# frozen_string_literal: true
# WARNING ABOUT GENERATED CODE
#
# This file is generated. See the contributing guide for more information:
# https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
#
# WARNING ABOUT GENERATED CODE
require 'seahorse/client/plugins/content_length.rb'
require 'aws-sdk-core/plugins/credentials_configuration.rb'
require 'aws-sdk-core/plugins/logging.rb'
require 'aws-sdk-core/plugins/param_converter.rb'
require 'aws-sdk-core/plugins/param_validator.rb'
require 'aws-sdk-core/plugins/user_agent.rb'
require 'aws-sdk-core/plugins/helpful_socket_errors.rb'
require 'aws-sdk-core/plugins/retry_errors.rb'
require 'aws-sdk-core/plugins/global_configuration.rb'
require 'aws-sdk-core/plugins/regional_endpoint.rb'
require 'aws-sdk-core/plugins/endpoint_discovery.rb'
require 'aws-sdk-core/plugins/endpoint_pattern.rb'
require 'aws-sdk-core/plugins/response_paging.rb'
require 'aws-sdk-core/plugins/stub_responses.rb'
require 'aws-sdk-core/plugins/idempotency_token.rb'
require 'aws-sdk-core/plugins/jsonvalue_converter.rb'
require 'aws-sdk-core/plugins/client_metrics_plugin.rb'
require 'aws-sdk-core/plugins/client_metrics_send_plugin.rb'
require 'aws-sdk-core/plugins/transfer_encoding.rb'
require 'aws-sdk-core/plugins/http_checksum.rb'
require 'aws-sdk-core/plugins/checksum_algorithm.rb'
require 'aws-sdk-core/plugins/defaults_mode.rb'
require 'aws-sdk-core/plugins/recursion_detection.rb'
require 'aws-sdk-core/plugins/signature_v4.rb'
require 'aws-sdk-core/plugins/protocols/json_rpc.rb'
require 'aws-sdk-machinelearning/plugins/predict_endpoint.rb'
Aws::Plugins::GlobalConfiguration.add_identifier(:machinelearning)
module Aws::MachineLearning
# An API client for MachineLearning. To construct a client, you need to configure a `:region` and `:credentials`.
#
# client = Aws::MachineLearning::Client.new(
# region: region_name,
# credentials: credentials,
# # ...
# )
#
# For details on configuring region and credentials see
# the [developer guide](/sdk-for-ruby/v3/developer-guide/setup-config.html).
#
# See {#initialize} for a full list of supported configuration options.
class Client < Seahorse::Client::Base
include Aws::ClientStubs
@identifier = :machinelearning
set_api(ClientApi::API)
add_plugin(Seahorse::Client::Plugins::ContentLength)
add_plugin(Aws::Plugins::CredentialsConfiguration)
add_plugin(Aws::Plugins::Logging)
add_plugin(Aws::Plugins::ParamConverter)
add_plugin(Aws::Plugins::ParamValidator)
add_plugin(Aws::Plugins::UserAgent)
add_plugin(Aws::Plugins::HelpfulSocketErrors)
add_plugin(Aws::Plugins::RetryErrors)
add_plugin(Aws::Plugins::GlobalConfiguration)
add_plugin(Aws::Plugins::RegionalEndpoint)
add_plugin(Aws::Plugins::EndpointDiscovery)
add_plugin(Aws::Plugins::EndpointPattern)
add_plugin(Aws::Plugins::ResponsePaging)
add_plugin(Aws::Plugins::StubResponses)
add_plugin(Aws::Plugins::IdempotencyToken)
add_plugin(Aws::Plugins::JsonvalueConverter)
add_plugin(Aws::Plugins::ClientMetricsPlugin)
add_plugin(Aws::Plugins::ClientMetricsSendPlugin)
add_plugin(Aws::Plugins::TransferEncoding)
add_plugin(Aws::Plugins::HttpChecksum)
add_plugin(Aws::Plugins::ChecksumAlgorithm)
add_plugin(Aws::Plugins::DefaultsMode)
add_plugin(Aws::Plugins::RecursionDetection)
add_plugin(Aws::Plugins::SignatureV4)
add_plugin(Aws::Plugins::Protocols::JsonRpc)
add_plugin(Aws::MachineLearning::Plugins::PredictEndpoint)
# @overload initialize(options)
# @param [Hash] options
# @option options [required, Aws::CredentialProvider] :credentials
# Your AWS credentials. This can be an instance of any one of the
# following classes:
#
# * `Aws::Credentials` - Used for configuring static, non-refreshing
# credentials.
#
# * `Aws::SharedCredentials` - Used for loading static credentials from a
# shared file, such as `~/.aws/config`.
#
# * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
#
# * `Aws::AssumeRoleWebIdentityCredentials` - Used when you need to
# assume a role after providing credentials via the web.
#
# * `Aws::SSOCredentials` - Used for loading credentials from AWS SSO using an
# access token generated from `aws login`.
#
# * `Aws::ProcessCredentials` - Used for loading credentials from a
# process that outputs to stdout.
#
# * `Aws::InstanceProfileCredentials` - Used for loading credentials
# from an EC2 IMDS on an EC2 instance.
#
# * `Aws::ECSCredentials` - Used for loading credentials from
# instances running in ECS.
#
# * `Aws::CognitoIdentityCredentials` - Used for loading credentials
# from the Cognito Identity service.
#
# When `:credentials` are not configured directly, the following
# locations will be searched for credentials:
#
# * `Aws.config[:credentials]`
# * The `:access_key_id`, `:secret_access_key`, and `:session_token` options.
# * ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY']
# * `~/.aws/credentials`
# * `~/.aws/config`
# * EC2/ECS IMDS instance profile - When used by default, the timeouts
# are very aggressive. Construct and pass an instance of
# `Aws::InstanceProfileCredentails` or `Aws::ECSCredentials` to
# enable retries and extended timeouts. Instance profile credential
# fetching can be disabled by setting ENV['AWS_EC2_METADATA_DISABLED']
# to true.
#
# @option options [required, String] :region
# The AWS region to connect to. The configured `:region` is
# used to determine the service `:endpoint`. When not passed,
# a default `:region` is searched for in the following locations:
#
# * `Aws.config[:region]`
# * `ENV['AWS_REGION']`
# * `ENV['AMAZON_REGION']`
# * `ENV['AWS_DEFAULT_REGION']`
# * `~/.aws/credentials`
# * `~/.aws/config`
#
# @option options [String] :access_key_id
#
# @option options [Boolean] :active_endpoint_cache (false)
# When set to `true`, a thread polling for endpoints will be running in
# the background every 60 secs (default). Defaults to `false`.
#
# @option options [Boolean] :adaptive_retry_wait_to_fill (true)
# Used only in `adaptive` retry mode. When true, the request will sleep
# until there is sufficent client side capacity to retry the request.
# When false, the request will raise a `RetryCapacityNotAvailableError` and will
# not retry instead of sleeping.
#
# @option options [Boolean] :client_side_monitoring (false)
# When `true`, client-side metrics will be collected for all API requests from
# this client.
#
# @option options [String] :client_side_monitoring_client_id ("")
# Allows you to provide an identifier for this client which will be attached to
# all generated client side metrics. Defaults to an empty string.
#
# @option options [String] :client_side_monitoring_host ("127.0.0.1")
# Allows you to specify the DNS hostname or IPv4 or IPv6 address that the client
# side monitoring agent is running on, where client metrics will be published via UDP.
#
# @option options [Integer] :client_side_monitoring_port (31000)
# Required for publishing client metrics. The port that the client side monitoring
# agent is running on, where client metrics will be published via UDP.
#
# @option options [Aws::ClientSideMonitoring::Publisher] :client_side_monitoring_publisher (Aws::ClientSideMonitoring::Publisher)
