// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "hydrogen.h" #include "codegen.h" #include "full-codegen.h" #include "hashmap.h" #include "lithium-allocator.h" #include "parser.h" #include "scopeinfo.h" #include "scopes.h" #include "stub-cache.h" #if V8_TARGET_ARCH_IA32 #include "ia32/lithium-codegen-ia32.h" #elif V8_TARGET_ARCH_X64 #include "x64/lithium-codegen-x64.h" #elif V8_TARGET_ARCH_ARM #include "arm/lithium-codegen-arm.h" #elif V8_TARGET_ARCH_MIPS #include "mips/lithium-codegen-mips.h" #else #error Unsupported target architecture. #endif namespace v8 { namespace internal { HBasicBlock::HBasicBlock(HGraph* graph) : block_id_(graph->GetNextBlockID()), graph_(graph), phis_(4), first_(NULL), last_(NULL), end_(NULL), loop_information_(NULL), predecessors_(2), dominator_(NULL), dominated_blocks_(4), last_environment_(NULL), argument_count_(-1), first_instruction_index_(-1), last_instruction_index_(-1), deleted_phis_(4), parent_loop_header_(NULL), is_inline_return_target_(false), is_deoptimizing_(false), dominates_loop_successors_(false) { } void HBasicBlock::AttachLoopInformation() { ASSERT(!IsLoopHeader()); loop_information_ = new(zone()) HLoopInformation(this); } void HBasicBlock::DetachLoopInformation() { ASSERT(IsLoopHeader()); loop_information_ = NULL; } void HBasicBlock::AddPhi(HPhi* phi) { ASSERT(!IsStartBlock()); phis_.Add(phi); phi->SetBlock(this); } void HBasicBlock::RemovePhi(HPhi* phi) { ASSERT(phi->block() == this); ASSERT(phis_.Contains(phi)); ASSERT(phi->HasNoUses() || !phi->is_live()); phi->Kill(); phis_.RemoveElement(phi); phi->SetBlock(NULL); } void HBasicBlock::AddInstruction(HInstruction* instr) { ASSERT(!IsStartBlock() || !IsFinished()); ASSERT(!instr->IsLinked()); ASSERT(!IsFinished()); if (first_ == NULL) { HBlockEntry* entry = new(zone()) HBlockEntry(); entry->InitializeAsFirst(this); first_ = last_ = entry; } instr->InsertAfter(last_); } HDeoptimize* HBasicBlock::CreateDeoptimize( HDeoptimize::UseEnvironment has_uses) { ASSERT(HasEnvironment()); if (has_uses == HDeoptimize::kNoUses) return new(zone()) HDeoptimize(0); HEnvironment* environment = last_environment(); HDeoptimize* instr = new(zone()) HDeoptimize(environment->length()); for (int i = 0; i < environment->length(); i++) { HValue* val = environment->values()->at(i); instr->AddEnvironmentValue(val); } return instr; } HSimulate* HBasicBlock::CreateSimulate(int ast_id) { ASSERT(HasEnvironment()); HEnvironment* environment = last_environment(); ASSERT(ast_id == AstNode::kNoNumber || environment->closure()->shared()->VerifyBailoutId(ast_id)); int push_count = environment->push_count(); int pop_count = environment->pop_count(); HSimulate* instr = new(zone()) HSimulate(ast_id, pop_count); for (int i = push_count - 1; i >= 0; --i) { instr->AddPushedValue(environment->ExpressionStackAt(i)); } for (int i = 0; i < environment->assigned_variables()->length(); ++i) { int index = environment->assigned_variables()->at(i); instr->AddAssignedValue(index, environment->Lookup(index)); } environment->ClearHistory(); return instr; } void HBasicBlock::Finish(HControlInstruction* end) { ASSERT(!IsFinished()); AddInstruction(end); end_ = end; for (HSuccessorIterator it(end); !it.Done(); it.Advance()) { it.Current()->RegisterPredecessor(this); } } void HBasicBlock::Goto(HBasicBlock* block, FunctionState* state) { bool drop_extra = state != NULL && state->drop_extra(); bool arguments_pushed = state != NULL && state->arguments_pushed(); if (block->IsInlineReturnTarget()) { AddInstruction(new(zone()) HLeaveInlined(arguments_pushed)); last_environment_ = last_environment()->DiscardInlined(drop_extra); } AddSimulate(AstNode::kNoNumber); HGoto* instr = new(zone()) HGoto(block); Finish(instr); } void HBasicBlock::AddLeaveInlined(HValue* return_value, HBasicBlock* target, FunctionState* state) { bool drop_extra = state != NULL && state->drop_extra(); bool arguments_pushed = state != NULL && state->arguments_pushed(); ASSERT(target->IsInlineReturnTarget()); ASSERT(return_value != NULL); AddInstruction(new(zone()) HLeaveInlined(arguments_pushed)); last_environment_ = last_environment()->DiscardInlined(drop_extra); last_environment()->Push(return_value); AddSimulate(AstNode::kNoNumber); HGoto* instr = new(zone()) HGoto(target); Finish(instr); } void HBasicBlock::SetInitialEnvironment(HEnvironment* env) { ASSERT(!HasEnvironment()); ASSERT(first() == NULL); UpdateEnvironment(env); } void HBasicBlock::SetJoinId(int ast_id) { int length = predecessors_.length(); ASSERT(length > 0); for (int i = 0; i < length; i++) { HBasicBlock* predecessor = predecessors_[i]; ASSERT(predecessor->end()->IsGoto()); HSimulate* simulate = HSimulate::cast(predecessor->end()->previous()); // We only need to verify the ID once. ASSERT(i != 0 || predecessor->last_environment()->closure()->shared() ->VerifyBailoutId(ast_id)); simulate->set_ast_id(ast_id); } } bool HBasicBlock::Dominates(HBasicBlock* other) const { HBasicBlock* current = other->dominator(); while (current != NULL) { if (current == this) return true; current = current->dominator(); } return false; } int HBasicBlock::LoopNestingDepth() const { const HBasicBlock* current = this; int result = (current->IsLoopHeader()) ? 