Sha256: c1cfc1a565eb81c894e0d3eebf7e000316223cf135614d4de783190cfc5ede90
Contents?: true
Size: 1.79 KB
Versions: 1
Compression:
Stored size: 1.79 KB
Contents
require 'rmagick' require 'menoh' # load dataset image_list = [ './data/0.png', './data/1.png', './data/2.png', './data/3.png', './data/4.png', './data/5.png', './data/6.png', './data/7.png', './data/8.png', './data/9.png' ] input_shape = { channel_num: 1, width: 28, height: 28 } # onnx variable name MNIST_IN_NAME = '139900320569040'.freeze MNIST_OUT_NAME = '139898462888656'.freeze # model options for model model_opt = { backend: 'mkldnn', input_layers: [ { name: MNIST_IN_NAME, dims: [ image_list.length, input_shape[:channel_num], input_shape[:width], input_shape[:height] ] } ], output_layers: [MNIST_OUT_NAME] } # load ONNX file Menoh::Menoh.new './data/mnist.onnx' do |onnx_obj| # make model for inference under 'model_opt' onnx_obj.make_model model_opt do |model| # prepare dataset image_set = [ { name: MNIST_IN_NAME, data: image_list.map do |image_filepath| image = Magick::Image.read(image_filepath).first image = image.resize_to_fill(input_shape[:width], input_shape[:height]) image.export_pixels(0, 0, image.columns, image.rows, 'i').map { |pix| pix / 256 } end.flatten } ] # execute inference model.run image_set do |inferenced_results| categories = (0..9).to_a TOP_K = 1 layer_result = inferenced_results.find { |x| x[:name] == MNIST_OUT_NAME } layer_result[:data].zip(image_list).each do |image_result, image_filepath| # sort by score sorted_result = image_result.zip(categories).sort_by { |x| -x[0] } # display result sorted_result[0, TOP_K].each do |score, category| puts "#{image_filepath} = #{category} : #{score}" end end end end end
Version data entries
1 entries across 1 versions & 1 rubygems
Version | Path |
---|---|
menoh-1.0.0 | example/example_mnist_with_block.rb |