# Allows you to provide a custom client-side monitoring publisher class. By default,
# will use the Client Side Monitoring Agent Publisher.
#
# @option options [Boolean] :convert_params (true)
# When `true`, an attempt is made to coerce request parameters into
# the required types.
#
# @option options [Boolean] :correct_clock_skew (true)
# Used only in `standard` and adaptive retry modes. Specifies whether to apply
# a clock skew correction and retry requests with skewed client clocks.
#
# @option options [String] :defaults_mode ("legacy")
# See {Aws::DefaultsModeConfiguration} for a list of the
# accepted modes and the configuration defaults that are included.
#
# @option options [Boolean] :disable_host_prefix_injection (false)
# Set to true to disable SDK automatically adding host prefix
# to default service endpoint when available.
#
# @option options [String] :endpoint
# The client endpoint is normally constructed from the `:region`
# option. You should only configure an `:endpoint` when connecting
# to test or custom endpoints. This should be a valid HTTP(S) URI.
#
# @option options [Integer] :endpoint_cache_max_entries (1000)
# Used for the maximum size limit of the LRU cache storing endpoints data
# for endpoint discovery enabled operations. Defaults to 1000.
#
# @option options [Integer] :endpoint_cache_max_threads (10)
# Used for the maximum threads in use for polling endpoints to be cached, defaults to 10.
#
# @option options [Integer] :endpoint_cache_poll_interval (60)
# When :endpoint_discovery and :active_endpoint_cache is enabled,
# Use this option to config the time interval in seconds for making
# requests fetching endpoints information. Defaults to 60 sec.
#
# @option options [Boolean] :endpoint_discovery (false)
# When set to `true`, endpoint discovery will be enabled for operations when available.
#
# @option options [Aws::Log::Formatter] :log_formatter (Aws::Log::Formatter.default)
# The log formatter.
#
# @option options [Symbol] :log_level (:info)
# The log level to send messages to the `:logger` at.
#
# @option options [Logger] :logger
# The Logger instance to send log messages to. If this option
# is not set, logging will be disabled.
#
# @option options [Integer] :max_attempts (3)
# An integer representing the maximum number attempts that will be made for
# a single request, including the initial attempt. For example,
# setting this value to 5 will result in a request being retried up to
# 4 times. Used in `standard` and `adaptive` retry modes.
#
# @option options [String] :profile ("default")
# Used when loading credentials from the shared credentials file
# at HOME/.aws/credentials. When not specified, 'default' is used.
#
# @option options [Proc] :retry_backoff
# A proc or lambda used for backoff. Defaults to 2**retries * retry_base_delay.
# This option is only used in the `legacy` retry mode.
#
# @option options [Float] :retry_base_delay (0.3)
# The base delay in seconds used by the default backoff function. This option
# is only used in the `legacy` retry mode.
#
# @option options [Symbol] :retry_jitter (:none)
# A delay randomiser function used by the default backoff function.
# Some predefined functions can be referenced by name - :none, :equal, :full,
# otherwise a Proc that takes and returns a number. This option is only used
# in the `legacy` retry mode.
#
# @see https://www.awsarchitectureblog.com/2015/03/backoff.html
#
# @option options [Integer] :retry_limit (3)
# The maximum number of times to retry failed requests. Only
# ~ 500 level server errors and certain ~ 400 level client errors
# are retried. Generally, these are throttling errors, data
# checksum errors, networking errors, timeout errors, auth errors,
# endpoint discovery, and errors from expired credentials.
# This option is only used in the `legacy` retry mode.
#
# @option options [Integer] :retry_max_delay (0)
# The maximum number of seconds to delay between retries (0 for no limit)
# used by the default backoff function. This option is only used in the
# `legacy` retry mode.
#
# @option options [String] :retry_mode ("legacy")
# Specifies which retry algorithm to use. Values are:
#
# * `legacy` - The pre-existing retry behavior. This is default value if
# no retry mode is provided.
#
# * `standard` - A standardized set of retry rules across the AWS SDKs.
# This includes support for retry quotas, which limit the number of
# unsuccessful retries a client can make.
#
# * `adaptive` - An experimental retry mode that includes all the
# functionality of `standard` mode along with automatic client side
# throttling. This is a provisional mode that may change behavior
# in the future.
#
#
# @option options [String] :secret_access_key
#
# @option options [String] :session_token
#
# @option options [Boolean] :simple_json (false)
# Disables request parameter conversion, validation, and formatting.
# Also disable response data type conversions. This option is useful
# when you want to ensure the highest level of performance by
# avoiding overhead of walking request parameters and response data
# structures.
#
# When `:simple_json` is enabled, the request parameters hash must
# be formatted exactly as the DynamoDB API expects.
#
# @option options [Boolean] :stub_responses (false)
# Causes the client to return stubbed responses. By default
# fake responses are generated and returned. You can specify
# the response data to return or errors to raise by calling
# {ClientStubs#stub_responses}. See {ClientStubs} for more information.
#
# ** Please note ** When response stubbing is enabled, no HTTP
# requests are made, and retries are disabled.
#
# @option options [Boolean] :use_dualstack_endpoint
# When set to `true`, dualstack enabled endpoints (with `.aws` TLD)
# will be used if available.
#
# @option options [Boolean] :use_fips_endpoint
# When set to `true`, fips compatible endpoints will be used if available.
# When a `fips` region is used, the region is normalized and this config
# is set to `true`.
#
# @option options [Boolean] :validate_params (true)
# When `true`, request parameters are validated before
# sending the request.
#
# @option options [URI::HTTP,String] :http_proxy A proxy to send
# requests through. Formatted like 'http://proxy.com:123'.
#
# @option options [Float] :http_open_timeout (15) The number of
# seconds to wait when opening a HTTP session before raising a
# `Timeout::Error`.
#
# @option options [Float] :http_read_timeout (60) The default
# number of seconds to wait for response data. This value can
# safely be set per-request on the session.
#
# @option options [Float] :http_idle_timeout (5) The number of
# seconds a connection is allowed to sit idle before it is
# considered stale. Stale connections are closed and removed
# from the pool before making a request.
#
# @option options [Float] :http_continue_timeout (1) The number of
# seconds to wait for a 100-continue response before sending the
# request body. This option has no effect unless the request has
# "Expect" header set to "100-continue". Defaults to `nil` which
# disables this behaviour. This value can safely be set per
# request on the session.
#
# @option options [Float] :ssl_timeout (nil) Sets the SSL timeout
# in seconds.
#
# @option options [Boolean] :http_wire_trace (false) When `true`,
# HTTP debug output will be sent to the `:logger`.
#
# @option options [Boolean] :ssl_verify_peer (true) When `true`,
# SSL peer certificates are verified when establishing a
# connection.
#
# @option options [String] :ssl_ca_bundle Full path to the SSL
# certificate authority bundle file that should be used when
# verifying peer certificates. If you do not pass
# `:ssl_ca_bundle` or `:ssl_ca_directory` the the system default
# will be used if available.
#
# @option options [String] :ssl_ca_directory Full path of the
# directory that contains the unbundled SSL certificate
# authority files for verifying peer certificates. If you do
# not pass `:ssl_ca_bundle` or `:ssl_ca_directory` the the
# system default will be used if available.
#
def initialize(*args)
super
end
# @!group API Operations
# Adds one or more tags to an object, up to a limit of 10. Each tag
# consists of a key and an optional value. If you add a tag using a key
# that is already associated with the ML object, `AddTags` updates the
# tag's value.
#
# @option params [required, Array] :tags
# The key-value pairs to use to create tags. If you specify a key
# without specifying a value, Amazon ML creates a tag with the specified
# key and a value of null.
#
# @option params [required, String] :resource_id
# The ID of the ML object to tag. For example, `exampleModelId`.
#
# @option params [required, String] :resource_type
# The type of the ML object to tag.
#
# @return [Types::AddTagsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::AddTagsOutput#resource_id #resource_id} => String
# * {Types::AddTagsOutput#resource_type #resource_type} => String
#
# @example Request syntax with placeholder values
#
# resp = client.add_tags({
# tags: [ # required
# {
# key: "TagKey",
# value: "TagValue",
# },
# ],
# resource_id: "EntityId", # required
# resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
# })
#
# @example Response structure
#
# resp.resource_id #=> String
# resp.resource_type #=> String, one of "BatchPrediction", "DataSource", "Evaluation", "MLModel"
#
# @overload add_tags(params = {})
# @param [Hash] params ({})
def add_tags(params = {}, options = {})
req = build_request(:add_tags, params)
req.send_request(options)
end
# Generates predictions for a group of observations. The observations to
# process exist in one or more data files referenced by a `DataSource`.
# This operation creates a new `BatchPrediction`, and uses an `MLModel`
# and the data files referenced by the `DataSource` as information
# sources.
#
# `CreateBatchPrediction` is an asynchronous operation. In response to
# `CreateBatchPrediction`, Amazon Machine Learning (Amazon ML)
# immediately returns and sets the `BatchPrediction` status to
# `PENDING`. After the `BatchPrediction` completes, Amazon ML sets the
# status to `COMPLETED`.
#
# You can poll for status updates by using the GetBatchPrediction
# operation and checking the `Status` parameter of the result. After the
# `COMPLETED` status appears, the results are available in the location
# specified by the `OutputUri` parameter.
#
# @option params [required, String] :batch_prediction_id
# A user-supplied ID that uniquely identifies the `BatchPrediction`.
#
# @option params [String] :batch_prediction_name
# A user-supplied name or description of the `BatchPrediction`.
# `BatchPredictionName` can only use the UTF-8 character set.
#
# @option params [required, String] :ml_model_id
# The ID of the `MLModel` that will generate predictions for the group
# of observations.
#
# @option params [required, String] :batch_prediction_data_source_id
# The ID of the `DataSource` that points to the group of observations to
# predict.
#
# @option params [required, String] :output_uri
# The location of an Amazon Simple Storage Service (Amazon S3) bucket or
# directory to store the batch prediction results. The following
# substrings are not allowed in the `s3 key` portion of the `outputURI`
# field: ':', '//', '/./', '/../'.
#
# Amazon ML needs permissions to store and retrieve the logs on your
# behalf. For information about how to set permissions, see the [Amazon
# Machine Learning Developer Guide][1].
#
#
#
# [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
#
# @return [Types::CreateBatchPredictionOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::CreateBatchPredictionOutput#batch_prediction_id #batch_prediction_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.create_batch_prediction({
# batch_prediction_id: "EntityId", # required
# batch_prediction_name: "EntityName",
# ml_model_id: "EntityId", # required
# batch_prediction_data_source_id: "EntityId", # required
# output_uri: "S3Url", # required
# })
#
# @example Response structure
#
# resp.batch_prediction_id #=> String
#
# @overload create_batch_prediction(params = {})
# @param [Hash] params ({})
def create_batch_prediction(params = {}, options = {})
req = build_request(:create_batch_prediction, params)
req.send_request(options)
