# # thread.rb - thread support classes # $Date: 2006-12-31 07:02:22 -0800 (Sun, 31 Dec 2006) $ # by Yukihiro Matsumoto # # Copyright (C) 2001 Yukihiro Matsumoto # Copyright (C) 2000 Network Applied Communication Laboratory, Inc. # Copyright (C) 2000 Information-technology Promotion Agency, Japan # unless defined? Thread raise "Thread not available for this ruby interpreter" end unless defined? ThreadError class ThreadError < StandardError end end if $DEBUG Thread.abort_on_exception = true end class Thread # # Wraps a block in Thread.critical, restoring the original value upon exit # from the critical section. # def Thread.exclusive _old = Thread.critical begin Thread.critical = true return yield ensure Thread.critical = _old end end end class Mutex def initialize @owner = nil end # Check and only allow it to be marshal'd if there are no waiters. def marshal_dump raise "Unable to dump locked mutex" unless @waiters.empty? 1 end # Implemented because we must since we use marshal_load PLUS we need # to create AND prime @lock. If we didn't do this, then Marshal # wouldn't prime the lock anyway. def marshal_load(bunk) initialize end def locked? Rubinius.locked?(self) end def try_lock # Locking implies a memory barrier, so we don't need to use # one explicitly. if Rubinius.try_lock(self) @owner = Thread.current true else false end end def lock Rubinius.memory_barrier if @owner == Thread.current raise ThreadError, "Recursively locking not allowed" end Rubinius.lock self @owner = Thread.current Rubinius.memory_barrier return self end def unlock Rubinius.memory_barrier if @owner != Thread.current raise ThreadError, "#{Thread.current.inspect} not owner, #{@owner.inspect} is" end @owner = nil Rubinius.unlock self end def synchronize lock begin yield ensure unlock end end end # # ConditionVariable objects augment class Mutex. Using condition variables, # it is possible to suspend while in the middle of a critical section until a # resource becomes available. # # Example: # # require 'thread' # # mutex = Mutex.new # resource = ConditionVariable.new # # a = Thread.new { # mutex.synchronize { # # Thread 'a' now needs the resource # resource.wait(mutex) # # 'a' can now have the resource # } # } # # b = Thread.new { # mutex.synchronize { # # Thread 'b' has finished using the resource # resource.signal # } # } # class ConditionVariable # # Creates a new ConditionVariable # def initialize @waiters = [] end # # Releases the lock held in +mutex+ and waits; reacquires the lock on wakeup. # def wait(mutex, timeout=nil) Rubinius.lock(self) begin wchan = Rubinius::Channel.new begin mutex.unlock @waiters.push wchan Rubinius.unlock(self) signaled = wchan.receive_timeout timeout ensure mutex.lock Rubinius.lock(self) unless signaled or @waiters.delete(wchan) # we timed out, but got signaled afterwards (e.g. while waiting to # acquire @lock), so pass that signal on to the next waiter @waiters.shift << true unless @waiters.empty? end end if timeout !!signaled else self end ensure Rubinius.unlock(self) end end # # Wakes up the first thread in line waiting for this lock. # def signal Rubinius.lock(self) begin @waiters.shift << true unless @waiters.empty? ensure Rubinius.unlock(self) end self end # # Wakes up all threads waiting for this lock. # def broadcast Rubinius.lock(self) begin @waiters.shift << true until @waiters.empty? ensure Rubinius.unlock(self) end self end end # # This class provides a way to synchronize communication between threads. # # Example: # # require 'thread' # # queue = Queue.new # # producer = Thread.new do # 5.times do |i| # sleep rand(i) # simulate expense # queue << i # puts "#{i} produced" # end # end # # consumer = Thread.new do # 5.times do |i| # value = queue.pop # sleep rand(i/2) # simulate expense # puts "consumed #{value}" # end # end # # consumer.join # class Queue # # Creates a new queue. # def initialize @que = [] @que.taint # enable tainted comunication self.taint @waiting = [] @waiting.taint @mutex = Mutex.new @resource = ConditionVariable.new end # # Pushes +obj+ to the queue. # def push(obj) @mutex.synchronize do @que.push obj @resource.signal end end # # Alias of push # alias << push # # Alias of push # alias enq push # # Retrieves data from the queue. If the queue is empty, the calling thread is # suspended until data is pushed onto the queue. If +non_block+ is true, the # thread isn't suspended, and an exception is raised. # def pop(non_block=false) while true @mutex.synchronize do #FIXME: some code in net or somewhere violates encapsulation #and demands that a waiting queue exist for Queue, as a result #we have to do a linear search here to remove the current Thread. @waiting.delete(Thread.current) if @que.empty? raise ThreadError, "queue empty" if non_block @waiting.push Thread.current @resource.wait(@mutex) else retval = @que.shift @resource.signal return retval end end end end # # Alias of pop # alias shift pop # # Alias of pop # alias deq pop # # Returns +true+ if the queue is empty. # def empty? @que.empty? end # # Removes all objects from the queue. # def clear @que.clear end # # Returns the length of the queue. # def length @que.length end # # Alias of length. # alias size length # # Returns the number of threads waiting on the queue. # def num_waiting @waiting.size end end # # This class represents queues of specified size capacity. The push operation # may be blocked if the capacity is full. # # See Queue for an example of how a SizedQueue works. # class SizedQueue < Queue # # Creates a fixed-length queue with a maximum size of +max+. # def initialize(max) raise ArgumentError, "queue size must be positive" unless max > 0 @max = max @queue_wait = [] @queue_wait.taint # enable tainted comunication @size_mutex = Mutex.new @sem = ConditionVariable.new super() end # # Returns the maximum size of the queue. # def max @max end # # Sets the maximum size of the queue. # def max=(max) @size_mutex.synchronize do @max = max @sem.broadcast(@size_mutex) end max end # # Pushes +obj+ to the queue. If there is no space left in the queue, waits # until space becomes available. # def push(obj) while true @size_mutex.synchronize do @queue_wait.delete(Thread.current) if @que.size >= @max @queue_wait.push Thread.current @sem.wait(@size_mutex) else return super(obj) end end end end # # Alias of push # alias << push # # Alias of push # alias enq push # # Retrieves data from the queue and runs a waiting thread, if any. # def pop(*args) retval = super @size_mutex.synchronize do if @que.size < @max @sem.broadcast end end return retval end # # Alias of pop # alias shift pop # # Alias of pop # alias deq pop # # Returns the number of threads waiting on the queue. # def num_waiting @waiting.size + @queue_wait.size end end # Documentation comments: # - How do you make RDoc inherit documentation from superclass?