1 : 0; while (current->parent_loop_header() != NULL) { current = current->parent_loop_header(); result++; } return result; } void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) { ASSERT(IsLoopHeader()); SetJoinId(stmt->EntryId()); if (predecessors()->length() == 1) { // This is a degenerated loop. DetachLoopInformation(); return; } // Only the first entry into the loop is from outside the loop. All other // entries must be back edges. for (int i = 1; i < predecessors()->length(); ++i) { loop_information()->RegisterBackEdge(predecessors()->at(i)); } } void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) { if (HasPredecessor()) { // Only loop header blocks can have a predecessor added after // instructions have been added to the block (they have phis for all // values in the environment, these phis may be eliminated later). ASSERT(IsLoopHeader() || first_ == NULL); HEnvironment* incoming_env = pred->last_environment(); if (IsLoopHeader()) { ASSERT(phis()->length() == incoming_env->length()); for (int i = 0; i < phis_.length(); ++i) { phis_[i]->AddInput(incoming_env->values()->at(i)); } } else { last_environment()->AddIncomingEdge(this, pred->last_environment()); } } else if (!HasEnvironment() && !IsFinished()) { ASSERT(!IsLoopHeader()); SetInitialEnvironment(pred->last_environment()->Copy()); } predecessors_.Add(pred); } void HBasicBlock::AddDominatedBlock(HBasicBlock* block) { ASSERT(!dominated_blocks_.Contains(block)); // Keep the list of dominated blocks sorted such that if there is two // succeeding block in this list, the predecessor is before the successor. int index = 0; while (index < dominated_blocks_.length() && dominated_blocks_[index]->block_id() < block->block_id()) { ++index; } dominated_blocks_.InsertAt(index, block); } void HBasicBlock::AssignCommonDominator(HBasicBlock* other) { if (dominator_ == NULL) { dominator_ = other; other->AddDominatedBlock(this); } else if (other->dominator() != NULL) { HBasicBlock* first = dominator_; HBasicBlock* second = other; while (first != second) { if (first->block_id() > second->block_id()) { first = first->dominator(); } else { second = second->dominator(); } ASSERT(first != NULL && second != NULL); } if (dominator_ != first) { ASSERT(dominator_->dominated_blocks_.Contains(this)); dominator_->dominated_blocks_.RemoveElement(this); dominator_ = first; first->AddDominatedBlock(this); } } } void HBasicBlock::AssignLoopSuccessorDominators() { // Mark blocks that dominate all subsequent reachable blocks inside their // loop. Exploit the fact that blocks are sorted in reverse post order. When // the loop is visited in increasing block id order, if the number of // non-loop-exiting successor edges at the dominator_candidate block doesn't // exceed the number of previously encountered predecessor edges, there is no // path from the loop header to any block with higher id that doesn't go // through the dominator_candidate block. In this case, the // dominator_candidate block is guaranteed to dominate all blocks reachable // from it with higher ids. HBasicBlock* last = loop_information()->GetLastBackEdge(); int outstanding_successors = 1; // one edge from the pre-header // Header always dominates everything. MarkAsLoopSuccessorDominator(); for (int j = block_id(); j <= last->block_id(); ++j) { HBasicBlock* dominator_candidate = graph_->blocks()->at(j); for (HPredecessorIterator it(dominator_candidate); !it.Done(); it.Advance()) { HBasicBlock* predecessor = it.Current(); // Don't count back edges. if (predecessor->block_id() < dominator_candidate->block_id()) { outstanding_successors--; } } // If more successors than predecessors have been seen in the loop up to // now, it's not possible to guarantee that the current block dominates // all of the blocks with higher IDs. In this case, assume conservatively // that those paths through loop that don't go through the current block // contain all of the loop's dependencies. Also be careful to record // dominator information about the current loop that's being processed, // and not nested loops, which will be processed when // AssignLoopSuccessorDominators gets called on their header. ASSERT(outstanding_successors >= 0); HBasicBlock* parent_loop_header = dominator_candidate->parent_loop_header(); if (outstanding_successors == 0 && (parent_loop_header == this && !dominator_candidate->IsLoopHeader())) { dominator_candidate->MarkAsLoopSuccessorDominator(); } HControlInstruction* end = dominator_candidate->end(); for (HSuccessorIterator it(end); !it.Done(); it.Advance()) { HBasicBlock* successor = it.Current(); // Only count successors that remain inside the loop and don't loop back // to a loop header. if (successor->block_id() > dominator_candidate->block_id() && successor->block_id() <= last->block_id()) { // Backwards edges must land on loop headers. ASSERT(successor->block_id() > dominator_candidate->block_id() || successor->IsLoopHeader()); outstanding_successors++; } } } } int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const { for (int i = 0; i < predecessors_.length(); ++i) { if (predecessors_[i] == predecessor) return i; } UNREACHABLE(); return -1; } #ifdef DEBUG void HBasicBlock::Verify() { // Check that every block is finished. ASSERT(IsFinished()); ASSERT(block_id() >= 0); // Check that the incoming edges are in edge split form. if (predecessors_.length() > 1) { for (int i = 0; i < predecessors_.length(); ++i) { ASSERT(predecessors_[i]->end()->SecondSuccessor() == NULL); } } } #endif void HLoopInformation::RegisterBackEdge(HBasicBlock* block) { this->back_edges_.Add(block); AddBlock(block); } HBasicBlock* HLoopInformation::GetLastBackEdge() const { int max_id = -1; HBasicBlock* result = NULL; for (int i = 0; i < back_edges_.length(); ++i) { HBasicBlock* cur = back_edges_[i]; if (cur->block_id() > max_id) { max_id = cur->block_id(); result = cur; } } return result; } void HLoopInformation::AddBlock(HBasicBlock* block) { if (block == loop_header()) return; if (block->parent_loop_header() == loop_header()) return; if (block->parent_loop_header() != NULL) { AddBlock(block->parent_loop_header()); } else { block->set_parent_loop_header(loop_header()); blocks_.Add(block); for (int i = 0; i < block->predecessors()->length(); ++i) { AddBlock(block->predecessors()->at(i)); } } } #ifdef DEBUG // Checks reachability of the blocks in this graph and stores a bit in // the BitVector "reachable()" for every block that can be reached // from the start block of the graph. If "dont_visit" is non-null, the given // block is treated as if it would not be part of the graph. "visited_count()" // returns the number of reachable blocks. class ReachabilityAnalyzer BASE_EMBEDDED { public: ReachabilityAnalyzer(HBasicBlock* entry_block, int block_count, HBasicBlock* dont_visit) : visited_count_(0), stack_(16), reachable_(block_count, ZONE), dont_visit_(dont_visit) { PushBlock(entry_block); Analyze(); } int visited_count() const { return visited_count_; } const BitVector* reachable() const { return &reachable_; } private: void PushBlock(HBasicBlock* block) { if (block != NULL && block != dont_visit_ && !reachable_.Contains(block->block_id())) { reachable_.Add(block->block_id()); stack_.Add(block); visited_count_++; } } void Analyze() { while (!stack_.is_empty()) { HControlInstruction* end = stack_.RemoveLast()->end(); for (HSuccessorIterator it(end); !it.Done(); it.Advance()) { PushBlock(it.Current()); } } } int visited_count_; ZoneList stack_; BitVector reachable_; HBasicBlock* dont_visit_; }; void HGraph::Verify(bool do_full_verify) const { for (int i = 0; i < blocks_.length(); i++) { HBasicBlock* block = blocks_.at(i); block->Verify(); // Check that every block contains at least one node and that only the last // node is a control instruction. HInstruction* current = block->first(); ASSERT(current != NULL && current->IsBlockEntry()); while (current != NULL) { ASSERT((current->next() == NULL) == current->IsControlInstruction()); ASSERT(current->block() == block); current->Verify(); current = current->next(); } // Check that successors are correctly set. HBasicBlock* first = block->end()->FirstSuccessor(); HBasicBlock* second = block->end()->SecondSuccessor(); ASSERT(second == NULL || first != NULL); // Check that the predecessor array is correct. if (first != NULL) { ASSERT(first->predecessors()->Contains(block)); if (second != NULL) { ASSERT(second->predecessors()->Contains(block)); } } // Check that phis have correct arguments. for (int j = 0; j < block->phis()->length(); j++) { HPhi* phi = block->phis()->at(j); phi->Verify(); } // Check that all join blocks have predecessors that end with an // unconditional goto and agree on their environment node id. if (block->predecessors()->length() >= 2) { int id = block->predecessors()->first()->last_environment()->ast_id(); for (int k = 0; k < block->predecessors()->length(); k++) { HBasicBlock* predecessor = block->predecessors()->at(k); ASSERT(predecessor->end()->IsGoto()); ASSERT(predecessor->last_environment()->ast_id() == id); } } } // Check special property of first block to have no predecessors. ASSERT(blocks_.at(0)->predecessors()->is_empty()); if (do_full_verify) { // Check that the graph is fully connected. ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL); ASSERT(analyzer.visited_count() == blocks_.length()); // Check that entry block dominator is NULL. ASSERT(entry_block_->dominator() == NULL); // Check dominators. for (int i = 0; i < blocks_.length(); ++i) { HBasicBlock* block = blocks_.at(i); if (block->dominator() == NULL) { // Only start block may have no dominator assigned to. ASSERT(i == 0); } else { // Assert that block is unreachable if dominator must not be visited. ReachabilityAnalyzer dominator_analyzer(entry_block_, blocks_.length(), block->dominator()); ASSERT(!dominator_analyzer.reachable()->Contains(block->block_id())); } } } } #endif HConstant* HGraph::GetConstant(SetOncePointer* pointer, Object* value) { if (!pointer->is_set()) { HConstant* constant = new(zone()) HConstant(Handle(value), Representation::Tagged()); constant->InsertAfter(GetConstantUndefined()); pointer->set(constant); } return pointer->get(); } HConstant* HGraph::GetConstant1() { return GetConstant(&constant_1_, Smi::FromInt(1)); } HConstant* HGraph::GetConstantMinus1() { return GetConstant(&constant_minus1_, Smi::FromInt(-1)); } HConstant* HGraph::GetConstantTrue() { return GetConstant(&constant_true_, isolate()->heap()->true_value()); } HConstant* HGraph::GetConstantFalse() { return GetConstant(&constant_false_, isolate()->heap()->false_value()); } HConstant* HGraph::GetConstantHole() { return GetConstant(&constant_hole_, isolate()->heap()->the_hole_value()); } HGraphBuilder::HGraphBuilder(CompilationInfo* info, TypeFeedbackOracle* oracle) : function_state_(NULL), initial_function_state_(this, info, oracle, NORMAL_RETURN), ast_context_(NULL), break_scope_(NULL), graph_(NULL), current_block_(NULL), inlined_count_(0), globals_(10), zone_(info->isolate()->zone()), inline_bailout_(false) { // This is not initialized in the initializer list because the // constructor for the initial state relies on function_state_ == NULL // to know it's the initial state. function_state_= &initial_function_state_; } HBasicBlock* HGraphBuilder::CreateJoin(HBasicBlock* first, HBasicBlock* second, int join_id) { if (first == NULL) { return second; } else if (second == NULL) { return first; } else { HBasicBlock* join_block = graph_->CreateBasicBlock(); first->Goto(join_block); second->Goto(join_block); join_block->SetJoinId(join_id); return join_block; } } HBasicBlock* HGraphBuilder::JoinContinue(IterationStatement* statement, HBasicBlock* exit_block, HBasicBlock* continue_block) { if (continue_block != NULL) { if (exit_block != NULL) exit_block->Goto(continue_block); continue_block->SetJoinId(statement->ContinueId()); return continue_block; } return