end
# Creates a `DataSource` object from an [ Amazon Relational Database
# Service][1] (Amazon RDS). A `DataSource` references data that can be
# used to perform `CreateMLModel`, `CreateEvaluation`, or
# `CreateBatchPrediction` operations.
#
# `CreateDataSourceFromRDS` is an asynchronous operation. In response to
# `CreateDataSourceFromRDS`, Amazon Machine Learning (Amazon ML)
# immediately returns and sets the `DataSource` status to `PENDING`.
# After the `DataSource` is created and ready for use, Amazon ML sets
# the `Status` parameter to `COMPLETED`. `DataSource` in the `COMPLETED`
# or `PENDING` state can be used only to perform `>CreateMLModel`>,
# `CreateEvaluation`, or `CreateBatchPrediction` operations.
#
# If Amazon ML cannot accept the input source, it sets the `Status`
# parameter to `FAILED` and includes an error message in the `Message`
# attribute of the `GetDataSource` operation response.
#
#
#
# [1]: http://aws.amazon.com/rds/
#
# @option params [required, String] :data_source_id
# A user-supplied ID that uniquely identifies the `DataSource`.
# Typically, an Amazon Resource Number (ARN) becomes the ID for a
# `DataSource`.
#
# @option params [String] :data_source_name
# A user-supplied name or description of the `DataSource`.
#
# @option params [required, Types::RDSDataSpec] :rds_data
# The data specification of an Amazon RDS `DataSource`\:
#
# * DatabaseInformation -
#
# * `DatabaseName` - The name of the Amazon RDS database.
#
# * `InstanceIdentifier ` - A unique identifier for the Amazon RDS
# database instance.
#
# * DatabaseCredentials - AWS Identity and Access Management (IAM)
# credentials that are used to connect to the Amazon RDS database.
#
# * ResourceRole - A role (DataPipelineDefaultResourceRole) assumed by
# an EC2 instance to carry out the copy task from Amazon RDS to Amazon
# Simple Storage Service (Amazon S3). For more information, see [Role
# templates][1] for data pipelines.
#
# * ServiceRole - A role (DataPipelineDefaultRole) assumed by the AWS
# Data Pipeline service to monitor the progress of the copy task from
# Amazon RDS to Amazon S3. For more information, see [Role
# templates][1] for data pipelines.
#
# * SecurityInfo - The security information to use to access an RDS DB
# instance. You need to set up appropriate ingress rules for the
# security entity IDs provided to allow access to the Amazon RDS
# instance. Specify a \[`SubnetId`, `SecurityGroupIds`\] pair for a
# VPC-based RDS DB instance.
#
# * SelectSqlQuery - A query that is used to retrieve the observation
# data for the `Datasource`.
#
# * S3StagingLocation - The Amazon S3 location for staging Amazon RDS
# data. The data retrieved from Amazon RDS using `SelectSqlQuery` is
# stored in this location.
#
# * DataSchemaUri - The Amazon S3 location of the `DataSchema`.
#
# * DataSchema - A JSON string representing the schema. This is not
# required if `DataSchemaUri` is specified.
#
# * DataRearrangement - A JSON string that represents the splitting and
# rearrangement requirements for the `Datasource`.
#
# Sample - `
# "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
#
#
#
# [1]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
#
# @option params [required, String] :role_arn
# The role that Amazon ML assumes on behalf of the user to create and
# activate a data pipeline in the user's account and copy data using
# the `SelectSqlQuery` query from Amazon RDS to Amazon S3.
#
# @option params [Boolean] :compute_statistics
# The compute statistics for a `DataSource`. The statistics are
# generated from the observation data referenced by a `DataSource`.
# Amazon ML uses the statistics internally during `MLModel` training.
# This parameter must be set to `true` if the `DataSource needs to be
# used for MLModel training.
# `
#
# @return [Types::CreateDataSourceFromRDSOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::CreateDataSourceFromRDSOutput#data_source_id #data_source_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.create_data_source_from_rds({
# data_source_id: "EntityId", # required
# data_source_name: "EntityName",
# rds_data: { # required
# database_information: { # required
# instance_identifier: "RDSInstanceIdentifier", # required
# database_name: "RDSDatabaseName", # required
# },
# select_sql_query: "RDSSelectSqlQuery", # required
# database_credentials: { # required
# username: "RDSDatabaseUsername", # required
# password: "RDSDatabasePassword", # required
# },
# s3_staging_location: "S3Url", # required
# data_rearrangement: "DataRearrangement",
# data_schema: "DataSchema",
# data_schema_uri: "S3Url",
# resource_role: "EDPResourceRole", # required
# service_role: "EDPServiceRole", # required
# subnet_id: "EDPSubnetId", # required
# security_group_ids: ["EDPSecurityGroupId"], # required
# },
# role_arn: "RoleARN", # required
# compute_statistics: false,
# })
#
# @example Response structure
#
# resp.data_source_id #=> String
#
# @overload create_data_source_from_rds(params = {})
# @param [Hash] params ({})
def create_data_source_from_rds(params = {}, options = {})
req = build_request(:create_data_source_from_rds, params)
req.send_request(options)
end
# Creates a `DataSource` from a database hosted on an Amazon Redshift
# cluster. A `DataSource` references data that can be used to perform
# either `CreateMLModel`, `CreateEvaluation`, or `CreateBatchPrediction`
# operations.
#
# `CreateDataSourceFromRedshift` is an asynchronous operation. In
# response to `CreateDataSourceFromRedshift`, Amazon Machine Learning
# (Amazon ML) immediately returns and sets the `DataSource` status to
# `PENDING`. After the `DataSource` is created and ready for use, Amazon
# ML sets the `Status` parameter to `COMPLETED`. `DataSource` in
# `COMPLETED` or `PENDING` states can be used to perform only
# `CreateMLModel`, `CreateEvaluation`, or `CreateBatchPrediction`
# operations.
#
# If Amazon ML can't accept the input source, it sets the `Status`
# parameter to `FAILED` and includes an error message in the `Message`
# attribute of the `GetDataSource` operation response.
#
# The observations should be contained in the database hosted on an
# Amazon Redshift cluster and should be specified by a `SelectSqlQuery`
# query. Amazon ML executes an `Unload` command in Amazon Redshift to
# transfer the result set of the `SelectSqlQuery` query to
# `S3StagingLocation`.
#
# After the `DataSource` has been created, it's ready for use in
# evaluations and batch predictions. If you plan to use the `DataSource`
# to train an `MLModel`, the `DataSource` also requires a recipe. A
# recipe describes how each input variable will be used in training an
# `MLModel`. Will the variable be included or excluded from training?
# Will the variable be manipulated; for example, will it be combined
# with another variable or will it be split apart into word
# combinations? The recipe provides answers to these questions.
#
# You can't change an existing datasource, but you can copy and modify
# the settings from an existing Amazon Redshift datasource to create a
# new datasource. To do so, call `GetDataSource` for an existing
# datasource and copy the values to a `CreateDataSource` call. Change
# the settings that you want to change and make sure that all required
# fields have the appropriate values.
#
# @option params [required, String] :data_source_id
# A user-supplied ID that uniquely identifies the `DataSource`.
#
# @option params [String] :data_source_name
# A user-supplied name or description of the `DataSource`.
#
# @option params [required, Types::RedshiftDataSpec] :data_spec
# The data specification of an Amazon Redshift `DataSource`\:
#
# * DatabaseInformation -
#
# * `DatabaseName` - The name of the Amazon Redshift database.
#
# * ` ClusterIdentifier` - The unique ID for the Amazon Redshift
# cluster.
#
# * DatabaseCredentials - The AWS Identity and Access Management (IAM)
# credentials that are used to connect to the Amazon Redshift
# database.
#
# * SelectSqlQuery - The query that is used to retrieve the observation
# data for the `Datasource`.
#
# * S3StagingLocation - The Amazon Simple Storage Service (Amazon S3)
# location for staging Amazon Redshift data. The data retrieved from
# Amazon Redshift using the `SelectSqlQuery` query is stored in this
# location.
#
# * DataSchemaUri - The Amazon S3 location of the `DataSchema`.
#
# * DataSchema - A JSON string representing the schema. This is not
# required if `DataSchemaUri` is specified.
#
# * DataRearrangement - A JSON string that represents the splitting and
# rearrangement requirements for the `DataSource`.
#
# Sample - `
# "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
#
# @option params [required, String] :role_arn
# A fully specified role Amazon Resource Name (ARN). Amazon ML assumes
# the role on behalf of the user to create the following:
#
# * A security group to allow Amazon ML to execute the `SelectSqlQuery`
# query on an Amazon Redshift cluster
#
# * An Amazon S3 bucket policy to grant Amazon ML read/write permissions
# on the `S3StagingLocation`
#
# @option params [Boolean] :compute_statistics
# The compute statistics for a `DataSource`. The statistics are
# generated from the observation data referenced by a `DataSource`.
# Amazon ML uses the statistics internally during `MLModel` training.
# This parameter must be set to `true` if the `DataSource` needs to be
# used for `MLModel` training.
#
# @return [Types::CreateDataSourceFromRedshiftOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::CreateDataSourceFromRedshiftOutput#data_source_id #data_source_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.create_data_source_from_redshift({
# data_source_id: "EntityId", # required
# data_source_name: "EntityName",
# data_spec: { # required
# database_information: { # required
# database_name: "RedshiftDatabaseName", # required
# cluster_identifier: "RedshiftClusterIdentifier", # required
# },
# select_sql_query: "RedshiftSelectSqlQuery", # required
# database_credentials: { # required
# username: "RedshiftDatabaseUsername", # required
# password: "RedshiftDatabasePassword", # required
# },
# s3_staging_location: "S3Url", # required
# data_rearrangement: "DataRearrangement",
# data_schema: "DataSchema",
# data_schema_uri: "S3Url",
# },
# role_arn: "RoleARN", # required
# compute_statistics: false,
# })
#
# @example Response structure
#
# resp.data_source_id #=> String
#
# @overload create_data_source_from_redshift(params = {})
# @param [Hash] params ({})
def create_data_source_from_redshift(params = {}, options = {})
req = build_request(:create_data_source_from_redshift, params)
req.send_request(options)
end
# Creates a `DataSource` object. A `DataSource` references data that can
# be used to perform `CreateMLModel`, `CreateEvaluation`, or
# `CreateBatchPrediction` operations.
#
# `CreateDataSourceFromS3` is an asynchronous operation. In response to
# `CreateDataSourceFromS3`, Amazon Machine Learning (Amazon ML)
# immediately returns and sets the `DataSource` status to `PENDING`.
# After the `DataSource` has been created and is ready for use, Amazon
# ML sets the `Status` parameter to `COMPLETED`. `DataSource` in the
# `COMPLETED` or `PENDING` state can be used to perform only
# `CreateMLModel`, `CreateEvaluation` or `CreateBatchPrediction`
# operations.
#
# If Amazon ML can't accept the input source, it sets the `Status`
# parameter to `FAILED` and includes an error message in the `Message`
# attribute of the `GetDataSource` operation response.
#
# The observation data used in a `DataSource` should be ready to use;
# that is, it should have a consistent structure, and missing data
# values should be kept to a minimum. The observation data must reside
# in one or more .csv files in an Amazon Simple Storage Service (Amazon
# S3) location, along with a schema that describes the data items by
# name and type. The same schema must be used for all of the data files
# referenced by the `DataSource`.
#
# After the `DataSource` has been created, it's ready to use in
# evaluations and batch predictions. If you plan to use the `DataSource`
# to train an `MLModel`, the `DataSource` also needs a recipe. A recipe
# describes how each input variable will be used in training an
# `MLModel`. Will the variable be included or excluded from training?
# Will the variable be manipulated; for example, will it be combined
# with another variable or will it be split apart into word
# combinations? The recipe provides answers to these questions.
#
# @option params [required, String] :data_source_id
# A user-supplied identifier that uniquely identifies the `DataSource`.
#
# @option params [String] :data_source_name
# A user-supplied name or description of the `DataSource`.
#
# @option params [required, Types::S3DataSpec] :data_spec
# The data specification of a `DataSource`\:
#
# * DataLocationS3 - The Amazon S3 location of the observation data.
#
# * DataSchemaLocationS3 - The Amazon S3 location of the `DataSchema`.
#
# * DataSchema - A JSON string representing the schema. This is not
# required if `DataSchemaUri` is specified.
#
# * DataRearrangement - A JSON string that represents the splitting and
# rearrangement requirements for the `Datasource`.
#
# Sample - `
# "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
#
# @option params [Boolean] :compute_statistics
# The compute statistics for a `DataSource`. The statistics are
# generated from the observation data referenced by a `DataSource`.
# Amazon ML uses the statistics internally during `MLModel` training.
# This parameter must be set to `true` if the `DataSource needs to be
# used for MLModel training.
# `
#
# @return [Types::CreateDataSourceFromS3Output] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::CreateDataSourceFromS3Output#data_source_id #data_source_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.create_data_source_from_s3({
# data_source_id: "EntityId", # required
# data_source_name: "EntityName",
# data_spec: { # required
# data_location_s3: "S3Url", # required
# data_rearrangement: "DataRearrangement",
# data_schema: "DataSchema",
# data_schema_location_s3: "S3Url",
# },
# compute_statistics: false,
# })
#
# @example Response structure
#
# resp.data_source_id #=> String
#
# @overload create_data_source_from_s3(params = {})
# @param [Hash] params ({})
def create_data_source_from_s3(params = {}, options = {})
req = build_request(:create_data_source_from_s3, params)
req.send_request(options)
