Sha256: c00828f8d064394691a649889aa0d04ea9bc375e499b51138a9ab0b98c229d91

Contents?: true

Size: 909 Bytes

Versions: 5

Compression:

Stored size: 909 Bytes

Contents

require "dnn"
require "dnn/datasets/mnist"
# If you use numo/linalg then please uncomment out.
# require "numo/linalg/autoloader"

include DNN::Layers
include DNN::Activations
include DNN::Optimizers
include DNN::Losses
include DNN::Models
MNIST = DNN::MNIST

x_train, y_train = MNIST.load_train
x_test, y_test = MNIST.load_test

x_train = Numo::SFloat.cast(x_train).reshape(x_train.shape[0], 784)
x_test = Numo::SFloat.cast(x_test).reshape(x_test.shape[0], 784)

x_train /= 255
x_test /= 255

y_train = DNN::Utils.to_categorical(y_train, 10, Numo::SFloat)
y_test = DNN::Utils.to_categorical(y_test, 10, Numo::SFloat)

model = Sequential.new

model << InputLayer.new(784)

model << Dense.new(256)
model << ReLU.new

model << Dense.new(256)
model << ReLU.new

model << Dense.new(10)

model.setup(RMSProp.new, SoftmaxCrossEntropy.new)

model.train(x_train, y_train, 10, batch_size: 100, test: [x_test, y_test])

Version data entries

5 entries across 5 versions & 1 rubygems

Version Path
ruby-dnn-0.13.4 examples/mnist_example.rb
ruby-dnn-0.13.3 examples/mnist_example.rb
ruby-dnn-0.13.2 examples/mnist_example.rb
ruby-dnn-0.13.1 examples/mnist_example.rb
ruby-dnn-0.13.0 examples/mnist_example.rb