exit_block; } HBasicBlock* HGraphBuilder::CreateLoop(IterationStatement* statement, HBasicBlock* loop_entry, HBasicBlock* body_exit, HBasicBlock* loop_successor, HBasicBlock* break_block) { if (body_exit != NULL) body_exit->Goto(loop_entry); loop_entry->PostProcessLoopHeader(statement); if (break_block != NULL) { if (loop_successor != NULL) loop_successor->Goto(break_block); break_block->SetJoinId(statement->ExitId()); return break_block; } return loop_successor; } void HBasicBlock::FinishExit(HControlInstruction* instruction) { Finish(instruction); ClearEnvironment(); } HGraph::HGraph(CompilationInfo* info) : isolate_(info->isolate()), next_block_id_(0), entry_block_(NULL), blocks_(8), values_(16), phi_list_(NULL) { start_environment_ = new(zone()) HEnvironment(NULL, info->scope(), info->closure()); start_environment_->set_ast_id(AstNode::kFunctionEntryId); entry_block_ = CreateBasicBlock(); entry_block_->SetInitialEnvironment(start_environment_); } Handle HGraph::Compile(CompilationInfo* info) { int values = GetMaximumValueID(); if (values > LUnallocated::kMaxVirtualRegisters) { if (FLAG_trace_bailout) { PrintF("Not enough virtual registers for (values).\n"); } return Handle::null(); } LAllocator allocator(values, this); LChunkBuilder builder(info, this, &allocator); LChunk* chunk = builder.Build(); if (chunk == NULL) return Handle::null(); if (!allocator.Allocate(chunk)) { if (FLAG_trace_bailout) { PrintF("Not enough virtual registers (regalloc).\n"); } return Handle::null(); } MacroAssembler assembler(info->isolate(), NULL, 0); LCodeGen generator(chunk, &assembler, info); chunk->MarkEmptyBlocks(); if (generator.GenerateCode()) { if (FLAG_trace_codegen) { PrintF("Crankshaft Compiler - "); } CodeGenerator::MakeCodePrologue(info); Code::Flags flags = Code::ComputeFlags(Code::OPTIMIZED_FUNCTION); Handle code = CodeGenerator::MakeCodeEpilogue(&assembler, flags, info); generator.FinishCode(code); CodeGenerator::PrintCode(code, info); return code; } return Handle::null(); } HBasicBlock* HGraph::CreateBasicBlock() { HBasicBlock* result = new(zone()) HBasicBlock(this); blocks_.Add(result); return result; } void HGraph::Canonicalize() { if (!FLAG_use_canonicalizing) return; HPhase phase("H_Canonicalize", this); for (int i = 0; i < blocks()->length(); ++i) { HInstruction* instr = blocks()->at(i)->first(); while (instr != NULL) { HValue* value = instr->Canonicalize(); if (value != instr) instr->DeleteAndReplaceWith(value); instr = instr->next(); } } } void HGraph::OrderBlocks() { HPhase phase("H_Block ordering"); BitVector visited(blocks_.length(), zone()); ZoneList reverse_result(8); HBasicBlock* start = blocks_[0]; Postorder(start, &visited, &reverse_result, NULL); blocks_.Rewind(0); int index = 0; for (int i = reverse_result.length() - 1; i >= 0; --i) { HBasicBlock* b = reverse_result[i]; blocks_.Add(b); b->set_block_id(index++); } } void HGraph::PostorderLoopBlocks(HLoopInformation* loop, BitVector* visited, ZoneList* order, HBasicBlock* loop_header) { for (int i = 0; i < loop->blocks()->length(); ++i) { HBasicBlock* b = loop->blocks()->at(i); for (HSuccessorIterator it(b->end()); !it.Done(); it.Advance()) { Postorder(it.Current(), visited, order, loop_header); } if (b->IsLoopHeader() && b != loop->loop_header()) { PostorderLoopBlocks(b->loop_information(), visited, order, loop_header); } } } void HGraph::Postorder(HBasicBlock* block, BitVector* visited, ZoneList* order, HBasicBlock* loop_header) { if (block == NULL || visited->Contains(block->block_id())) return; if (block->parent_loop_header() != loop_header) return; visited->Add(block->block_id()); if (block->IsLoopHeader()) { PostorderLoopBlocks(block->loop_information(), visited, order, loop_header); for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) { Postorder(it.Current(), visited, order, block); } } else { ASSERT(block->IsFinished()); for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) { Postorder(it.Current(), visited, order, loop_header); } } ASSERT(block->end()->FirstSuccessor() == NULL || order->Contains(block->end()->FirstSuccessor()) || block->end()->FirstSuccessor()->IsLoopHeader()); ASSERT(block->end()->SecondSuccessor() == NULL || order->Contains(block->end()->SecondSuccessor()) || block->end()->SecondSuccessor()->IsLoopHeader()); order->Add(block); } void HGraph::AssignDominators() { HPhase phase("H_Assign dominators", this); for (int i = 0; i < blocks_.length(); ++i) { HBasicBlock* block = blocks_[i]; if (block->IsLoopHeader()) { // Only the first predecessor of a loop header is from outside the loop. // All others are back edges, and thus cannot dominate the loop header. block->AssignCommonDominator(block->predecessors()->first()); block->AssignLoopSuccessorDominators(); } else { for (int j = blocks_[i]->predecessors()->length() - 1; j >= 0; --j) { blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j)); } } } } // Mark all blocks that are dominated by an unconditional soft deoptimize to // prevent code motion across those blocks. void HGraph::PropagateDeoptimizingMark() { HPhase phase("H_Propagate deoptimizing mark", this); MarkAsDeoptimizingRecursively(entry_block()); } void HGraph::MarkAsDeoptimizingRecursively(HBasicBlock* block) { for (int i = 0; i < block->dominated_blocks()->length(); ++i) { HBasicBlock* dominated = block->dominated_blocks()->at(i); if (block->IsDeoptimizing()) dominated->MarkAsDeoptimizing(); MarkAsDeoptimizingRecursively(dominated); } } void HGraph::EliminateRedundantPhis() { HPhase phase("H_Redundant phi elimination", this); // Worklist of phis that can potentially be eliminated. Initialized with // all phi nodes. When elimination of a phi node modifies another phi node // the modified phi node is added to the worklist. ZoneList worklist(blocks_.length()); for (int i = 0; i < blocks_.length(); ++i) { worklist.AddAll(*blocks_[i]->phis()); } while (!worklist.is_empty()) { HPhi* phi = worklist.RemoveLast(); HBasicBlock* block = phi->block(); // Skip phi node if it was already replaced. if (block == NULL) continue; // Get replacement value if phi is redundant. HValue* replacement = phi->GetRedundantReplacement(); if (replacement != NULL) { // Iterate through the uses and replace them all. for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) { HValue* value = it.value(); value->SetOperandAt(it.index(), replacement); if (value->IsPhi()) worklist.Add(HPhi::cast(value)); } block->RemovePhi(phi); } } } void HGraph::EliminateUnreachablePhis() { HPhase phase("H_Unreachable phi elimination", this); // Initialize worklist. ZoneList phi_list(blocks_.length()); ZoneList worklist(blocks_.length()); for (int i = 0; i < blocks_.length(); ++i) { for (int j = 0; j < blocks_[i]->phis()->length(); j++) { HPhi* phi = blocks_[i]->phis()->at(j); phi_list.Add(phi); // We can't eliminate phis in the receiver position in the environment // because in case of throwing an error we need this value to // construct a stack trace. if (phi->HasRealUses() || phi->IsReceiver()) { phi->set_is_live(true); worklist.Add(phi); } } } // Iteratively mark live phis. while (!worklist.is_empty()) { HPhi* phi = worklist.RemoveLast(); for (int i = 0; i < phi->OperandCount(); i++) { HValue* operand = phi->OperandAt(i); if (operand->IsPhi() && !HPhi::cast(operand)->is_live()) { HPhi::cast(operand)->set_is_live(true); worklist.Add(HPhi::cast(operand)); } } } // Remove unreachable phis. for (int i = 0; i < phi_list.length(); i++) { HPhi* phi = phi_list[i]; if (!phi->is_live()) { HBasicBlock* block = phi->block(); block->RemovePhi(phi); block->RecordDeletedPhi(phi->merged_index()); } } } bool HGraph::CheckArgumentsPhiUses() { int block_count = blocks_.length(); for (int i = 0; i < block_count; ++i) { for (int j = 0; j < blocks_[i]->phis()->length(); ++j) { HPhi* phi = blocks_[i]->phis()->at(j); // We don't support phi uses of arguments for now. if (phi->CheckFlag(HValue::kIsArguments)) return false; } } return true; } bool HGraph::CheckConstPhiUses() { int block_count = blocks_.length(); for (int i = 0; i < block_count; ++i) { for (int j = 0; j < blocks_[i]->phis()->length(); ++j) { HPhi* phi = blocks_[i]->phis()->at(j); // Check for the hole value (from an uninitialized const). for (int k = 0; k < phi->OperandCount(); k++) { if (phi->OperandAt(k) == GetConstantHole()) return false; } } } return true; } void HGraph::CollectPhis() { int block_count = blocks_.length(); phi_list_ = new ZoneList(block_count); for (int i = 0; i < block_count; ++i) { for (int j = 0; j < blocks_[i]->phis()->length(); ++j) { HPhi* phi = blocks_[i]->phis()->at(j); phi_list_->Add(phi); } } } void HGraph::InferTypes(ZoneList* worklist) { BitVector in_worklist(GetMaximumValueID(), zone()); for (int i = 0; i < worklist->length(); ++i) { ASSERT(!in_worklist.Contains(worklist->at(i)->id())); in_worklist.Add(worklist->at(i)->id()); } while (!worklist->is_empty()) { HValue* current = worklist->RemoveLast(); in_worklist.Remove(current->id()); if (current->UpdateInferredType()) { for (HUseIterator it(current->uses()); !it.Done(); it.Advance()) { HValue* use = it.value(); if (!in_worklist.Contains(use->id())) { in_worklist.Add(use->id()); worklist->Add(use); } } } } } class HRangeAnalysis BASE_EMBEDDED { public: explicit HRangeAnalysis(HGraph* graph) : graph_(graph), zone_(graph->isolate()->zone()), changed_ranges_(16) { } void Analyze(); private: void TraceRange(const char* msg, ...); void Analyze(HBasicBlock* block); void InferControlFlowRange(HCompareIDAndBranch* test, HBasicBlock* dest); void UpdateControlFlowRange(Token::Value op, HValue* value, HValue* other); void InferRange(HValue* value); void RollBackTo(int index); void AddRange(HValue* value, Range* range); HGraph* graph_; Zone* zone_; ZoneList changed_ranges_; }; void HRangeAnalysis::TraceRange(const char* msg, ...) { if (FLAG_trace_range) { va_list arguments; va_start(arguments, msg); OS::VPrint(msg, arguments); va_end(arguments); } } void HRangeAnalysis::Analyze() { HPhase phase("H_Range analysis", graph_); Analyze(graph_->entry_block()); } void HRangeAnalysis::Analyze(HBasicBlock* block) { TraceRange("Analyzing block B%d\n", block->block_id()); int last_changed_range = changed_ranges_.length() - 1; // Infer range based on control flow. if (block->predecessors()->length() == 1) { HBasicBlock* pred = block->predecessors()->first(); if (pred->end()->IsCompareIDAndBranch()) { InferControlFlowRange(HCompareIDAndBranch::cast(pred->end()), block); } } // Process phi instructions. for (int i = 0; i < block->phis()->length(); ++i) { HPhi* phi = block->phis()->at(i); InferRange(phi); } // Go through all instructions of the current block. HInstruction* instr = block->first(); while (instr != block->end()) { InferRange(instr); instr = instr->next(); } // Continue analysis in all dominated blocks. for (int i = 0; i < block->dominated_blocks()->length(); ++i) { Analyze(block->dominated_blocks()->at(i)); } RollBackTo(last_changed_range); } void HRangeAnalysis::InferControlFlowRange(HCompareIDAndBranch* test, HBasicBlock* dest) { ASSERT((test->FirstSuccessor() == dest) == (test->SecondSuccessor() != dest)); if (test->GetInputRepresentation().IsInteger32()) { Token::Value op = test->token(); if (test->SecondSuccessor() == dest) { op = Token::NegateCompareOp(op); } Token::Value inverted_op = Token::InvertCompareOp(op); UpdateControlFlowRange(op, test->left(), test->right()); UpdateControlFlowRange(inverted_op, test->right(), test->left()); } } // We know that value [op] other. Use this information to update the range on // value. void