end
# Creates a new `Evaluation` of an `MLModel`. An `MLModel` is evaluated
# on a set of observations associated to a `DataSource`. Like a
# `DataSource` for an `MLModel`, the `DataSource` for an `Evaluation`
# contains values for the `Target Variable`. The `Evaluation` compares
# the predicted result for each observation to the actual outcome and
# provides a summary so that you know how effective the `MLModel`
# functions on the test data. Evaluation generates a relevant
# performance metric, such as BinaryAUC, RegressionRMSE or
# MulticlassAvgFScore based on the corresponding `MLModelType`\:
# `BINARY`, `REGRESSION` or `MULTICLASS`.
#
# `CreateEvaluation` is an asynchronous operation. In response to
# `CreateEvaluation`, Amazon Machine Learning (Amazon ML) immediately
# returns and sets the evaluation status to `PENDING`. After the
# `Evaluation` is created and ready for use, Amazon ML sets the status
# to `COMPLETED`.
#
# You can use the `GetEvaluation` operation to check progress of the
# evaluation during the creation operation.
#
# @option params [required, String] :evaluation_id
# A user-supplied ID that uniquely identifies the `Evaluation`.
#
# @option params [String] :evaluation_name
# A user-supplied name or description of the `Evaluation`.
#
# @option params [required, String] :ml_model_id
# The ID of the `MLModel` to evaluate.
#
# The schema used in creating the `MLModel` must match the schema of the
# `DataSource` used in the `Evaluation`.
#
# @option params [required, String] :evaluation_data_source_id
# The ID of the `DataSource` for the evaluation. The schema of the
# `DataSource` must match the schema used to create the `MLModel`.
#
# @return [Types::CreateEvaluationOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::CreateEvaluationOutput#evaluation_id #evaluation_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.create_evaluation({
# evaluation_id: "EntityId", # required
# evaluation_name: "EntityName",
# ml_model_id: "EntityId", # required
# evaluation_data_source_id: "EntityId", # required
# })
#
# @example Response structure
#
# resp.evaluation_id #=> String
#
# @overload create_evaluation(params = {})
# @param [Hash] params ({})
def create_evaluation(params = {}, options = {})
req = build_request(:create_evaluation, params)
req.send_request(options)
end
# Creates a new `MLModel` using the `DataSource` and the recipe as
# information sources.
#
# An `MLModel` is nearly immutable. Users can update only the
# `MLModelName` and the `ScoreThreshold` in an `MLModel` without
# creating a new `MLModel`.
#
# `CreateMLModel` is an asynchronous operation. In response to
# `CreateMLModel`, Amazon Machine Learning (Amazon ML) immediately
# returns and sets the `MLModel` status to `PENDING`. After the
# `MLModel` has been created and ready is for use, Amazon ML sets the
# status to `COMPLETED`.
#
# You can use the `GetMLModel` operation to check the progress of the
# `MLModel` during the creation operation.
#
# `CreateMLModel` requires a `DataSource` with computed statistics,
# which can be created by setting `ComputeStatistics` to `true` in
# `CreateDataSourceFromRDS`, `CreateDataSourceFromS3`, or
# `CreateDataSourceFromRedshift` operations.
#
# @option params [required, String] :ml_model_id
# A user-supplied ID that uniquely identifies the `MLModel`.
#
# @option params [String] :ml_model_name
# A user-supplied name or description of the `MLModel`.
#
# @option params [required, String] :ml_model_type
# The category of supervised learning that this `MLModel` will address.
# Choose from the following types:
#
# * Choose `REGRESSION` if the `MLModel` will be used to predict a
# numeric value.
#
# * Choose `BINARY` if the `MLModel` result has two possible values.
#
# * Choose `MULTICLASS` if the `MLModel` result has a limited number of
# values.
#
# For more information, see the [Amazon Machine Learning Developer
# Guide][1].
#
#
#
# [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
#
# @option params [Hash] :parameters
# A list of the training parameters in the `MLModel`. The list is
# implemented as a map of key-value pairs.
#
# The following is the current set of training parameters:
#
# * `sgd.maxMLModelSizeInBytes` - The maximum allowed size of the model.
# Depending on the input data, the size of the model might affect its
# performance.
#
# The value is an integer that ranges from `100000` to `2147483648`.
# The default value is `33554432`.
#
# * `sgd.maxPasses` - The number of times that the training process
# traverses the observations to build the `MLModel`. The value is an
# integer that ranges from `1` to `10000`. The default value is `10`.
#
# * `sgd.shuffleType` - Whether Amazon ML shuffles the training data.
# Shuffling the data improves a model's ability to find the optimal
# solution for a variety of data types. The valid values are `auto`
# and `none`. The default value is `none`. We strongly recommend that
# you shuffle your data.
#
# * `sgd.l1RegularizationAmount` - The coefficient regularization L1
# norm. It controls overfitting the data by penalizing large
# coefficients. This tends to drive coefficients to zero, resulting in
# a sparse feature set. If you use this parameter, start by specifying
# a small value, such as `1.0E-08`.
#
# The value is a double that ranges from `0` to `MAX_DOUBLE`. The
# default is to not use L1 normalization. This parameter can't be
# used when `L2` is specified. Use this parameter sparingly.
#
# * `sgd.l2RegularizationAmount` - The coefficient regularization L2
# norm. It controls overfitting the data by penalizing large
# coefficients. This tends to drive coefficients to small, nonzero
# values. If you use this parameter, start by specifying a small
# value, such as `1.0E-08`.
#
# The value is a double that ranges from `0` to `MAX_DOUBLE`. The
# default is to not use L2 normalization. This parameter can't be
# used when `L1` is specified. Use this parameter sparingly.
#
# @option params [required, String] :training_data_source_id
# The `DataSource` that points to the training data.
#
# @option params [String] :recipe
# The data recipe for creating the `MLModel`. You must specify either
# the recipe or its URI. If you don't specify a recipe or its URI,
# Amazon ML creates a default.
#
# @option params [String] :recipe_uri
# The Amazon Simple Storage Service (Amazon S3) location and file name
# that contains the `MLModel` recipe. You must specify either the recipe
# or its URI. If you don't specify a recipe or its URI, Amazon ML
# creates a default.
#
# @return [Types::CreateMLModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::CreateMLModelOutput#ml_model_id #ml_model_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.create_ml_model({
# ml_model_id: "EntityId", # required
# ml_model_name: "EntityName",
# ml_model_type: "REGRESSION", # required, accepts REGRESSION, BINARY, MULTICLASS
# parameters: {
# "StringType" => "StringType",
# },
# training_data_source_id: "EntityId", # required
# recipe: "Recipe",
# recipe_uri: "S3Url",
# })
#
# @example Response structure
#
# resp.ml_model_id #=> String
#
# @overload create_ml_model(params = {})
# @param [Hash] params ({})
def create_ml_model(params = {}, options = {})
req = build_request(:create_ml_model, params)
req.send_request(options)
end
# Creates a real-time endpoint for the `MLModel`. The endpoint contains
# the URI of the `MLModel`; that is, the location to send real-time
# prediction requests for the specified `MLModel`.
#
# @option params [required, String] :ml_model_id
# The ID assigned to the `MLModel` during creation.
#
# @return [Types::CreateRealtimeEndpointOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::CreateRealtimeEndpointOutput#ml_model_id #ml_model_id} => String
# * {Types::CreateRealtimeEndpointOutput#realtime_endpoint_info #realtime_endpoint_info} => Types::RealtimeEndpointInfo
#
# @example Request syntax with placeholder values
#
# resp = client.create_realtime_endpoint({
# ml_model_id: "EntityId", # required
# })
#
# @example Response structure
#
# resp.ml_model_id #=> String
# resp.realtime_endpoint_info.peak_requests_per_second #=> Integer
# resp.realtime_endpoint_info.created_at #=> Time
# resp.realtime_endpoint_info.endpoint_url #=> String
# resp.realtime_endpoint_info.endpoint_status #=> String, one of "NONE", "READY", "UPDATING", "FAILED"
#
# @overload create_realtime_endpoint(params = {})
# @param [Hash] params ({})
def create_realtime_endpoint(params = {}, options = {})
req = build_request(:create_realtime_endpoint, params)
req.send_request(options)
end
# Assigns the DELETED status to a `BatchPrediction`, rendering it
# unusable.
#
# After using the `DeleteBatchPrediction` operation, you can use the
# GetBatchPrediction operation to verify that the status of the
# `BatchPrediction` changed to DELETED.
#
# **Caution:** The result of the `DeleteBatchPrediction` operation is
# irreversible.
#
# @option params [required, String] :batch_prediction_id
# A user-supplied ID that uniquely identifies the `BatchPrediction`.
#
# @return [Types::DeleteBatchPredictionOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DeleteBatchPredictionOutput#batch_prediction_id #batch_prediction_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.delete_batch_prediction({
# batch_prediction_id: "EntityId", # required
# })
#
# @example Response structure
#
# resp.batch_prediction_id #=> String
#
# @overload delete_batch_prediction(params = {})
# @param [Hash] params ({})
def delete_batch_prediction(params = {}, options = {})
req = build_request(:delete_batch_prediction, params)
req.send_request(options)
end
# Assigns the DELETED status to a `DataSource`, rendering it unusable.
#
# After using the `DeleteDataSource` operation, you can use the
# GetDataSource operation to verify that the status of the `DataSource`
# changed to DELETED.
#
# **Caution:** The results of the `DeleteDataSource` operation are
# irreversible.
#
# @option params [required, String] :data_source_id
# A user-supplied ID that uniquely identifies the `DataSource`.
#
# @return [Types::DeleteDataSourceOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DeleteDataSourceOutput#data_source_id #data_source_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.delete_data_source({
# data_source_id: "EntityId", # required
# })
#
# @example Response structure
#
# resp.data_source_id #=> String
#
# @overload delete_data_source(params = {})
# @param [Hash] params ({})
def delete_data_source(params = {}, options = {})
req = build_request(:delete_data_source, params)
req.send_request(options)
end
# Assigns the `DELETED` status to an `Evaluation`, rendering it
# unusable.
#
# After invoking the `DeleteEvaluation` operation, you can use the
# `GetEvaluation` operation to verify that the status of the
# `Evaluation` changed to `DELETED`.
#
# **Caution:** The results of the `DeleteEvaluation` operation are
# irreversible.
#
# @option params [required, String] :evaluation_id
# A user-supplied ID that uniquely identifies the `Evaluation` to
# delete.
#
# @return [Types::DeleteEvaluationOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DeleteEvaluationOutput#evaluation_id #evaluation_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.delete_evaluation({
# evaluation_id: "EntityId", # required
# })
#
# @example Response structure
#
# resp.evaluation_id #=> String
#
# @overload delete_evaluation(params = {})
# @param [Hash] params ({})
def delete_evaluation(params = {}, options = {})
req = build_request(:delete_evaluation, params)
req.send_request(options)
end
# Assigns the `DELETED` status to an `MLModel`, rendering it unusable.
#
# After using the `DeleteMLModel` operation, you can use the
# `GetMLModel` operation to verify that the status of the `MLModel`
# changed to DELETED.
#
# **Caution:** The result of the `DeleteMLModel` operation is
# irreversible.
#
# @option params [required, String] :ml_model_id
# A user-supplied ID that uniquely identifies the `MLModel`.
#
# @return [Types::DeleteMLModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DeleteMLModelOutput#ml_model_id #ml_model_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.delete_ml_model({
# ml_model_id: "EntityId", # required
# })
#
# @example Response structure
#
# resp.ml_model_id #=> String
#
# @overload delete_ml_model(params = {})
# @param [Hash] params ({})
def delete_ml_model(params = {}, options = {})
req = build_request(:delete_ml_model, params)
req.send_request(options)
