# frozen_string_literal: true require 'rumale/base/estimator' require 'rumale/base/cluster_analyzer' require 'rumale/pairwise_metric' require 'rumale/validation' module Rumale module Clustering # SingleLinkage is a class that implements hierarchical cluster analysis with single linakge method. # This class is used internally for HDBSCAN. # # @example # require 'rumale/clustering/single_linkage' # # analyzer = Rumale::Clustering::SingleLinkage.new(n_clusters: 2) # cluster_labels = analyzer.fit_predict(samples) # # *Reference* # - Mullner, D., "Modern hierarchical, agglomerative clustering algorithms," arXiv:1109.2378, 2011. class SingleLinkage < ::Rumale::Base::Estimator include ::Rumale::Base::ClusterAnalyzer # Return the cluster labels. # @return [Numo::Int32] (shape: [n_samples]) attr_reader :labels # Return the hierarchical structure. # @return [Array] (shape: [n_samples - 1]) attr_reader :hierarchy # Create a new cluster analyzer with single linkage algorithm. # # @param n_clusters [Integer] The number of clusters. # @param metric [String] The metric to calculate the distances. # If metric is 'euclidean', Euclidean distance is calculated for distance between points. # If metric is 'precomputed', the fit and fit_transform methods expect to be given a distance matrix. def initialize(n_clusters: 2, metric: 'euclidean') super() @params = { n_clusters: n_clusters, metric: (metric == 'precomputed' ? 'precomputed' : 'euclidean') } end # Analysis clusters with given training data. # # @overload fit(x) -> SingleLinkage # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for cluster analysis. # If the metric is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]). # @return [SingleLinkage] The learned cluster analyzer itself. def fit(x, _y = nil) x = ::Rumale::Validation.check_convert_sample_array(x) raise ArgumentError, 'the input distance matrix should be square' if check_invalid_array_shape(x) fit_predict(x) self end # Analysis clusters and assign samples to clusters. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be used for cluster analysis. # If the metric is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]). # @return [Numo::Int32] (shape: [n_samples]) Predicted cluster label per sample. def fit_predict(x) x = ::Rumale::Validation.check_convert_sample_array(x) raise ArgumentError, 'the input distance matrix should be square' if check_invalid_array_shape(x) distance_mat = @params[:metric] == 'precomputed' ? x : ::Rumale::PairwiseMetric.euclidean_distance(x) @labels = partial_fit(distance_mat) end private def check_invalid_array_shape(x) @params[:metric] == 'precomputed' && x.shape[0] != x.shape[1] end # @!visibility private class UnionFind def initialize(n) @parent = Numo::Int32.zeros(2 * n - 1) - 1 @size = Numo::Int32.hstack([Numo::Int32.ones(n), Numo::Int32.zeros(n - 1)]) @next_label = n end # @!visibility private def union(x, y) size = @size[x] + @size[y] @parent[x] = @next_label @parent[y] = @next_label @size[@next_label] = size @next_label += 1 size end # @!visibility private def find(x) p = x x = @parent[x] while @parent[x] != -1 while @parent[p] != x p = @parent[p] @parent[p] = x end x end end # @!visibility private class Node # @!visibility private attr_reader :x, :y, :weight, :n_elements # @!visibility private def initialize(x:, y:, weight:, n_elements: 0) @x = x @y = y @weight = weight @n_elements = n_elements end # @!visibility private def ==(other) x == other.x && y == other.y && weight == other.weight && n_elements == other.n_elements end end private_constant :UnionFind, :Node def partial_fit(distance_mat) mst = minimum_spanning_tree(distance_mat) @hierarchy = single_linkage_hierarchy(mst) flatten(@hierarchy, @params[:n_clusters]) end def minimum_spanning_tree(complete_graph) n_samples = complete_graph.shape[0] n_edges = n_samples - 1 curr_weights = Numo::DFloat.zeros(n_samples) + Float::INFINITY curr_labels = Numo::Int32.new(n_samples).seq next_node = 0 mst = Array.new(n_edges) do curr_node = next_node target = curr_labels.ne(curr_node) curr_labels = curr_labels[target] curr_weights = Numo::DFloat.minimum(curr_weights[target], complete_graph[curr_node, curr_labels]) next_node = curr_labels[curr_weights.min_index] weight = curr_weights.min Node.new(x: curr_node, y: next_node, weight: weight) end mst.sort! { |a, b| a.weight <=> b.weight } end def single_linkage_hierarchy(mst) n_edges = mst.size n_nodes = n_edges + 1 uf = UnionFind.new(n_nodes) Array.new(n_edges) do |n| x_root = uf.find(mst[n].x) y_root = uf.find(mst[n].y) x_root, y_root = [y_root, x_root] unless x_root < y_root weight = mst[n].weight n_samples = uf.union(x_root, y_root) Node.new(x: x_root, y: y_root, weight: weight, n_elements: n_samples) end end def descedent_ids(hierarchy_, start_node) n_samples = hierarchy_.size + 1 return [start_node] if start_node < n_samples res = [] indices = [start_node] n_indices = 1 while n_indices.positive? idx = indices.pop if idx < n_samples res.push(idx) n_indices -= 1 else indices.push(hierarchy_[idx - n_samples].x) indices.push(hierarchy_[idx - n_samples].y) n_indices += 1 end end res end def flatten(hierarchy_, n_clusters) n_samples = hierarchy_.size + 1 return Numo::Int32.zeros(n_samples) if n_clusters < 2 nodes = [-([hierarchy_[-1].x, hierarchy_[-1].y].max + 1)] (n_clusters - 1).times do children = hierarchy_[-nodes[0] - n_samples] nodes.push(-children.x) nodes.push(-children.y) nodes.sort!.shift end res = Numo::Int32.zeros(n_samples) nodes.each_with_index { |sid, cluster_id| res[descedent_ids(hierarchy_, -sid)] = cluster_id } res end end end end