// // // Copyright 2017 gRPC authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // #include #include "src/core/lib/resource_quota/arena.h" #include #include #include #include "src/core/lib/gpr/alloc.h" namespace { void* ArenaStorage(size_t initial_size) { static constexpr size_t base_size = GPR_ROUND_UP_TO_ALIGNMENT_SIZE(sizeof(grpc_core::Arena)); initial_size = GPR_ROUND_UP_TO_ALIGNMENT_SIZE(initial_size); size_t alloc_size = base_size + initial_size; static constexpr size_t alignment = (GPR_CACHELINE_SIZE > GPR_MAX_ALIGNMENT && GPR_CACHELINE_SIZE % GPR_MAX_ALIGNMENT == 0) ? GPR_CACHELINE_SIZE : GPR_MAX_ALIGNMENT; return gpr_malloc_aligned(alloc_size, alignment); } } // namespace namespace grpc_core { Arena::~Arena() { Zone* z = last_zone_; while (z) { Zone* prev_z = z->prev; Destruct(z); gpr_free_aligned(z); z = prev_z; } #ifdef GRPC_ARENA_TRACE_POOLED_ALLOCATIONS gpr_log(GPR_ERROR, "DESTRUCT_ARENA %p", this); #endif } Arena* Arena::Create(size_t initial_size, MemoryAllocator* memory_allocator) { return new (ArenaStorage(initial_size)) Arena(initial_size, 0, memory_allocator); } std::pair Arena::CreateWithAlloc( size_t initial_size, size_t alloc_size, MemoryAllocator* memory_allocator) { static constexpr size_t base_size = GPR_ROUND_UP_TO_ALIGNMENT_SIZE(sizeof(Arena)); auto* new_arena = new (ArenaStorage(initial_size)) Arena(initial_size, alloc_size, memory_allocator); void* first_alloc = reinterpret_cast(new_arena) + base_size; return std::make_pair(new_arena, first_alloc); } void Arena::DestroyManagedNewObjects() { ManagedNewObject* p; // Outer loop: clear the managed new object list. // We do this repeatedly in case a destructor ends up allocating something. while ((p = managed_new_head_.exchange(nullptr, std::memory_order_relaxed)) != nullptr) { // Inner loop: destruct a batch of objects. while (p != nullptr) { Destruct(std::exchange(p, p->next)); } } } void Arena::Destroy() { DestroyManagedNewObjects(); memory_allocator_->Release(total_allocated_.load(std::memory_order_relaxed)); this->~Arena(); gpr_free_aligned(this); } void* Arena::AllocZone(size_t size) { // If the allocation isn't able to end in the initial zone, create a new // zone for this allocation, and any unused space in the initial zone is // wasted. This overflowing and wasting is uncommon because of our arena // sizing hysteresis (that is, most calls should have a large enough initial // zone and will not need to grow the arena). static constexpr size_t zone_base_size = GPR_ROUND_UP_TO_ALIGNMENT_SIZE(sizeof(Zone)); size_t alloc_size = zone_base_size + size; memory_allocator_->Reserve(alloc_size); total_allocated_.fetch_add(alloc_size, std::memory_order_relaxed); Zone* z = new (gpr_malloc_aligned(alloc_size, GPR_MAX_ALIGNMENT)) Zone(); auto* prev = last_zone_.load(std::memory_order_relaxed); do { z->prev = prev; } while (!last_zone_.compare_exchange_weak(prev, z, std::memory_order_relaxed, std::memory_order_relaxed)); return reinterpret_cast(z) + zone_base_size; } void Arena::ManagedNewObject::Link(std::atomic* head) { next = head->load(std::memory_order_relaxed); while (!head->compare_exchange_weak(next, this, std::memory_order_acq_rel, std::memory_order_relaxed)) { } } #ifndef GRPC_ARENA_POOLED_ALLOCATIONS_USE_MALLOC void* Arena::AllocPooled(size_t obj_size, size_t alloc_size, std::atomic* head) { // ABA mitigation: // AllocPooled may be called by multiple threads, and to remove a node from // the free list we need to manipulate the next pointer, which may be done // differently by each thread in a naive implementation. // The literature contains various ways of dealing with this. Here we expect // to be mostly single threaded - Arena's are owned by calls and calls don't // do a lot of concurrent work with the pooled allocator. The place that they // do is allocating metadata batches for decoding HPACK headers in chttp2. // So we adopt an approach that is simple and fast for the single threaded // case, and that is also correct in the multi threaded case. // First, take ownership of the entire free list. At this point we know that // no other thread can see free nodes and will be forced to allocate. // We think we're mostly single threaded and so that's ok. FreePoolNode* p = head->exchange(nullptr, std::memory_order_acquire); // If there are no nodes in the free list, then go ahead and allocate from the // arena. if (p == nullptr) { void* r = Alloc(alloc_size); TracePoolAlloc(obj_size, r); return r; } // We had a non-empty free list... but we own the *entire* free list. // We only want one node, so if there are extras we'd better give them back. if (p->next != nullptr) { // We perform an exchange to do so, but if there were concurrent frees with // this allocation then there'll be a free list that needs to be merged with // ours. FreePoolNode* extra = head->exchange(p->next, std::memory_order_acq_rel); // If there was a free list concurrently created, we merge it into the // overall free list here by simply freeing each node in turn. This is O(n), // but only O(n) in the number of nodes that were freed concurrently, and // again: we think real world use cases are going to see this as mostly // single threaded. while (extra != nullptr) { FreePoolNode* next = extra->next; FreePooled(extra, head); extra = next; } } TracePoolAlloc(obj_size, p); return p; } void Arena::FreePooled(void* p, std::atomic* head) { // May spuriously trace a free of an already freed object - see AllocPooled // ABA mitigation. TracePoolFree(p); FreePoolNode* node = static_cast(p); node->next = head->load(std::memory_order_acquire); while (!head->compare_exchange_weak( node->next, node, std::memory_order_acq_rel, std::memory_order_relaxed)) { } } #endif } // namespace grpc_core