end
# Deletes a real time endpoint of an `MLModel`.
#
# @option params [required, String] :ml_model_id
# The ID assigned to the `MLModel` during creation.
#
# @return [Types::DeleteRealtimeEndpointOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DeleteRealtimeEndpointOutput#ml_model_id #ml_model_id} => String
# * {Types::DeleteRealtimeEndpointOutput#realtime_endpoint_info #realtime_endpoint_info} => Types::RealtimeEndpointInfo
#
# @example Request syntax with placeholder values
#
# resp = client.delete_realtime_endpoint({
# ml_model_id: "EntityId", # required
# })
#
# @example Response structure
#
# resp.ml_model_id #=> String
# resp.realtime_endpoint_info.peak_requests_per_second #=> Integer
# resp.realtime_endpoint_info.created_at #=> Time
# resp.realtime_endpoint_info.endpoint_url #=> String
# resp.realtime_endpoint_info.endpoint_status #=> String, one of "NONE", "READY", "UPDATING", "FAILED"
#
# @overload delete_realtime_endpoint(params = {})
# @param [Hash] params ({})
def delete_realtime_endpoint(params = {}, options = {})
req = build_request(:delete_realtime_endpoint, params)
req.send_request(options)
end
# Deletes the specified tags associated with an ML object. After this
# operation is complete, you can't recover deleted tags.
#
# If you specify a tag that doesn't exist, Amazon ML ignores it.
#
# @option params [required, Array] :tag_keys
# One or more tags to delete.
#
# @option params [required, String] :resource_id
# The ID of the tagged ML object. For example, `exampleModelId`.
#
# @option params [required, String] :resource_type
# The type of the tagged ML object.
#
# @return [Types::DeleteTagsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DeleteTagsOutput#resource_id #resource_id} => String
# * {Types::DeleteTagsOutput#resource_type #resource_type} => String
#
# @example Request syntax with placeholder values
#
# resp = client.delete_tags({
# tag_keys: ["TagKey"], # required
# resource_id: "EntityId", # required
# resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
# })
#
# @example Response structure
#
# resp.resource_id #=> String
# resp.resource_type #=> String, one of "BatchPrediction", "DataSource", "Evaluation", "MLModel"
#
# @overload delete_tags(params = {})
# @param [Hash] params ({})
def delete_tags(params = {}, options = {})
req = build_request(:delete_tags, params)
req.send_request(options)
end
# Returns a list of `BatchPrediction` operations that match the search
# criteria in the request.
#
# @option params [String] :filter_variable
# Use one of the following variables to filter a list of
# `BatchPrediction`\:
#
# * `CreatedAt` - Sets the search criteria to the `BatchPrediction`
# creation date.
#
# * `Status` - Sets the search criteria to the `BatchPrediction` status.
#
# * `Name` - Sets the search criteria to the contents of the
# `BatchPrediction` `Name`.
#
# * `IAMUser` - Sets the search criteria to the user account that
# invoked the `BatchPrediction` creation.
#
# * `MLModelId` - Sets the search criteria to the `MLModel` used in the
# `BatchPrediction`.
#
# * `DataSourceId` - Sets the search criteria to the `DataSource` used
# in the `BatchPrediction`.
#
# * `DataURI` - Sets the search criteria to the data file(s) used in the
# `BatchPrediction`. The URL can identify either a file or an Amazon
# Simple Storage Solution (Amazon S3) bucket or directory.
#
# @option params [String] :eq
# The equal to operator. The `BatchPrediction` results will have
# `FilterVariable` values that exactly match the value specified with
# `EQ`.
#
# @option params [String] :gt
# The greater than operator. The `BatchPrediction` results will have
# `FilterVariable` values that are greater than the value specified with
# `GT`.
#
# @option params [String] :lt
# The less than operator. The `BatchPrediction` results will have
# `FilterVariable` values that are less than the value specified with
# `LT`.
#
# @option params [String] :ge
# The greater than or equal to operator. The `BatchPrediction` results
# will have `FilterVariable` values that are greater than or equal to
# the value specified with `GE`.
#
# @option params [String] :le
# The less than or equal to operator. The `BatchPrediction` results will
# have `FilterVariable` values that are less than or equal to the value
# specified with `LE`.
#
# @option params [String] :ne
# The not equal to operator. The `BatchPrediction` results will have
# `FilterVariable` values not equal to the value specified with `NE`.
#
# @option params [String] :prefix
# A string that is found at the beginning of a variable, such as `Name`
# or `Id`.
#
# For example, a `Batch Prediction` operation could have the `Name`
# `2014-09-09-HolidayGiftMailer`. To search for this `BatchPrediction`,
# select `Name` for the `FilterVariable` and any of the following
# strings for the `Prefix`\:
#
# * 2014-09
#
# * 2014-09-09
#
# * 2014-09-09-Holiday
#
# @option params [String] :sort_order
# A two-value parameter that determines the sequence of the resulting
# list of `MLModel`s.
#
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
#
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
#
# Results are sorted by `FilterVariable`.
#
# @option params [String] :next_token
# An ID of the page in the paginated results.
#
# @option params [Integer] :limit
# The number of pages of information to include in the result. The range
# of acceptable values is `1` through `100`. The default value is `100`.
#
# @return [Types::DescribeBatchPredictionsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DescribeBatchPredictionsOutput#results #results} => Array<Types::BatchPrediction>
# * {Types::DescribeBatchPredictionsOutput#next_token #next_token} => String
#
# The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
#
# @example Request syntax with placeholder values
#
# resp = client.describe_batch_predictions({
# filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI
# eq: "ComparatorValue",
# gt: "ComparatorValue",
# lt: "ComparatorValue",
# ge: "ComparatorValue",
# le: "ComparatorValue",
# ne: "ComparatorValue",
# prefix: "ComparatorValue",
# sort_order: "asc", # accepts asc, dsc
# next_token: "StringType",
# limit: 1,
# })
#
# @example Response structure
#
# resp.results #=> Array
# resp.results[0].batch_prediction_id #=> String
# resp.results[0].ml_model_id #=> String
# resp.results[0].batch_prediction_data_source_id #=> String
# resp.results[0].input_data_location_s3 #=> String
# resp.results[0].created_by_iam_user #=> String
# resp.results[0].created_at #=> Time
# resp.results[0].last_updated_at #=> Time
# resp.results[0].name #=> String
# resp.results[0].status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
# resp.results[0].output_uri #=> String
# resp.results[0].message #=> String
# resp.results[0].compute_time #=> Integer
# resp.results[0].finished_at #=> Time
# resp.results[0].started_at #=> Time
# resp.results[0].total_record_count #=> Integer
# resp.results[0].invalid_record_count #=> Integer
# resp.next_token #=> String
#
#
# The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
#
# * batch_prediction_available
#
# @overload describe_batch_predictions(params = {})
# @param [Hash] params ({})
def describe_batch_predictions(params = {}, options = {})
req = build_request(:describe_batch_predictions, params)
req.send_request(options)
end
# Returns a list of `DataSource` that match the search criteria in the
# request.
#
# @option params [String] :filter_variable
# Use one of the following variables to filter a list of `DataSource`\:
#
# * `CreatedAt` - Sets the search criteria to `DataSource` creation
# dates.
#
# * `Status` - Sets the search criteria to `DataSource` statuses.
#
# * `Name` - Sets the search criteria to the contents of `DataSource`
# `Name`.
#
# * `DataUri` - Sets the search criteria to the URI of data files used
# to create the `DataSource`. The URI can identify either a file or an
# Amazon Simple Storage Service (Amazon S3) bucket or directory.
#
# * `IAMUser` - Sets the search criteria to the user account that
# invoked the `DataSource` creation.
#
# @option params [String] :eq
# The equal to operator. The `DataSource` results will have
# `FilterVariable` values that exactly match the value specified with
# `EQ`.
#
# @option params [String] :gt
# The greater than operator. The `DataSource` results will have
# `FilterVariable` values that are greater than the value specified with
# `GT`.
#
# @option params [String] :lt
# The less than operator. The `DataSource` results will have
# `FilterVariable` values that are less than the value specified with
# `LT`.
#
# @option params [String] :ge
# The greater than or equal to operator. The `DataSource` results will
# have `FilterVariable` values that are greater than or equal to the
# value specified with `GE`.
#
# @option params [String] :le
# The less than or equal to operator. The `DataSource` results will have
# `FilterVariable` values that are less than or equal to the value
# specified with `LE`.
#
# @option params [String] :ne
# The not equal to operator. The `DataSource` results will have
# `FilterVariable` values not equal to the value specified with `NE`.
#
# @option params [String] :prefix
# A string that is found at the beginning of a variable, such as `Name`
# or `Id`.
#
# For example, a `DataSource` could have the `Name`
# `2014-09-09-HolidayGiftMailer`. To search for this `DataSource`,
# select `Name` for the `FilterVariable` and any of the following
# strings for the `Prefix`\:
#
# * 2014-09
#
# * 2014-09-09
#
# * 2014-09-09-Holiday
#
# @option params [String] :sort_order
# A two-value parameter that determines the sequence of the resulting
# list of `DataSource`.
#
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
#
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
#
# Results are sorted by `FilterVariable`.
#
# @option params [String] :next_token
# The ID of the page in the paginated results.
#
# @option params [Integer] :limit
# The maximum number of `DataSource` to include in the result.
#
# @return [Types::DescribeDataSourcesOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DescribeDataSourcesOutput#results #results} => Array<Types::DataSource>
# * {Types::DescribeDataSourcesOutput#next_token #next_token} => String
#
# The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
#
# @example Request syntax with placeholder values
#
# resp = client.describe_data_sources({
# filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, DataLocationS3, IAMUser
# eq: "ComparatorValue",
# gt: "ComparatorValue",
# lt: "ComparatorValue",
# ge: "ComparatorValue",
# le: "ComparatorValue",
# ne: "ComparatorValue",
# prefix: "ComparatorValue",
# sort_order: "asc", # accepts asc, dsc
# next_token: "StringType",
# limit: 1,
# })
#
# @example Response structure
#
# resp.results #=> Array
# resp.results[0].data_source_id #=> String
# resp.results[0].data_location_s3 #=> String
# resp.results[0].data_rearrangement #=> String
# resp.results[0].created_by_iam_user #=> String
# resp.results[0].created_at #=> Time
# resp.results[0].last_updated_at #=> Time
# resp.results[0].data_size_in_bytes #=> Integer
# resp.results[0].number_of_files #=> Integer
# resp.results[0].name #=> String
# resp.results[0].status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
# resp.results[0].message #=> String
# resp.results[0].redshift_metadata.redshift_database.database_name #=> String
# resp.results[0].redshift_metadata.redshift_database.cluster_identifier #=> String
# resp.results[0].redshift_metadata.database_user_name #=> String
# resp.results[0].redshift_metadata.select_sql_query #=> String
# resp.results[0].rds_metadata.database.instance_identifier #=> String
# resp.results[0].rds_metadata.database.database_name #=> String
# resp.results[0].rds_metadata.database_user_name #=> String
# resp.results[0].rds_metadata.select_sql_query #=> String
# resp.results[0].rds_metadata.resource_role #=> String
# resp.results[0].rds_metadata.service_role #=> String
# resp.results[0].rds_metadata.data_pipeline_id #=> String
# resp.results[0].role_arn #=> String
# resp.results[0].compute_statistics #=> Boolean
# resp.results[0].compute_time #=> Integer
# resp.results[0].finished_at #=> Time
# resp.results[0].started_at #=> Time
# resp.next_token #=> String
#
#
# The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
#
# * data_source_available
#
# @overload describe_data_sources(params = {})
# @param [Hash] params ({})
def describe_data_sources(params = {}, options = {})
req = build_request(:describe_data_sources, params)
req.send_request(options)
