/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include "../internal.h" #include "../test/test_util.h" #if !defined(OPENSSL_WINDOWS) #include #include #include #include #include #include #include #include #else #include OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include #include OPENSSL_MSVC_PRAGMA(warning(pop)) #endif #if !defined(OPENSSL_WINDOWS) using Socket = int; #define INVALID_SOCKET (-1) static int closesocket(int sock) { return close(sock); } static std::string LastSocketError() { return strerror(errno); } #else using Socket = SOCKET; static std::string LastSocketError() { char buf[DECIMAL_SIZE(int) + 1]; snprintf(buf, sizeof(buf), "%d", WSAGetLastError()); return buf; } #endif class OwnedSocket { public: OwnedSocket() = default; explicit OwnedSocket(Socket sock) : sock_(sock) {} OwnedSocket(OwnedSocket &&other) { *this = std::move(other); } ~OwnedSocket() { reset(); } OwnedSocket &operator=(OwnedSocket &&other) { reset(other.release()); return *this; } bool is_valid() const { return sock_ != INVALID_SOCKET; } Socket get() const { return sock_; } Socket release() { return std::exchange(sock_, INVALID_SOCKET); } void reset(Socket sock = INVALID_SOCKET) { if (is_valid()) { closesocket(sock_); } sock_ = sock; } private: Socket sock_ = INVALID_SOCKET; }; struct SockaddrStorage { int family() const { return storage.ss_family; } sockaddr *addr_mut() { return reinterpret_cast(&storage); } const sockaddr *addr() const { return reinterpret_cast(&storage); } sockaddr_in ToIPv4() const { if (family() != AF_INET || len != sizeof(sockaddr_in)) { abort(); } // These APIs were seemingly designed before C's strict aliasing rule, and // C++'s strict union handling. Make a copy so the compiler does not read // this as an aliasing violation. sockaddr_in ret; OPENSSL_memcpy(&ret, &storage, sizeof(ret)); return ret; } sockaddr_in6 ToIPv6() const { if (family() != AF_INET6 || len != sizeof(sockaddr_in6)) { abort(); } // These APIs were seemingly designed before C's strict aliasing rule, and // C++'s strict union handling. Make a copy so the compiler does not read // this as an aliasing violation. sockaddr_in6 ret; OPENSSL_memcpy(&ret, &storage, sizeof(ret)); return ret; } sockaddr_storage storage = {}; socklen_t len = sizeof(storage); }; static OwnedSocket Bind(int family, const sockaddr *addr, socklen_t addr_len) { OwnedSocket sock(socket(family, SOCK_STREAM, 0)); if (!sock.is_valid()) { return OwnedSocket(); } if (bind(sock.get(), addr, addr_len) != 0) { return OwnedSocket(); } return sock; } static OwnedSocket ListenLoopback(int backlog) { // Try binding to IPv6. sockaddr_in6 sin6; OPENSSL_memset(&sin6, 0, sizeof(sin6)); sin6.sin6_family = AF_INET6; if (inet_pton(AF_INET6, "::1", &sin6.sin6_addr) != 1) { return OwnedSocket(); } OwnedSocket sock = Bind(AF_INET6, reinterpret_cast(&sin6), sizeof(sin6)); if (!sock.is_valid()) { // Try binding to IPv4. sockaddr_in sin; OPENSSL_memset(&sin, 0, sizeof(sin)); sin.sin_family = AF_INET; if (inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr) != 1) { return OwnedSocket(); } sock = Bind(AF_INET, reinterpret_cast(&sin), sizeof(sin)); } if (!sock.is_valid()) { return OwnedSocket(); } if (listen(sock.get(), backlog) != 0) { return OwnedSocket(); } return sock; } static