Sha256: c1040b17c224945a2b12aa174d3ebf8695ecc6a7b1c7019a5afe7d6d2f401c64
Contents?: true
Size: 1.44 KB
Versions: 6
Compression:
Stored size: 1.44 KB
Contents
require "dnn" require "dnn/datasets/mnist" # If you use numo/linalg then please uncomment out. # require "numo/linalg/autoloader" include DNN::Models include DNN::Layers include DNN::Initializers include DNN::Optimizers include DNN::Losses EPOCHS = 3 BATCH_SIZE = 128 x_train, y_train = DNN::MNIST.load_train x_test, y_test = DNN::MNIST.load_test x_train = x_train.reshape(x_train.shape[0], 784) x_test = x_test.reshape(x_test.shape[0], 784) x_train = Numo::SFloat.cast(x_train) / 255 x_test = Numo::SFloat.cast(x_test) / 255 y_train = DNN::Utils.to_categorical(y_train, 10, Numo::SFloat) y_test = DNN::Utils.to_categorical(y_test, 10, Numo::SFloat) class MLP < Model def initialize super # Set the initial values of weight and bias to the initial values of He. @l1 = Dense.new(256, weight_initializer: He.new, bias_initializer: He.new) @l2 = Dense.new(256, weight_initializer: He.new, bias_initializer: He.new) @l3 = Dense.new(10, weight_initializer: He.new, bias_initializer: He.new) @bn1 = BatchNormalization.new @bn2 = BatchNormalization.new end def forward(x) x = InputLayer.new(784).(x) x = @l1.(x) x = @bn1.(x) x = ReLU.(x) x = @l2.(x) x = @bn2.(x) x = ReLU.(x) x = @l3.(x) x end end model = MLP.new model.setup(Adam.new, SoftmaxCrossEntropy.new) model.train(x_train, y_train, EPOCHS, batch_size: BATCH_SIZE, test: [x_test, y_test])
Version data entries
6 entries across 6 versions & 1 rubygems