end
# Returns a list of `DescribeEvaluations` that match the search criteria
# in the request.
#
# @option params [String] :filter_variable
# Use one of the following variable to filter a list of `Evaluation`
# objects:
#
# * `CreatedAt` - Sets the search criteria to the `Evaluation` creation
# date.
#
# * `Status` - Sets the search criteria to the `Evaluation` status.
#
# * `Name` - Sets the search criteria to the contents of `Evaluation`
# `Name`.
#
# * `IAMUser` - Sets the search criteria to the user account that
# invoked an `Evaluation`.
#
# * `MLModelId` - Sets the search criteria to the `MLModel` that was
# evaluated.
#
# * `DataSourceId` - Sets the search criteria to the `DataSource` used
# in `Evaluation`.
#
# * `DataUri` - Sets the search criteria to the data file(s) used in
# `Evaluation`. The URL can identify either a file or an Amazon Simple
# Storage Solution (Amazon S3) bucket or directory.
#
# @option params [String] :eq
# The equal to operator. The `Evaluation` results will have
# `FilterVariable` values that exactly match the value specified with
# `EQ`.
#
# @option params [String] :gt
# The greater than operator. The `Evaluation` results will have
# `FilterVariable` values that are greater than the value specified with
# `GT`.
#
# @option params [String] :lt
# The less than operator. The `Evaluation` results will have
# `FilterVariable` values that are less than the value specified with
# `LT`.
#
# @option params [String] :ge
# The greater than or equal to operator. The `Evaluation` results will
# have `FilterVariable` values that are greater than or equal to the
# value specified with `GE`.
#
# @option params [String] :le
# The less than or equal to operator. The `Evaluation` results will have
# `FilterVariable` values that are less than or equal to the value
# specified with `LE`.
#
# @option params [String] :ne
# The not equal to operator. The `Evaluation` results will have
# `FilterVariable` values not equal to the value specified with `NE`.
#
# @option params [String] :prefix
# A string that is found at the beginning of a variable, such as `Name`
# or `Id`.
#
# For example, an `Evaluation` could have the `Name`
# `2014-09-09-HolidayGiftMailer`. To search for this `Evaluation`,
# select `Name` for the `FilterVariable` and any of the following
# strings for the `Prefix`\:
#
# * 2014-09
#
# * 2014-09-09
#
# * 2014-09-09-Holiday
#
# @option params [String] :sort_order
# A two-value parameter that determines the sequence of the resulting
# list of `Evaluation`.
#
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
#
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
#
# Results are sorted by `FilterVariable`.
#
# @option params [String] :next_token
# The ID of the page in the paginated results.
#
# @option params [Integer] :limit
# The maximum number of `Evaluation` to include in the result.
#
# @return [Types::DescribeEvaluationsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DescribeEvaluationsOutput#results #results} => Array<Types::Evaluation>
# * {Types::DescribeEvaluationsOutput#next_token #next_token} => String
#
# The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
#
# @example Request syntax with placeholder values
#
# resp = client.describe_evaluations({
# filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI
# eq: "ComparatorValue",
# gt: "ComparatorValue",
# lt: "ComparatorValue",
# ge: "ComparatorValue",
# le: "ComparatorValue",
# ne: "ComparatorValue",
# prefix: "ComparatorValue",
# sort_order: "asc", # accepts asc, dsc
# next_token: "StringType",
# limit: 1,
# })
#
# @example Response structure
#
# resp.results #=> Array
# resp.results[0].evaluation_id #=> String
# resp.results[0].ml_model_id #=> String
# resp.results[0].evaluation_data_source_id #=> String
# resp.results[0].input_data_location_s3 #=> String
# resp.results[0].created_by_iam_user #=> String
# resp.results[0].created_at #=> Time
# resp.results[0].last_updated_at #=> Time
# resp.results[0].name #=> String
# resp.results[0].status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
# resp.results[0].performance_metrics.properties #=> Hash
# resp.results[0].performance_metrics.properties["PerformanceMetricsPropertyKey"] #=> String
# resp.results[0].message #=> String
# resp.results[0].compute_time #=> Integer
# resp.results[0].finished_at #=> Time
# resp.results[0].started_at #=> Time
# resp.next_token #=> String
#
#
# The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
#
# * evaluation_available
#
# @overload describe_evaluations(params = {})
# @param [Hash] params ({})
def describe_evaluations(params = {}, options = {})
req = build_request(:describe_evaluations, params)
req.send_request(options)
end
# Returns a list of `MLModel` that match the search criteria in the
# request.
#
# @option params [String] :filter_variable
# Use one of the following variables to filter a list of `MLModel`\:
#
# * `CreatedAt` - Sets the search criteria to `MLModel` creation date.
#
# * `Status` - Sets the search criteria to `MLModel` status.
#
# * `Name` - Sets the search criteria to the contents of `MLModel`
# `Name`.
#
# * `IAMUser` - Sets the search criteria to the user account that
# invoked the `MLModel` creation.
#
# * `TrainingDataSourceId` - Sets the search criteria to the
# `DataSource` used to train one or more `MLModel`.
#
# * `RealtimeEndpointStatus` - Sets the search criteria to the `MLModel`
# real-time endpoint status.
#
# * `MLModelType` - Sets the search criteria to `MLModel` type: binary,
# regression, or multi-class.
#
# * `Algorithm` - Sets the search criteria to the algorithm that the
# `MLModel` uses.
#
# * `TrainingDataURI` - Sets the search criteria to the data file(s)
# used in training a `MLModel`. The URL can identify either a file or
# an Amazon Simple Storage Service (Amazon S3) bucket or directory.
#
# @option params [String] :eq
# The equal to operator. The `MLModel` results will have
# `FilterVariable` values that exactly match the value specified with
# `EQ`.
#
# @option params [String] :gt
# The greater than operator. The `MLModel` results will have
# `FilterVariable` values that are greater than the value specified with
# `GT`.
#
# @option params [String] :lt
# The less than operator. The `MLModel` results will have
# `FilterVariable` values that are less than the value specified with
# `LT`.
#
# @option params [String] :ge
# The greater than or equal to operator. The `MLModel` results will have
# `FilterVariable` values that are greater than or equal to the value
# specified with `GE`.
#
# @option params [String] :le
# The less than or equal to operator. The `MLModel` results will have
# `FilterVariable` values that are less than or equal to the value
# specified with `LE`.
#
# @option params [String] :ne
# The not equal to operator. The `MLModel` results will have
# `FilterVariable` values not equal to the value specified with `NE`.
#
# @option params [String] :prefix
# A string that is found at the beginning of a variable, such as `Name`
# or `Id`.
#
# For example, an `MLModel` could have the `Name`
# `2014-09-09-HolidayGiftMailer`. To search for this `MLModel`, select
# `Name` for the `FilterVariable` and any of the following strings for
# the `Prefix`\:
#
# * 2014-09
#
# * 2014-09-09
#
# * 2014-09-09-Holiday
#
# @option params [String] :sort_order
# A two-value parameter that determines the sequence of the resulting
# list of `MLModel`.
#
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
#
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
#
# Results are sorted by `FilterVariable`.
#
# @option params [String] :next_token
# The ID of the page in the paginated results.
#
# @option params [Integer] :limit
# The number of pages of information to include in the result. The range
# of acceptable values is `1` through `100`. The default value is `100`.
#
# @return [Types::DescribeMLModelsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DescribeMLModelsOutput#results #results} => Array<Types::MLModel>
# * {Types::DescribeMLModelsOutput#next_token #next_token} => String
#
# The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
#
# @example Request syntax with placeholder values
#
# resp = client.describe_ml_models({
# filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, TrainingDataSourceId, RealtimeEndpointStatus, MLModelType, Algorithm, TrainingDataURI
# eq: "ComparatorValue",
# gt: "ComparatorValue",
# lt: "ComparatorValue",
# ge: "ComparatorValue",
# le: "ComparatorValue",
# ne: "ComparatorValue",
# prefix: "ComparatorValue",
# sort_order: "asc", # accepts asc, dsc
# next_token: "StringType",
# limit: 1,
# })
#
# @example Response structure
#
# resp.results #=> Array
# resp.results[0].ml_model_id #=> String
# resp.results[0].training_data_source_id #=> String
# resp.results[0].created_by_iam_user #=> String
# resp.results[0].created_at #=> Time
# resp.results[0].last_updated_at #=> Time
# resp.results[0].name #=> String
# resp.results[0].status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
# resp.results[0].size_in_bytes #=> Integer
# resp.results[0].endpoint_info.peak_requests_per_second #=> Integer
# resp.results[0].endpoint_info.created_at #=> Time
# resp.results[0].endpoint_info.endpoint_url #=> String
# resp.results[0].endpoint_info.endpoint_status #=> String, one of "NONE", "READY", "UPDATING", "FAILED"
# resp.results[0].training_parameters #=> Hash
# resp.results[0].training_parameters["StringType"] #=> String
# resp.results[0].input_data_location_s3 #=> String
# resp.results[0].algorithm #=> String, one of "sgd"
# resp.results[0].ml_model_type #=> String, one of "REGRESSION", "BINARY", "MULTICLASS"
# resp.results[0].score_threshold #=> Float
# resp.results[0].score_threshold_last_updated_at #=> Time
# resp.results[0].message #=> String
# resp.results[0].compute_time #=> Integer
# resp.results[0].finished_at #=> Time
# resp.results[0].started_at #=> Time
# resp.next_token #=> String
#
#
# The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
#
# * ml_model_available
#
# @overload describe_ml_models(params = {})
# @param [Hash] params ({})
def describe_ml_models(params = {}, options = {})
req = build_request(:describe_ml_models, params)
req.send_request(options)
end
# Describes one or more of the tags for your Amazon ML object.
#
# @option params [required, String] :resource_id
# The ID of the ML object. For example, `exampleModelId`.
#
# @option params [required, String] :resource_type
# The type of the ML object.
#
# @return [Types::DescribeTagsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DescribeTagsOutput#resource_id #resource_id} => String
# * {Types::DescribeTagsOutput#resource_type #resource_type} => String
# * {Types::DescribeTagsOutput#tags #tags} => Array<Types::Tag>
#
# @example Request syntax with placeholder values
#
# resp = client.describe_tags({
# resource_id: "EntityId", # required
# resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
# })
#
# @example Response structure
#
# resp.resource_id #=> String
# resp.resource_type #=> String, one of "BatchPrediction", "DataSource", "Evaluation", "MLModel"
# resp.tags #=> Array
# resp.tags[0].key #=> String
# resp.tags[0].value #=> String
#
# @overload describe_tags(params = {})
# @param [Hash] params ({})
def describe_tags(params = {}, options = {})
req = build_request(:describe_tags, params)
req.send_request(options)