bool SocketSetNonBlocking(Socket sock) { #if defined(OPENSSL_WINDOWS) u_long arg = 1; return ioctlsocket(sock, FIONBIO, &arg) == 0; #else int flags = fcntl(sock, F_GETFL, 0); if (flags < 0) { return false; } flags |= O_NONBLOCK; return fcntl(sock, F_SETFL, flags) == 0; #endif } enum class WaitType { kRead, kWrite }; static bool WaitForSocket(Socket sock, WaitType wait_type) { // Use an arbitrary 5 second timeout, so the test doesn't hang indefinitely if // there's an issue. static const int kTimeoutSeconds = 5; #if defined(OPENSSL_WINDOWS) fd_set read_set, write_set; FD_ZERO(&read_set); FD_ZERO(&write_set); fd_set *wait_set = wait_type == WaitType::kRead ? &read_set : &write_set; FD_SET(sock, wait_set); timeval timeout; timeout.tv_sec = kTimeoutSeconds; timeout.tv_usec = 0; if (select(0 /* unused on Windows */, &read_set, &write_set, nullptr, &timeout) <= 0) { return false; } return FD_ISSET(sock, wait_set); #else short events = wait_type == WaitType::kRead ? POLLIN : POLLOUT; pollfd fd = {/*fd=*/sock, events, /*revents=*/0}; return poll(&fd, 1, kTimeoutSeconds * 1000) == 1 && (fd.revents & events); #endif } TEST(BIOTest, SocketConnect) { static const char kTestMessage[] = "test"; OwnedSocket listening_sock = ListenLoopback(/*backlog=*/1); ASSERT_TRUE(listening_sock.is_valid()) << LastSocketError(); SockaddrStorage addr; ASSERT_EQ(getsockname(listening_sock.get(), addr.addr_mut(), &addr.len), 0) << LastSocketError(); char hostname[80]; if (addr.family() == AF_INET6) { snprintf(hostname, sizeof(hostname), "[::1]:%d", ntohs(addr.ToIPv6().sin6_port)); } else { snprintf(hostname, sizeof(hostname), "127.0.0.1:%d", ntohs(addr.ToIPv4().sin_port)); } // Connect to it with a connect BIO. bssl::UniquePtr bio(BIO_new_connect(hostname)); ASSERT_TRUE(bio); // Write a test message to the BIO. This is assumed to be smaller than the // transport buffer. ASSERT_EQ(static_cast(sizeof(kTestMessage)), BIO_write(bio.get(), kTestMessage, sizeof(kTestMessage))) << LastSocketError(); // Accept the socket. OwnedSocket sock(accept(listening_sock.get(), addr.addr_mut(), &addr.len)); ASSERT_TRUE(sock.is_valid()) << LastSocketError(); // Check the same message is read back out. char buf[sizeof(kTestMessage)]; ASSERT_EQ(static_cast(sizeof(kTestMessage)), recv(sock.get(), buf, sizeof(buf), 0)) << LastSocketError(); EXPECT_EQ(Bytes(kTestMessage, sizeof(kTestMessage)), Bytes(buf, sizeof(buf))); } TEST(BIOTest, SocketNonBlocking) { OwnedSocket listening_sock = ListenLoopback(/*backlog=*/1); ASSERT_TRUE(listening_sock.is_valid()) << LastSocketError(); // Connect to |listening_sock|. SockaddrStorage addr; ASSERT_EQ(getsockname(listening_sock.get(), addr.addr_mut(), &addr.len), 0) << LastSocketError(); OwnedSocket connect_sock(socket(addr.family(), SOCK_STREAM, 0)); ASSERT_TRUE(connect_sock.is_valid()) << LastSocketError(); ASSERT_EQ(connect(connect_sock.get(), addr.addr(), addr.len), 0) << LastSocketError(); ASSERT_TRUE(SocketSetNonBlocking(connect_sock.get())) << LastSocketError(); bssl::UniquePtr connect_bio( BIO_new_socket(connect_sock.get(), BIO_NOCLOSE)); ASSERT_TRUE(connect_bio); // Make a corresponding accepting socket. OwnedSocket accept_sock( accept(listening_sock.get(), addr.addr_mut(), &addr.len)); ASSERT_TRUE(accept_sock.is_valid()) << LastSocketError(); ASSERT_TRUE(SocketSetNonBlocking(accept_sock.get())) << LastSocketError(); bssl::UniquePtr