagate) GECODE_ES_CHECK(pruneCards(home)); int n = x.size(); int* mu = r.alloc(n); int* nu = r.alloc(n); for (int i = n; i--; ) nu[i] = mu[i] = i; // Create sorting permutation mu according to the variables upper bounds MaxInc max_inc(x); Support::quicksort >(mu, n, max_inc); // Create sorting permutation nu according to the variables lower bounds MinInc min_inc(x); Support::quicksort >(nu, n, min_inc); // Sort the cardinality bounds by index MinIdx min_idx; Support::quicksort >(&k[0], k.size(), min_idx); if (!lps.initialized()) { assert (!ups.initialized()); lps.init(home, k, false); ups.init(home, k, true); } else if (Card::propagate) { // if there has been a change to the cardinality variables // reconstruction of the partial sum structure is necessary if (lps.check_update_min(k)) lps.init(home, k, false); if (ups.check_update_max(k)) ups.init(home, k, true); } // assert that the minimal value of the partial sum structure for // LBC is consistent with the smallest value a variable can take assert(lps.minValue() <= x[nu[0]].min()); // assert that the maximal value of the partial sum structure for // UBC is consistent with the largest value a variable can take /* * Setup rank and bounds info * Since this implementation is based on the theory of Hall Intervals * additional datastructures are needed in order to represent these * intervals and the "partial-sum" data structure (cf."gcc/bnd-sup.hpp") * */ HallInfo* hall = r.alloc(2 * n + 2); Rank* rank = r.alloc(n); int nb = 0; // setup bounds and rank int min = x[nu[0]].min(); int max = x[mu[0]].max() + 1; int last = lps.firstValue + 1; //equivalent to last = min -2 hall[0].bounds = last; /* * First the algorithm merges the arrays minsorted and maxsorted * into bounds i.e. hall[].bounds contains the ordered union * of the lower and upper domain bounds including two sentinels * at the beginning and at the end of the set * ( the upper variable bounds in this union are increased by 1 ) */ { int i = 0; int j = 0; while (true) { if (i < n && min < max) { if (min != last) { last = min; hall[++nb].bounds = last; } rank[nu[i]].min = nb; if (++i < n) min = x[nu[i]].min(); } else { if (max != last) { last = max; hall[++nb].bounds = last; } rank[mu[j]].max = nb; if (++j == n) break; max = x[mu[j]].max() + 1; } } } int rightmost = nb + 1; // rightmost accesible value in bounds hall[rightmost].bounds = ups.lastValue + 1 ; if (Card::propagate) { skip_lbc = true; for (int i = k.size(); i--; ) if (k[i].min() != 0) { skip_lbc = false; break; } } if (!card_fixed && !skip_lbc) GECODE_ES_CHECK((lbc(home, nb, hall, rank, mu, nu))); GECODE_ES_CHECK((ubc(home, nb, hall, rank, mu, nu))); if (Card::propagate) GECODE_ES_CHECK(prop_card(home, x, k)); for (int i = k.size(); i--; ) count[i] = 0; for (int i = x.size(); i--; ) if (x[i].assigned()) { int idx; if (!lookupValue(k,x[i].val(),idx)) return ES_FAILED; count[idx]++; } else { // We won't need the remaining counts, they're only used when // all x are assigned return ES_NOFIX; } for (int i = k.size(); i--; ) GECODE_ME_CHECK(k[i].eq(home, count[i])); return home.ES_SUBSUMED(*this); } template ExecStatus Bnd::post(Home home, ViewArray& x, ViewArray& k) { bool cardfix = true; for (int i=k.size(); i--; ) if (!k[i].assigned()) { cardfix = false; break; } bool nolbc = true; for (int i=k.size(); i--; ) if (k[i].min() != 0) { nolbc = false; break; } GECODE_ES_CHECK(postSideConstraints(home, x, k)); if (isDistinct(home,x,k)) return Distinct::Bnd::post(home,x); (void) new (home) Bnd(home,x,k,cardfix,nolbc); return ES_OK; } }}} // STATISTICS: int-prop