end
# Returns a `BatchPrediction` that includes detailed metadata, status,
# and data file information for a `Batch Prediction` request.
#
# @option params [required, String] :batch_prediction_id
# An ID assigned to the `BatchPrediction` at creation.
#
# @return [Types::GetBatchPredictionOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::GetBatchPredictionOutput#batch_prediction_id #batch_prediction_id} => String
# * {Types::GetBatchPredictionOutput#ml_model_id #ml_model_id} => String
# * {Types::GetBatchPredictionOutput#batch_prediction_data_source_id #batch_prediction_data_source_id} => String
# * {Types::GetBatchPredictionOutput#input_data_location_s3 #input_data_location_s3} => String
# * {Types::GetBatchPredictionOutput#created_by_iam_user #created_by_iam_user} => String
# * {Types::GetBatchPredictionOutput#created_at #created_at} => Time
# * {Types::GetBatchPredictionOutput#last_updated_at #last_updated_at} => Time
# * {Types::GetBatchPredictionOutput#name #name} => String
# * {Types::GetBatchPredictionOutput#status #status} => String
# * {Types::GetBatchPredictionOutput#output_uri #output_uri} => String
# * {Types::GetBatchPredictionOutput#log_uri #log_uri} => String
# * {Types::GetBatchPredictionOutput#message #message} => String
# * {Types::GetBatchPredictionOutput#compute_time #compute_time} => Integer
# * {Types::GetBatchPredictionOutput#finished_at #finished_at} => Time
# * {Types::GetBatchPredictionOutput#started_at #started_at} => Time
# * {Types::GetBatchPredictionOutput#total_record_count #total_record_count} => Integer
# * {Types::GetBatchPredictionOutput#invalid_record_count #invalid_record_count} => Integer
#
# @example Request syntax with placeholder values
#
# resp = client.get_batch_prediction({
# batch_prediction_id: "EntityId", # required
# })
#
# @example Response structure
#
# resp.batch_prediction_id #=> String
# resp.ml_model_id #=> String
# resp.batch_prediction_data_source_id #=> String
# resp.input_data_location_s3 #=> String
# resp.created_by_iam_user #=> String
# resp.created_at #=> Time
# resp.last_updated_at #=> Time
# resp.name #=> String
# resp.status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
# resp.output_uri #=> String
# resp.log_uri #=> String
# resp.message #=> String
# resp.compute_time #=> Integer
# resp.finished_at #=> Time
# resp.started_at #=> Time
# resp.total_record_count #=> Integer
# resp.invalid_record_count #=> Integer
#
# @overload get_batch_prediction(params = {})
# @param [Hash] params ({})
def get_batch_prediction(params = {}, options = {})
req = build_request(:get_batch_prediction, params)
req.send_request(options)
end
# Returns a `DataSource` that includes metadata and data file
# information, as well as the current status of the `DataSource`.
#
# `GetDataSource` provides results in normal or verbose format. The
# verbose format adds the schema description and the list of files
# pointed to by the DataSource to the normal format.
#
# @option params [required, String] :data_source_id
# The ID assigned to the `DataSource` at creation.
#
# @option params [Boolean] :verbose
# Specifies whether the `GetDataSource` operation should return
# `DataSourceSchema`.
#
# If true, `DataSourceSchema` is returned.
#
# If false, `DataSourceSchema` is not returned.
#
# @return [Types::GetDataSourceOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::GetDataSourceOutput#data_source_id #data_source_id} => String
# * {Types::GetDataSourceOutput#data_location_s3 #data_location_s3} => String
# * {Types::GetDataSourceOutput#data_rearrangement #data_rearrangement} => String
# * {Types::GetDataSourceOutput#created_by_iam_user #created_by_iam_user} => String
# * {Types::GetDataSourceOutput#created_at #created_at} => Time
# * {Types::GetDataSourceOutput#last_updated_at #last_updated_at} => Time
# * {Types::GetDataSourceOutput#data_size_in_bytes #data_size_in_bytes} => Integer
# * {Types::GetDataSourceOutput#number_of_files #number_of_files} => Integer
# * {Types::GetDataSourceOutput#name #name} => String
# * {Types::GetDataSourceOutput#status #status} => String
# * {Types::GetDataSourceOutput#log_uri #log_uri} => String
# * {Types::GetDataSourceOutput#message #message} => String
# * {Types::GetDataSourceOutput#redshift_metadata #redshift_metadata} => Types::RedshiftMetadata
# * {Types::GetDataSourceOutput#rds_metadata #rds_metadata} => Types::RDSMetadata
# * {Types::GetDataSourceOutput#role_arn #role_arn} => String
# * {Types::GetDataSourceOutput#compute_statistics #compute_statistics} => Boolean
# * {Types::GetDataSourceOutput#compute_time #compute_time} => Integer
# * {Types::GetDataSourceOutput#finished_at #finished_at} => Time
# * {Types::GetDataSourceOutput#started_at #started_at} => Time
# * {Types::GetDataSourceOutput#data_source_schema #data_source_schema} => String
#
# @example Request syntax with placeholder values
#
# resp = client.get_data_source({
# data_source_id: "EntityId", # required
# verbose: false,
# })
#
# @example Response structure
#
# resp.data_source_id #=> String
# resp.data_location_s3 #=> String
# resp.data_rearrangement #=> String
# resp.created_by_iam_user #=> String
# resp.created_at #=> Time
# resp.last_updated_at #=> Time
# resp.data_size_in_bytes #=> Integer
# resp.number_of_files #=> Integer
# resp.name #=> String
# resp.status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
# resp.log_uri #=> String
# resp.message #=> String
# resp.redshift_metadata.redshift_database.database_name #=> String
# resp.redshift_metadata.redshift_database.cluster_identifier #=> String
# resp.redshift_metadata.database_user_name #=> String
# resp.redshift_metadata.select_sql_query #=> String
# resp.rds_metadata.database.instance_identifier #=> String
# resp.rds_metadata.database.database_name #=> String
# resp.rds_metadata.database_user_name #=> String
# resp.rds_metadata.select_sql_query #=> String
# resp.rds_metadata.resource_role #=> String
# resp.rds_metadata.service_role #=> String
# resp.rds_metadata.data_pipeline_id #=> String
# resp.role_arn #=> String
# resp.compute_statistics #=> Boolean
# resp.compute_time #=> Integer
# resp.finished_at #=> Time
# resp.started_at #=> Time
# resp.data_source_schema #=> String
#
# @overload get_data_source(params = {})
# @param [Hash] params ({})
def get_data_source(params = {}, options = {})
req = build_request(:get_data_source, params)
req.send_request(options)
end
# Returns an `Evaluation` that includes metadata as well as the current
# status of the `Evaluation`.
#
# @option params [required, String] :evaluation_id
# The ID of the `Evaluation` to retrieve. The evaluation of each
# `MLModel` is recorded and cataloged. The ID provides the means to
# access the information.
#
# @return [Types::GetEvaluationOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::GetEvaluationOutput#evaluation_id #evaluation_id} => String
# * {Types::GetEvaluationOutput#ml_model_id #ml_model_id} => String
# * {Types::GetEvaluationOutput#evaluation_data_source_id #evaluation_data_source_id} => String
# * {Types::GetEvaluationOutput#input_data_location_s3 #input_data_location_s3} => String
# * {Types::GetEvaluationOutput#created_by_iam_user #created_by_iam_user} => String
# * {Types::GetEvaluationOutput#created_at #created_at} => Time
# * {Types::GetEvaluationOutput#last_updated_at #last_updated_at} => Time
# * {Types::GetEvaluationOutput#name #name} => String
# * {Types::GetEvaluationOutput#status #status} => String
# * {Types::GetEvaluationOutput#performance_metrics #performance_metrics} => Types::PerformanceMetrics
# * {Types::GetEvaluationOutput#log_uri #log_uri} => String
# * {Types::GetEvaluationOutput#message #message} => String
# * {Types::GetEvaluationOutput#compute_time #compute_time} => Integer
# * {Types::GetEvaluationOutput#finished_at #finished_at} => Time
# * {Types::GetEvaluationOutput#started_at #started_at} => Time
#
# @example Request syntax with placeholder values
#
# resp = client.get_evaluation({
# evaluation_id: "EntityId", # required
# })
#
# @example Response structure
#
# resp.evaluation_id #=> String
# resp.ml_model_id #=> String
# resp.evaluation_data_source_id #=> String
# resp.input_data_location_s3 #=> String
# resp.created_by_iam_user #=> String
# resp.created_at #=> Time
# resp.last_updated_at #=> Time
# resp.name #=> String
# resp.status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
# resp.performance_metrics.properties #=> Hash
# resp.performance_metrics.properties["PerformanceMetricsPropertyKey"] #=> String
# resp.log_uri #=> String
# resp.message #=> String
# resp.compute_time #=> Integer
# resp.finished_at #=> Time
# resp.started_at #=> Time
#
# @overload get_evaluation(params = {})
# @param [Hash] params ({})
def get_evaluation(params = {}, options = {})
req = build_request(:get_evaluation, params)
req.send_request(options)