accept_bio( BIO_new_socket(accept_sock.get(), BIO_NOCLOSE)); ASSERT_TRUE(accept_bio); // Exchange data through the socket. static const char kTestMessage[] = "hello, world"; // Reading from |accept_bio| should not block. char buf[sizeof(kTestMessage)]; int ret = BIO_read(accept_bio.get(), buf, sizeof(buf)); EXPECT_EQ(ret, -1); EXPECT_TRUE(BIO_should_read(accept_bio.get())) << LastSocketError(); // Writing to |connect_bio| should eventually overflow the transport buffers // and also give a retryable error. int bytes_written = 0; for (;;) { ret = BIO_write(connect_bio.get(), kTestMessage, sizeof(kTestMessage)); if (ret <= 0) { EXPECT_EQ(ret, -1); EXPECT_TRUE(BIO_should_write(connect_bio.get())) << LastSocketError(); break; } bytes_written += ret; } EXPECT_GT(bytes_written, 0); // |accept_bio| should readable. Drain it. Note data is not always available // from loopback immediately, notably on macOS, so wait for the socket first. int bytes_read = 0; while (bytes_read < bytes_written) { ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kRead)) << LastSocketError(); ret = BIO_read(accept_bio.get(), buf, sizeof(buf)); ASSERT_GT(ret, 0); bytes_read += ret; } // |connect_bio| should become writeable again. ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kWrite)) << LastSocketError(); ret = BIO_write(connect_bio.get(), kTestMessage, sizeof(kTestMessage)); EXPECT_EQ(static_cast(sizeof(kTestMessage)), ret); ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kRead)) << LastSocketError(); ret = BIO_read(accept_bio.get(), buf, sizeof(buf)); EXPECT_EQ(static_cast(sizeof(kTestMessage)), ret); EXPECT_EQ(Bytes(buf), Bytes(kTestMessage)); // Close one socket. We should get an EOF out the other. connect_bio.reset(); connect_sock.reset(); ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kRead)) << LastSocketError(); ret = BIO_read(accept_bio.get(), buf, sizeof(buf)); EXPECT_EQ(ret, 0) << LastSocketError(); EXPECT_FALSE(BIO_should_read(accept_bio.get())); } TEST(BIOTest, Printf) { // Test a short output, a very long one, and various sizes around // 256 (the size of the buffer) to ensure edge cases are correct. static const size_t kLengths[] = {5, 250, 251, 252, 253, 254, 1023}; bssl::UniquePtr bio(BIO_new(BIO_s_mem())); ASSERT_TRUE(bio); for (size_t length : kLengths) { SCOPED_TRACE(length); std::string in(length, 'a'); int ret = BIO_printf(bio.get(), "test %s", in.c_str()); ASSERT_GE(ret, 0); EXPECT_EQ(5 + length, static_cast(ret)); const uint8_t *contents; size_t len; ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); EXPECT_EQ("test " + in, std::string(reinterpret_cast(contents), len)); ASSERT_TRUE(BIO_reset(bio.get())); } } TEST(BIOTest, ReadASN1) { static const size_t kLargeASN1PayloadLen = 8000; struct ASN1Test { bool should_succeed; std::vector input; // suffix_len is the number of zeros to append to |input|. size_t suffix_len; // expected_len, if |should_succeed| is true, is the expected length of the // ASN.1 element. size_t expected_len; size_t max_len; } kASN1Tests[] = { {true, {0x30, 2, 1, 2, 0, 0}, 0, 4, 100}, {false /* truncated */, {0x30, 3, 1, 2}, 0, 0, 100}, {false /* should be short len */, {0x30, 0x81, 1, 1}, 0, 0, 100}, {false /* zero padded */, {0x30, 0x82, 0, 1, 1}, 0, 0, 100}, // Test a large payload. {true, {0x30, 0x82, kLargeASN1PayloadLen >> 8, kLargeASN1PayloadLen & 0xff}, kLargeASN1PayloadLen, 4 + kLargeASN1PayloadLen, kLargeASN1PayloadLen * 2}, {false /* max_len too short */, {0x30, 0x82, kLargeASN1PayloadLen >> 8, kLargeASN1PayloadLen & 0xff}, kLargeASN1PayloadLen, 4 + kLargeASN1PayloadLen, 3 + kLargeASN1PayloadLen}, // Test an indefinite-length input. {true, {0x30, 0x80}, kLargeASN1PayloadLen + 2, 2 + kLargeASN1PayloadLen + 2, kLargeASN1PayloadLen * 2}, {false /* max_len too short */, {0x30, 0x80}, kLargeASN1PayloadLen + 2, 2 + kLargeASN1PayloadLen + 2, 2 + kLargeASN1PayloadLen + 1}, }; for (const auto &t : kASN1Tests) { std::vector input = t.input; input.resize(input.size() + t.suffix_len, 0); bssl::UniquePtr bio(BIO_new_mem_buf(input.data(), input.size())); ASSERT_TRUE(bio); uint8_t *out; size_t out_len; int ok = BIO_read_asn1(bio.get(), &out, &out_len, t.max_len); if (!ok) { out = nullptr; } bssl::UniquePtr out_storage(out); ASSERT_EQ(t.should_succeed, (ok == 1)); if (t.should_succeed) { EXPECT_EQ(Bytes(input.data(), t.expected_len), Bytes(out, out_len)); } } } TEST(BIOTest, MemReadOnly) { // A memory BIO created from |BIO_new_mem_buf| is a read-only buffer. static const char kData[] = "abcdefghijklmno"; bssl::UniquePtr bio(BIO_new_mem_buf(kData, strlen(kData))); ASSERT_TRUE(bio); // Writing to read-only buffers should fail. EXPECT_EQ(BIO_write(bio.get(), kData, strlen(kData)), -1); const uint8_t *contents; size_t len; ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); EXPECT_EQ(Bytes(contents, len), Bytes(kData)); EXPECT_EQ(BIO_eof(bio.get()), 0); // Read less than the whole buffer. char buf[6]; int ret = BIO_read(bio.get(), buf, sizeof(buf)); ASSERT_GT(ret, 0); EXPECT_EQ(Bytes(buf, ret), Bytes("abcdef")); ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); EXPECT_EQ(Bytes(contents, len), Bytes("ghijklmno")); EXPECT_EQ(BIO_eof(bio.get()), 0); ret = BIO_read(bio.get(), buf, sizeof(buf)); ASSERT_GT(ret, 0); EXPECT_EQ(Bytes(buf, ret), Bytes("ghijkl")); ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); EXPECT_EQ(Bytes(contents, len), Bytes("mno")); EXPECT_EQ(BIO_eof(bio.get()), 0); // Read the remainder of the buffer. ret = BIO_read(bio.get(), buf, sizeof(buf)); ASSERT_GT(ret, 0); EXPECT_EQ(Bytes(buf, ret), Bytes("mno")); ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); EXPECT_EQ(Bytes(contents, len), Bytes("")); EXPECT_EQ(BIO_eof(bio.get()), 1); // By default, reading from a consumed read-only buffer returns EOF. EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), 0); EXPECT_FALSE(BIO_should_read(bio.get())); // A memory BIO can be configured to return an error instead of EOF. This is // error is returned as retryable. (This is not especially useful here. It // makes more sense for a writable BIO.) EXPECT_EQ(BIO_set_mem_eof_return(bio.get(), -1), 1); EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1); EXPECT_TRUE(BIO_should_read(bio.get())); // Read exactly the right number of bytes, to test the boundary condition is // correct. bio.reset(BIO_new_mem_buf("abc", 3)); ASSERT_TRUE(bio); ret = BIO_read(bio.get(), buf, 3); ASSERT_GT(ret, 