end
# Returns an `MLModel` that includes detailed metadata, data source
# information, and the current status of the `MLModel`.
#
# `GetMLModel` provides results in normal or verbose format.
#
# @option params [required, String] :ml_model_id
# The ID assigned to the `MLModel` at creation.
#
# @option params [Boolean] :verbose
# Specifies whether the `GetMLModel` operation should return `Recipe`.
#
# If true, `Recipe` is returned.
#
# If false, `Recipe` is not returned.
#
# @return [Types::GetMLModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::GetMLModelOutput#ml_model_id #ml_model_id} => String
# * {Types::GetMLModelOutput#training_data_source_id #training_data_source_id} => String
# * {Types::GetMLModelOutput#created_by_iam_user #created_by_iam_user} => String
# * {Types::GetMLModelOutput#created_at #created_at} => Time
# * {Types::GetMLModelOutput#last_updated_at #last_updated_at} => Time
# * {Types::GetMLModelOutput#name #name} => String
# * {Types::GetMLModelOutput#status #status} => String
# * {Types::GetMLModelOutput#size_in_bytes #size_in_bytes} => Integer
# * {Types::GetMLModelOutput#endpoint_info #endpoint_info} => Types::RealtimeEndpointInfo
# * {Types::GetMLModelOutput#training_parameters #training_parameters} => Hash<String,String>
# * {Types::GetMLModelOutput#input_data_location_s3 #input_data_location_s3} => String
# * {Types::GetMLModelOutput#ml_model_type #ml_model_type} => String
# * {Types::GetMLModelOutput#score_threshold #score_threshold} => Float
# * {Types::GetMLModelOutput#score_threshold_last_updated_at #score_threshold_last_updated_at} => Time
# * {Types::GetMLModelOutput#log_uri #log_uri} => String
# * {Types::GetMLModelOutput#message #message} => String
# * {Types::GetMLModelOutput#compute_time #compute_time} => Integer
# * {Types::GetMLModelOutput#finished_at #finished_at} => Time
# * {Types::GetMLModelOutput#started_at #started_at} => Time
# * {Types::GetMLModelOutput#recipe #recipe} => String
# * {Types::GetMLModelOutput#schema #schema} => String
#
# @example Request syntax with placeholder values
#
# resp = client.get_ml_model({
# ml_model_id: "EntityId", # required
# verbose: false,
# })
#
# @example Response structure
#
# resp.ml_model_id #=> String
# resp.training_data_source_id #=> String
# resp.created_by_iam_user #=> String
# resp.created_at #=> Time
# resp.last_updated_at #=> Time
# resp.name #=> String
# resp.status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
# resp.size_in_bytes #=> Integer
# resp.endpoint_info.peak_requests_per_second #=> Integer
# resp.endpoint_info.created_at #=> Time
# resp.endpoint_info.endpoint_url #=> String
# resp.endpoint_info.endpoint_status #=> String, one of "NONE", "READY", "UPDATING", "FAILED"
# resp.training_parameters #=> Hash
# resp.training_parameters["StringType"] #=> String
# resp.input_data_location_s3 #=> String
# resp.ml_model_type #=> String, one of "REGRESSION", "BINARY", "MULTICLASS"
# resp.score_threshold #=> Float
# resp.score_threshold_last_updated_at #=> Time
# resp.log_uri #=> String
# resp.message #=> String
# resp.compute_time #=> Integer
# resp.finished_at #=> Time
# resp.started_at #=> Time
# resp.recipe #=> String
# resp.schema #=> String
#
# @overload get_ml_model(params = {})
# @param [Hash] params ({})
def get_ml_model(params = {}, options = {})
req = build_request(:get_ml_model, params)
req.send_request(options)
end
# Generates a prediction for the observation using the specified `ML
# Model`.
#
# **Note:** Not all response parameters will be populated. Whether a
# response parameter is populated depends on the type of model
# requested.
#
# @option params [required, String] :ml_model_id
# A unique identifier of the `MLModel`.
#
# @option params [required, Hash] :record
# A map of variable name-value pairs that represent an observation.
#
# @option params [required, String] :predict_endpoint
#
# @return [Types::PredictOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::PredictOutput#prediction #prediction} => Types::Prediction
#
# @example Request syntax with placeholder values
#
# resp = client.predict({
# ml_model_id: "EntityId", # required
# record: { # required
# "VariableName" => "VariableValue",
# },
# predict_endpoint: "VipURL", # required
# })
#
# @example Response structure
#
# resp.prediction.predicted_label #=> String
# resp.prediction.predicted_value #=> Float
# resp.prediction.predicted_scores #=> Hash
# resp.prediction.predicted_scores["Label"] #=> Float
# resp.prediction.details #=> Hash
# resp.prediction.details["DetailsAttributes"] #=> String
#
# @overload predict(params = {})
# @param [Hash] params ({})
def predict(params = {}, options = {})
req = build_request(:predict, params)
req.send_request(options)
end
# Updates the `BatchPredictionName` of a `BatchPrediction`.
#
# You can use the `GetBatchPrediction` operation to view the contents of
# the updated data element.
#
# @option params [required, String] :batch_prediction_id
# The ID assigned to the `BatchPrediction` during creation.
#
# @option params [required, String] :batch_prediction_name
# A new user-supplied name or description of the `BatchPrediction`.
#
# @return [Types::UpdateBatchPredictionOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::UpdateBatchPredictionOutput#batch_prediction_id #batch_prediction_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.update_batch_prediction({
# batch_prediction_id: "EntityId", # required
# batch_prediction_name: "EntityName", # required
# })
#
# @example Response structure
#
# resp.batch_prediction_id #=> String
#
# @overload update_batch_prediction(params = {})
# @param [Hash] params ({})
def update_batch_prediction(params = {}, options = {})
req = build_request(:update_batch_prediction, params)
req.send_request(options)
end
# Updates the `DataSourceName` of a `DataSource`.
#
# You can use the `GetDataSource` operation to view the contents of the
# updated data element.
#
# @option params [required, String] :data_source_id
# The ID assigned to the `DataSource` during creation.
#
# @option params [required, String] :data_source_name
# A new user-supplied name or description of the `DataSource` that will
# replace the current description.
#
# @return [Types::UpdateDataSourceOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::UpdateDataSourceOutput#data_source_id #data_source_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.update_data_source({
# data_source_id: "EntityId", # required
# data_source_name: "EntityName", # required
# })
#
# @example Response structure
#
# resp.data_source_id #=> String
#
# @overload update_data_source(params = {})
# @param [Hash] params ({})
def update_data_source(params = {}, options = {})
req = build_request(:update_data_source, params)
req.send_request(options)
end
# Updates the `EvaluationName` of an `Evaluation`.
#
# You can use the `GetEvaluation` operation to view the contents of the
# updated data element.
#
# @option params [required, String] :evaluation_id
# The ID assigned to the `Evaluation` during creation.
#
# @option params [required, String] :evaluation_name
# A new user-supplied name or description of the `Evaluation` that will
# replace the current content.
#
# @return [Types::UpdateEvaluationOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::UpdateEvaluationOutput#evaluation_id #evaluation_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.update_evaluation({
# evaluation_id: "EntityId", # required
# evaluation_name: "EntityName", # required
# })
#
# @example Response structure
#
# resp.evaluation_id #=> String
#
# @overload update_evaluation(params = {})
# @param [Hash] params ({})
def update_evaluation(params = {}, options = {})
req = build_request(:update_evaluation, params)
req.send_request(options)
end
# Updates the `MLModelName` and the `ScoreThreshold` of an `MLModel`.
#
# You can use the `GetMLModel` operation to view the contents of the
# updated data element.
#
# @option params [required, String] :ml_model_id
# The ID assigned to the `MLModel` during creation.
#
# @option params [String] :ml_model_name
# A user-supplied name or description of the `MLModel`.
#
# @option params [Float] :score_threshold
# The `ScoreThreshold` used in binary classification `MLModel` that
# marks the boundary between a positive prediction and a negative
# prediction.
#
# Output values greater than or equal to the `ScoreThreshold` receive a
# positive result from the `MLModel`, such as `true`. Output values less
# than the `ScoreThreshold` receive a negative response from the
# `MLModel`, such as `false`.
#
# @return [Types::UpdateMLModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::UpdateMLModelOutput#ml_model_id #ml_model_id} => String
#
# @example Request syntax with placeholder values
#
# resp = client.update_ml_model({
# ml_model_id: "EntityId", # required
# ml_model_name: "EntityName",
# score_threshold: 1.0,
# })
#
# @example Response structure
#
# resp.ml_model_id #=> String
#
# @overload update_ml_model(params = {})
# @param [Hash] params ({})
def update_ml_model(params = {}, options = {})
req = build_request(:update_ml_model, params)
req.send_request(options)
end
# @!endgroup
# @param params ({})
# @api private
def build_request(operation_name, params = {})
handlers = @handlers.for(operation_name)
context = Seahorse::Client::RequestContext.new(
operation_name: operation_name,
operation: config.api.operation(operation_name),
client: self,
params: params,
config: config)
context[:gem_name] = 'aws-sdk-machinelearning'
context[:gem_version] = '1.37.0'
Seahorse::Client::Request.new(handlers, context)
end
# Polls an API operation until a resource enters a desired state.
#
# ## Basic Usage
#
# A waiter will call an API operation until:
#
# * It is successful
# * It enters a terminal state
# * It makes the maximum number of attempts
#
# In between attempts, the waiter will sleep.
#
# # polls in a loop, sleeping between attempts
# client.wait_until(waiter_name, params)
#
# ## Configuration
#
# You can configure the maximum number of polling attempts, and the
# delay (in seconds) between each polling attempt. You can pass
# configuration as the final arguments hash.
#
# # poll for ~25 seconds
# client.wait_until(waiter_name, params, {
# max_attempts: 5,
# delay: 5,
# })
#
# ## Callbacks
#
# You can be notified before each polling attempt and before each
# delay. If you throw `:success` or `:failure` from these callbacks,
# it will terminate the waiter.
#
# started_at = Time.now
# client.wait_until(waiter_name, params, {
#
# # disable max attempts
# max_attempts: nil,
#
# # poll for 1 hour, instead of a number of attempts
# before_wait: -> (attempts, response) do
# throw :failure if Time.now - started_at > 3600
# end
# })
#
# ## Handling Errors
#
# When a waiter is unsuccessful, it will raise an error.
# All of the failure errors extend from
# {Aws::Waiters::Errors::WaiterFailed}.
#
# begin
# client.wait_until(...)
# rescue Aws::Waiters::Errors::WaiterFailed
# # resource did not enter the desired state in time
# end
#
# ## Valid Waiters
#
# The following table lists the valid waiter names, the operations they call,
# and the default `:delay` and `:max_attempts` values.
#
# | waiter_name | params | :delay | :max_attempts |
# | -------------------------- | ----------------------------------- | -------- | ------------- |
# | batch_prediction_available | {Client#describe_batch_predictions} | 30 | 60 |
# | data_source_available | {Client#describe_data_sources} | 30 | 60 |
# | evaluation_available | {Client#describe_evaluations} | 30 | 60 |
# | ml_model_available | {Client#describe_ml_models} | 30 | 60 |
#
# @raise [Errors::FailureStateError] Raised when the waiter terminates
# because the waiter has entered a state that it will not transition
# out of, preventing success.
#
# @raise [Errors::TooManyAttemptsError] Raised when the configured
# maximum number of attempts have been made, and the waiter is not
# yet successful.
#
# @raise [Errors::UnexpectedError] Raised when an error is encounted
# while polling for a resource that is not expected.
#
# @raise [Errors::NoSuchWaiterError] Raised when you request to wait
# for an unknown state.
#
# @return [Boolean] Returns `true` if the waiter was successful.
# @param [Symbol] waiter_name
# @param [Hash] params ({})
# @param [Hash] options ({})
# @option options [Integer] :max_attempts
# @option options [Integer] :delay
# @option options [Proc] :before_attempt
# @option options [Proc] :before_wait
def wait_until(waiter_name, params = {}, options = {})
w = waiter(waiter_name, options)
yield(w.waiter) if block_given? # deprecated
w.wait(params)
end
# @api private
# @deprecated
def waiter_names
waiters.keys
end
private
# @param [Symbol] waiter_name
# @param [Hash] options ({})
def waiter(waiter_name, options = {})
waiter_class = waiters[waiter_name]
if waiter_class
waiter_class.new(options.merge(client: self))
else
raise Aws::Waiters::Errors::NoSuchWaiterError.new(waiter_name, waiters.keys)
end
end
def waiters
{
batch_prediction_available: Waiters::BatchPredictionAvailable,
data_source_available: Waiters::DataSourceAvailable,
evaluation_available: Waiters::EvaluationAvailable,
ml_model_available: Waiters::MLModelAvailable
}
end
class << self
# @api private
attr_reader :identifier
# @api private
def errors_module
Errors
end
end
end
end