0); EXPECT_EQ(Bytes(buf, ret), Bytes("abc")); EXPECT_EQ(BIO_eof(bio.get()), 1); } TEST(BIOTest, MemWritable) { // A memory BIO created from |BIO_new| is writable. bssl::UniquePtr bio(BIO_new(BIO_s_mem())); ASSERT_TRUE(bio); auto check_bio_contents = [&](Bytes b) { const uint8_t *contents; size_t len; ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); EXPECT_EQ(Bytes(contents, len), b); char *contents_c; long len_l = BIO_get_mem_data(bio.get(), &contents_c); ASSERT_GE(len_l, 0); EXPECT_EQ(Bytes(contents_c, len_l), b); BUF_MEM *buf; ASSERT_EQ(BIO_get_mem_ptr(bio.get(), &buf), 1); EXPECT_EQ(Bytes(buf->data, buf->length), b); }; // It is initially empty. check_bio_contents(Bytes("")); EXPECT_EQ(BIO_eof(bio.get()), 1); // Reading from it should default to returning a retryable error. char buf[32]; EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1); EXPECT_TRUE(BIO_should_read(bio.get())); // This can be configured to return an EOF. EXPECT_EQ(BIO_set_mem_eof_return(bio.get(), 0), 1); EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), 0); EXPECT_FALSE(BIO_should_read(bio.get())); // Restore the default. A writable memory |BIO| is typically used in this mode // so additional data can be written when exhausted. EXPECT_EQ(BIO_set_mem_eof_return(bio.get(), -1), 1); // Writes append to the buffer. ASSERT_EQ(BIO_write(bio.get(), "abcdef", 6), 6); check_bio_contents(Bytes("abcdef")); EXPECT_EQ(BIO_eof(bio.get()), 0); // Writes can include embedded NULs. ASSERT_EQ(BIO_write(bio.get(), "\0ghijk", 6), 6); check_bio_contents(Bytes("abcdef\0ghijk", 12)); EXPECT_EQ(BIO_eof(bio.get()), 0); // Do a partial read. int ret = BIO_read(bio.get(), buf, 4); ASSERT_GT(ret, 0); EXPECT_EQ(Bytes(buf, ret), Bytes("abcd")); check_bio_contents(Bytes("ef\0ghijk", 8)); EXPECT_EQ(BIO_eof(bio.get()), 0); // Reads and writes may alternate. ASSERT_EQ(BIO_write(bio.get(), "lmnopq", 6), 6); check_bio_contents(Bytes("ef\0ghijklmnopq", 14)); EXPECT_EQ(BIO_eof(bio.get()), 0); // Reads may consume embedded NULs. ret = BIO_read(bio.get(), buf, 4); ASSERT_GT(ret, 0); EXPECT_EQ(Bytes(buf, ret), Bytes("ef\0g", 4)); check_bio_contents(Bytes("hijklmnopq")); EXPECT_EQ(BIO_eof(bio.get()), 0); // The read buffer exceeds the |BIO|, so we consume everything. ret = BIO_read(bio.get(), buf, sizeof(buf)); ASSERT_GT(ret, 0); EXPECT_EQ(Bytes(buf, ret), Bytes("hijklmnopq")); check_bio_contents(Bytes("")); EXPECT_EQ(BIO_eof(bio.get()), 1); // The |BIO| is now empty. EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1); EXPECT_TRUE(BIO_should_read(bio.get())); // Repeat the above, reading exactly the right number of bytes, to test the // boundary condition is correct. ASSERT_EQ(BIO_write(bio.get(), "abc", 3), 3); ret = BIO_read(bio.get(), buf, 3); EXPECT_EQ(Bytes(buf, ret), Bytes("abc")); EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1); EXPECT_TRUE(BIO_should_read(bio.get())); EXPECT_EQ(BIO_eof(bio.get()), 1); } TEST(BIOTest, Gets) { const struct { std::string bio; int gets_len; std::string gets_result; } kGetsTests[] = { // BIO_gets should stop at the first newline. If the buffer is too small, // stop there instead. Note the buffer size // includes a trailing NUL. {"123456789\n123456789", 5, "1234"}, {"123456789\n123456789", 9, "12345678"}, {"123456789\n123456789", 10, "123456789"}, {"123456789\n123456789", 11, "123456789\n"}, {"123456789\n123456789", 12, "123456789\n"}, {"123456789\n123456789", 256, "123456789\n"}, // If we run out of buffer, read the whole buffer. {"12345", 5, "1234"}, {"12345", 6, "12345"}, {"12345", 10, "12345"}, // NUL bytes do not terminate gets. {std::string("abc\0def\nghi", 11), 256, std::string("abc\0def\n", 8)}, // An output size of one means we cannot read any bytes. Only the trailing // NUL is included. {"12345", 1, ""}, // Empty line. {"\nabcdef", 256, "\n"}, // Empty BIO. {"", 256, ""}, }; for (const auto& t : kGetsTests) { SCOPED_TRACE(t.bio); SCOPED_TRACE(t.gets_len); auto check_bio_gets = [&](BIO *bio) { std::vector buf(t.gets_len, 'a'); int ret = BIO_gets(bio, buf.data(), t.gets_len); ASSERT_GE(ret, 0); // |BIO_gets| should write a NUL terminator, not counted in the return // value. EXPECT_EQ(Bytes(buf.data(), ret + 1), Bytes(t.gets_result.data(), t.gets_result.size() + 1)); // The remaining data should still be in the BIO. buf.resize(t.bio.size() + 1); ret = BIO_read(bio, buf.data(), static_cast(buf.size())); ASSERT_GE(ret, 0); EXPECT_EQ(Bytes(buf.data(), ret), Bytes(t.bio.substr(t.gets_result.size()))); }; { SCOPED_TRACE("memory"); bssl::UniquePtr bio(BIO_new_mem_buf(t.bio.data(), t.bio.size())); ASSERT_TRUE(bio); check_bio_gets(bio.get()); } using ScopedFILE = std::unique_ptr; ScopedFILE file(tmpfile(), fclose); #if defined(OPENSSL_ANDROID) // On Android, when running from an APK, |tmpfile| does not work. See // b/36991167#comment8. if (!file) { fprintf(stderr, "tmpfile failed: %s (%d). Skipping file-based tests.\n", strerror(errno), errno); continue; } #else ASSERT_TRUE(file); #endif if (!t.bio.empty()) { ASSERT_EQ(1u, fwrite(t.bio.data(), t.bio.size(), /*nitems=*/1, file.get())); ASSERT_EQ(0, fseek(file.get(), 0, SEEK_SET)); } // TODO(crbug.com/boringssl/585): If the line has an embedded NUL, file // BIOs do not currently report the answer correctly. if (t.bio.find('\0') == std::string::npos) { SCOPED_TRACE("file"); bssl::UniquePtr bio(BIO_new_fp(file.get(), BIO_NOCLOSE)); ASSERT_TRUE(bio); check_bio_gets(bio.get()); } ASSERT_EQ(0, fseek(file.get(), 0, SEEK_SET)); { SCOPED_TRACE("fd"); #if defined(OPENSSL_WINDOWS) int fd = _fileno(file.get()); #else int fd = fileno(file.get()); #endif bssl::UniquePtr bio(BIO_new_fd(fd, BIO_NOCLOSE)); ASSERT_TRUE(bio); check_bio_gets(bio.get()); } } // Negative and zero lengths should not output anything, even a trailing NUL. bssl::UniquePtr bio(BIO_new_mem_buf("12345", -1)); ASSERT_TRUE(bio); char c = 'a'; EXPECT_EQ(0, BIO_gets(bio.get(), &c, -1)); EXPECT_EQ(0, BIO_gets(bio.get(), &c, 0)); EXPECT_EQ(c, 'a'); } // Run through the tests twice, swapping |bio1| and |bio2|, for symmetry. class BIOPairTest : public testing::TestWithParam {}; TEST_P(BIOPairTest, TestPair) { BIO *bio1, *bio2; ASSERT_TRUE(BIO_new_bio_pair(&bio1, 10, &bio2, 10)); bssl::UniquePtr free_bio1(bio1), free_bio2(bio2); if (GetParam()) { std::swap(bio1, bio2); } // Check initial states. EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1)); EXPECT_EQ(0u, BIO_ctrl_get_read_request(bio1)); // Data written in one end may be read out the other. uint8_t buf[20]; EXPECT_EQ(5, BIO_write(bio1, "12345", 5)); EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1)); ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf))); EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1)); // Attempting to write more than 10 bytes will write partially. EXPECT_EQ(10, BIO_write(bio1, "1234567890___", 13)); EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1)); EXPECT_EQ(-1, BIO_write(bio1, "z", 1)); EXPECT_TRUE(BIO_should_write(bio1)); ASSERT_EQ(10, BIO_read(bio2, buf, sizeof(buf))); EXPECT_EQ(Bytes("1234567890"), Bytes(buf, 10)); EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1)); // Unsuccessful reads update the read request. EXPECT_EQ(-1, BIO_read(bio2, buf, 5)); EXPECT_TRUE(BIO_should_read(bio2)); EXPECT_EQ(5u, BIO_ctrl_get_read_request(bio1)); // The read request is clamped to the size of the buffer. EXPECT_EQ(-1, BIO_read(bio2, buf, 20)); EXPECT_TRUE(BIO_should_read(bio2)); EXPECT_EQ(10u, BIO_ctrl_get_read_request(bio1)); // Data may be written and read in chunks. EXPECT_EQ(5, BIO_write(bio1, "12345", 5)); EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1)); EXPECT_EQ(5, BIO_write(bio1, "67890___", 8)); EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1)); ASSERT_EQ(3, BIO_read(bio2, buf, 3)); EXPECT_EQ(Bytes("123"), Bytes(buf, 3)); EXPECT_EQ(3u, BIO_ctrl_get_write_guarantee(bio1)); ASSERT_EQ(7, BIO_read(bio2, buf, sizeof(buf))); EXPECT_EQ(Bytes("4567890"), Bytes(buf, 7)); EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1)); // Successful reads reset the read request. EXPECT_EQ(0u, BIO_ctrl_get_read_request(bio1)); // Test writes and reads starting in the middle of the ring buffer and // wrapping to front. EXPECT_EQ(8, BIO_write(bio1, "abcdefgh", 8)); EXPECT_EQ(2u, BIO_ctrl_get_write_guarantee(bio1)); ASSERT_EQ(3, BIO_read(bio2, buf, 3)); EXPECT_EQ(Bytes("abc"), Bytes(buf, 3)); EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1)); EXPECT_EQ(5, BIO_write(bio1, "ijklm___", 8)); EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1)); ASSERT_EQ(10, BIO_read(bio2, buf, sizeof(buf))); EXPECT_EQ(Bytes("defghijklm"), Bytes(buf, 10)); EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1)); // Data may flow from both ends in parallel. EXPECT_EQ(5, BIO_write(bio1, "12345", 5)); EXPECT_EQ(5, BIO_write(bio2, "67890", 5)); ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf))); EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); ASSERT_EQ(5, BIO_read(bio1, buf, sizeof(buf))); EXPECT_EQ(Bytes("67890"), Bytes(buf, 5)); // Closing the write end causes an EOF on the read half, after draining. EXPECT_EQ(5, BIO_write(bio1, "12345", 5)); EXPECT_TRUE(BIO_shutdown_wr(bio1)); ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf))); EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); EXPECT_EQ(0, BIO_read(bio2, buf, sizeof(buf))); // A closed write end may not be written to. EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1)); EXPECT_EQ(-1, BIO_write(bio1, "_____", 5)); uint32_t err = ERR_get_error(); EXPECT_EQ(ERR_LIB_BIO, ERR_GET_LIB(err)); EXPECT_EQ(BIO_R_BROKEN_PIPE, ERR_GET_REASON(err)); // The other end is still functional. EXPECT_EQ(5, BIO_write(bio2, "12345", 5)); ASSERT_EQ(5, BIO_read(bio1, buf, sizeof(buf))); EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); } INSTANTIATE_TEST_SUITE_P(All, BIOPairTest, testing::Values(false, true));