HRangeAnalysis::UpdateControlFlowRange(Token::Value op, HValue* value, HValue* other) { Range temp_range; Range* range = other->range() != NULL ? other->range() : &temp_range; Range* new_range = NULL; TraceRange("Control flow range infer %d %s %d\n", value->id(), Token::Name(op), other->id()); if (op == Token::EQ || op == Token::EQ_STRICT) { // The same range has to apply for value. new_range = range->Copy(zone_); } else if (op == Token::LT || op == Token::LTE) { new_range = range->CopyClearLower(zone_); if (op == Token::LT) { new_range->AddConstant(-1); } } else if (op == Token::GT || op == Token::GTE) { new_range = range->CopyClearUpper(zone_); if (op == Token::GT) { new_range->AddConstant(1); } } if (new_range != NULL && !new_range->IsMostGeneric()) { AddRange(value, new_range); } } void HRangeAnalysis::InferRange(HValue* value) { ASSERT(!value->HasRange()); if (!value->representation().IsNone()) { value->ComputeInitialRange(zone_); Range* range = value->range(); TraceRange("Initial inferred range of %d (%s) set to [%d,%d]\n", value->id(), value->Mnemonic(), range->lower(), range->upper()); } } void HRangeAnalysis::RollBackTo(int index) { for (int i = index + 1; i < changed_ranges_.length(); ++i) { changed_ranges_[i]->RemoveLastAddedRange(); } changed_ranges_.Rewind(index + 1); } void HRangeAnalysis::AddRange(HValue* value, Range* range) { Range* original_range = value->range(); value->AddNewRange(range, zone_); changed_ranges_.Add(value); Range* new_range = value->range(); TraceRange("Updated range of %d set to [%d,%d]\n", value->id(), new_range->lower(), new_range->upper()); if (original_range != NULL) { TraceRange("Original range was [%d,%d]\n", original_range->lower(), original_range->upper()); } TraceRange("New information was [%d,%d]\n", range->lower(), range->upper()); } void TraceGVN(const char* msg, ...) { va_list arguments; va_start(arguments, msg); OS::VPrint(msg, arguments); va_end(arguments); } // Wrap TraceGVN in macros to avoid the expense of evaluating its arguments when // --trace-gvn is off. #define TRACE_GVN_1(msg, a1) \ if (FLAG_trace_gvn) { \ TraceGVN(msg, a1); \ } #define TRACE_GVN_2(msg, a1, a2) \ if (FLAG_trace_gvn) { \ TraceGVN(msg, a1, a2); \ } #define TRACE_GVN_3(msg, a1, a2, a3) \ if (FLAG_trace_gvn) { \ TraceGVN(msg, a1, a2, a3); \ } #define TRACE_GVN_4(msg, a1, a2, a3, a4) \ if (FLAG_trace_gvn) { \ TraceGVN(msg, a1, a2, a3, a4); \ } #define TRACE_GVN_5(msg, a1, a2, a3, a4, a5) \ if (FLAG_trace_gvn) { \ TraceGVN(msg, a1, a2, a3, a4, a5); \ } HValueMap::HValueMap(Zone* zone, const HValueMap* other) : array_size_(other->array_size_), lists_size_(other->lists_size_), count_(other->count_), present_flags_(other->present_flags_), array_(zone->NewArray(other->array_size_)), lists_(zone->NewArray(other->lists_size_)), free_list_head_(other->free_list_head_) { memcpy(array_, other->array_, array_size_ * sizeof(HValueMapListElement)); memcpy(lists_, other->lists_, lists_size_ * sizeof(HValueMapListElement)); } void HValueMap::Kill(GVNFlagSet flags) { GVNFlagSet depends_flags = HValue::ConvertChangesToDependsFlags(flags); if (!present_flags_.ContainsAnyOf(depends_flags)) return; present_flags_.RemoveAll(); for (int i = 0; i < array_size_; ++i) { HValue* value = array_[i].value; if (value != NULL) { // Clear list of collisions first, so we know if it becomes empty. int kept = kNil; // List of kept elements. int next; for (int current = array_[i].next; current != kNil; current = next) { next = lists_[current].next; HValue* value = lists_[current].value; if (value->gvn_flags().ContainsAnyOf(depends_flags)) { // Drop it. count_--; lists_[current].next = free_list_head_; free_list_head_ = current; } else { // Keep it. lists_[current].next = kept; kept = current; present_flags_.Add(value->gvn_flags()); } } array_[i].next = kept; // Now possibly drop directly indexed element. value = array_[i].value; if (value->gvn_flags().ContainsAnyOf(depends_flags)) { // Drop it. count_--; int head = array_[i].next; if (head == kNil) { array_[i].value = NULL; } else { array_[i].value = lists_[head].value; array_[i].next = lists_[head].next; lists_[head].next = free_list_head_; free_list_head_ = head; } } else { present_flags_.Add(value->gvn_flags()); // Keep it. } } } } HValue* HValueMap::Lookup(HValue* value) const { uint32_t hash = static_cast(value->Hashcode()); uint32_t pos = Bound(hash); if (array_[pos].value != NULL) { if (array_[pos].value->Equals(value)) return array_[pos].value; int next = array_[pos].next; while (next != kNil) { if (lists_[next].value->Equals(value)) return lists_[next].value; next = lists_[next].next; } } return NULL; } void HValueMap::Resize(int new_size) { ASSERT(new_size > count_); // Hashing the values into the new array has no more collisions than in the // old hash map, so we can use the existing lists_ array, if we are careful. // Make sure we have at least one free element. if (free_list_head_ == kNil) { ResizeLists(lists_size_ << 1); } HValueMapListElement* new_array = ZONE->NewArray(new_size); memset(new_array, 0, sizeof(HValueMapListElement) * new_size); HValueMapListElement* old_array = array_; int old_size = array_size_; int old_count = count_; count_ = 0; // Do not modify present_flags_. It is currently correct. array_size_ = new_size; array_ = new_array; if (old_array != NULL) { // Iterate over all the elements in lists, rehashing them. for (int i = 0; i < old_size; ++i) { if (old_array[i].value != NULL) { int current = old_array[i].next; while (current != kNil) { Insert(lists_[current].value); int next = lists_[current].next; lists_[current].next = free_list_head_; free_list_head_ = current; current = next; } // Rehash the directly stored value. Insert(old_array[i].value); } } } USE(old_count); ASSERT(count_ == old_count); } void HValueMap::ResizeLists(int new_size) { ASSERT(new_size > lists_size_); HValueMapListElement* new_lists = ZONE->NewArray(new_size); memset(new_lists, 0, sizeof(HValueMapListElement) * new_size); HValueMapListElement* old_lists = lists_; int old_size = lists_size_; lists_size_ = new_size; lists_ = new_lists; if (old_lists != NULL) { memcpy(lists_, old_lists, old_size * sizeof(HValueMapListElement)); } for (int i = old_size; i < lists_size_; ++i) { lists_[i].next = free_list_head_; free_list_head_ = i; } } void HValueMap::Insert(HValue* value) { ASSERT(value != NULL); // Resizing when half of the hashtable is filled up. if (count_ >= array_size_ >> 1) Resize(array_size_ << 1); ASSERT(count_ < array_size_); count_++; uint32_t pos = Bound(static_cast(value->Hashcode())); if (array_[pos].value == NULL) { array_[pos].value = value; array_[pos].next = kNil; } else { if (free_list_head_ == kNil) { ResizeLists(lists_size_ << 1); } int new_element_pos = free_list_head_; ASSERT(new_element_pos != kNil); free_list_head_ = lists_[free_list_head_].next; lists_[new_element_pos].value = value; lists_[new_element_pos].next = array_[pos].next; ASSERT(array_[pos].next == kNil || lists_[array_[pos].next].value != NULL); array_[pos].next = new_element_pos; } } HSideEffectMap::HSideEffectMap() : count_(0) { memset(data_, 0, kNumberOfTrackedSideEffects * kPointerSize); } HSideEffectMap::HSideEffectMap(HSideEffectMap* other) : count_(other->count_) { memcpy(data_, other->data_, kNumberOfTrackedSideEffects * kPointerSize); } void HSideEffectMap::Kill(GVNFlagSet flags) { for (int i = 0; i < kNumberOfTrackedSideEffects; i++) { GVNFlag changes_flag = HValue::ChangesFlagFromInt(i); if (flags.Contains(changes_flag)) { if (data_[i] != NULL) count_--; data_[i] = NULL; } } } void HSideEffectMap::Store(GVNFlagSet flags, HInstruction* instr) { for (int i = 0; i < kNumberOfTrackedSideEffects; i++) { GVNFlag changes_flag = HValue::ChangesFlagFromInt(i); if (flags.Contains(changes_flag)) { if (data_[i] == NULL) count_++; data_[i] = instr; } } } class HStackCheckEliminator BASE_EMBEDDED { public: explicit HStackCheckEliminator(HGraph* graph) : graph_(graph) { } void Process(); private: HGraph* graph_; }; void HStackCheckEliminator::Process() { // For each loop block walk the dominator tree from the backwards branch to // the loop header. If a call instruction is encountered the backwards branch // is dominated by a call and the stack check in the backwards branch can be // removed. for (int i = 0; i < graph_->blocks()->length(); i++) { HBasicBlock* block = graph_->blocks()->at(i); if (block->IsLoopHeader()) { HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge(); HBasicBlock* dominator = back_edge; while (true) { HInstruction* instr = dominator->first(); while (instr != NULL) { if (instr->IsCall()) { block->loop_information()->stack_check()->Eliminate(); break; } instr = instr->next(); } // Done when the loop header is processed. if (dominator == block) break; // Move up the dominator tree. dominator = dominator->dominator(); } } } } // Simple sparse set with O(1) add, contains, and clear. class SparseSet { public: SparseSet(Zone* zone, int capacity) : capacity_(capacity), length_(0), dense_(zone->NewArray(capacity)), sparse_(zone->NewArray(capacity)) { #ifndef NVALGRIND // Initialize the sparse array to make valgrind happy. memset(sparse_, 0, sizeof(sparse_[0]) * capacity); #endif } bool Contains(int n) const { ASSERT(0 <= n && n < capacity_); int d = sparse_[n]; return 0 <= d && d < length_ && dense_[d] == n; } bool Add(int n) { if (Contains(n)) return false; dense_[length_] = n; sparse_[n] = length_; ++length_; return true; } void Clear() { length_ = 0; } private: int capacity_; int length_; int* dense_; int* sparse_; DISALLOW_COPY_AND_ASSIGN(SparseSet); }; class HGlobalValueNumberer BASE_EMBEDDED { public: explicit HGlobalValueNumberer(HGraph* graph, CompilationInfo* info) : graph_(graph), info_(info), removed_side_effects_(false), block_side_effects_(graph->blocks()->length()), loop_side_effects_(graph->blocks()->length()), visited_on_paths_(graph->zone(), graph->blocks()->length()) { ASSERT(info->isolate()->heap()->allow_allocation(false)); block_side_effects_.AddBlock(GVNFlagSet(), graph_->blocks()->length()); loop_side_effects_.AddBlock(GVNFlagSet(), graph_->blocks()->length()); } ~HGlobalValueNumberer() { ASSERT(!info_->isolate()->heap()->allow_allocation(true)); } // Returns true if values with side effects are removed. bool Analyze(); private: GVNFlagSet CollectSideEffectsOnPathsToDominatedBlock( HBasicBlock* dominator, HBasicBlock* dominated); void AnalyzeBlock(HBasicBlock* block, HValueMap* map, HSideEffectMap* dominators); void ComputeBlockSideEffects(); void LoopInvariantCodeMotion(); void ProcessLoopBlock(HBasicBlock* block, HBasicBlock* before_loop, GVNFlagSet loop_kills, GVNFlagSet* accumulated_first_time_depends, GVNFlagSet* accumulated_first_time_changes); bool AllowCodeMotion(); bool ShouldMove(HInstruction* instr, HBasicBlock* loop_header); HGraph* graph() { return graph_; } CompilationInfo* info() { return info_; } Zone* zone() { return graph_->zone(); } HGraph* graph_; CompilationInfo* info_; bool removed_side_effects_; // A map of block IDs to their side effects. ZoneList block_side_effects_; // A map of loop header block IDs to their loop's side effects. ZoneList loop_side_effects_; // Used when collecting side effects on paths from dominator to // dominated. SparseSet visited_on_paths_; }; bool HGlobalValueNumberer::Analyze() { removed_side_effects_ = false; ComputeBlockSideEffects(); if (FLAG_loop_invariant_code_motion) { LoopInvariantCodeMotion(); } HValueMap* map = new(zone()) HValueMap(); HSideEffectMap side_effect_dominators; AnalyzeBlock(graph_->entry_block(), map, &side_effect_dominators); return removed_side_effects_; } void HGlobalValueNumberer::ComputeBlockSideEffects() { // The Analyze phase of GVN can be called multiple times. Clear loop side // effects before computing them to erase the contents from previous Analyze // passes. for (int i = 0; i < loop_side_effects_.length(); ++i) { loop_side_effects_[i].RemoveAll(); } for (int i = graph_->blocks()->length() - 1; i >= 0; --i) { // Compute side effects for the block. HBasicBlock* block = graph_->blocks()->at(i); HInstruction* instr = block->first(); int id = block->block_id(); GVNFlagSet side_effects; while (instr != NULL) { side_effects.Add(instr->ChangesFlags()); if (instr->IsSoftDeoptimize()) { block_side_effects_[id].RemoveAll(); side_effects.RemoveAll(); break; } instr = instr->next(); } block_side_effects_[id].Add(side_effects); // Loop headers are part of their loop. if (block->IsLoopHeader()) { loop_side_effects_[id].Add(side_effects); } // Propagate loop side effects upwards. if (block->HasParentLoopHeader()) { int header_id = block->parent_loop_header()->block_id(); loop_side_effects_[header_id].Add(block->IsLoopHeader() ? loop_side_effects_[id] : side_effects); } } } SmartArrayPointer GetGVNFlagsString(GVNFlagSet flags) { char underlying_buffer[kLastFlag * 128]; Vector buffer(underlying_buffer, sizeof(underlying_buffer)); #if DEBUG int offset = 0; const char* separator = ""; const char* comma = ", "; buffer[0] = 0; uint32_t set_depends_on = 0; uint32_t set_changes = 0; for (int bit = 0; bit < kLastFlag; ++bit) { if ((flags.ToIntegral() & (1 << bit)) != 0) { if (bit % 2 == 0) { set_changes++; } else { set_depends_on++; } } } bool positive_changes = set_changes < (kLastFlag / 2); bool positive_depends_on = set_depends_on < (kLastFlag / 2); if (set_changes > 0) { if (positive_changes) { offset += OS::SNPrintF(buffer + offset, "changes ["); } else { offset += OS::SNPrintF(buffer + offset, "changes all except ["); } for (int bit = 0; bit < kLastFlag; ++bit) { if (((flags.ToIntegral() & (1 << bit)) != 0) == positive_changes) { switch (static_cast(bit)) { #define DECLARE_FLAG(type) \ case kChanges##type: \ offset += OS::SNPrintF(buffer + offset, separator); \ offset += OS::SNPrintF(buffer + offset, #type); \ separator = comma; \ break; GVN_TRACKED_FLAG_LIST(DECLARE_FLAG) GVN_UNTRACKED_FLAG_LIST(DECLARE_FLAG) #undef DECLARE_FLAG default: break; } } } offset += OS::SNPrintF(buffer + offset, "]"); } if (set_depends_on > 0) { separator = ""; if (set_changes > 0) { offset += OS::SNPrintF(buffer + offset, ", "); } if (positive_depends_on) { offset += OS::SNPrintF(buffer + offset, "depends on ["); } else { offset += OS::SNPrintF(buffer + offset, "depends on all except ["); } for (int bit = 0; bit < kLastFlag; ++bit) { if (((flags.ToIntegral() & (1 << bit)) != 0) == positive_depends_on) { switch (static_cast(bit)) { #define DECLARE_FLAG(type) \ case kDependsOn##type: \ offset += OS::SNPrintF(buffer + offset, separator); \ offset += OS::SNPrintF(buffer + offset, #type); \ separator = comma; \ break; GVN_TRACKED_FLAG_LIST(DECLARE_FLAG) GVN_UNTRACKED_FLAG_LIST(DECLARE_FLAG) #undef DECLARE_FLAG default: break; } } } offset += OS::SNPrintF(buffer + offset, "]"); } #else OS::SNPrintF(buffer, "0x%08X", flags.ToIntegral()); #endif size_t string_len = strlen(underlying_buffer) + 1; ASSERT(string_len <= sizeof(underlying_buffer)); char* result = new char[strlen(underlying_buffer) + 1]; memcpy(result, underlying_buffer, string_len); return SmartArrayPointer(result); } void HGlobalValueNumberer::LoopInvariantCodeMotion() { for (int i = graph_->blocks()->length() - 1; i >= 0; --i) { HBasicBlock* block = graph_->blocks()->at(i); if (block->IsLoopHeader()) { GVNFlagSet side_effects = loop_side_effects_[block->block_id()]; TRACE_GVN_2("Try loop invariant motion for block B%d %s\n", block->block_id(), *GetGVNFlagsString(side_effects)); GVNFlagSet accumulated_first_time_depends; GVNFlagSet accumulated_first_time_changes; HBasicBlock* last = block->loop_information()->GetLastBackEdge(); for (int j = block->block_id(); j <= last->block_id(); ++j) { ProcessLoopBlock(graph_->blocks()->at(j), block, side_effects, &accumulated_first_time_depends, &accumulated_first_time_changes); } } } } void HGlobalValueNumberer::ProcessLoopBlock( HBasicBlock* block, HBasicBlock* loop_header, GVNFlagSet loop_kills, GVNFlagSet* first_time_depends, GVNFlagSet* first_time_changes) { HBasicBlock* pre_header = loop_header->predecessors()->at(0); GVNFlagSet depends_flags = HValue::ConvertChangesToDependsFlags(loop_kills); TRACE_GVN_2("Loop invariant motion for B%d %s\n", block->block_id(), *GetGVNFlagsString(depends_flags)); HInstruction* instr = block->first(); while (instr != NULL) { HInstruction* next = instr->next(); bool hoisted = false; if (instr->CheckFlag(HValue::kUseGVN)) { TRACE_GVN_4("Checking instruction %d (%s) %s. Loop %s\n", instr->id(), instr->Mnemonic(), *GetGVNFlagsString(instr->gvn_flags()), *GetGVNFlagsString(loop_kills)); bool can_hoist = !instr->gvn_flags().ContainsAnyOf(depends_flags); if (instr->IsTransitionElementsKind()) { // It's possible to hoist transitions out of a loop as long as the // hoisting wouldn't move the transition past an instruction that has a // DependsOn flag for anything it changes. GVNFlagSet hoist_depends_blockers = HValue::ConvertChangesToDependsFlags(instr->ChangesFlags()); // In addition, the transition must not be hoisted above elements kind // changes, or if the transition is destructive to the elements buffer, // changes to array pointer or array contents. GVNFlagSet hoist_change_blockers; hoist_change_blockers.Add(kChangesElementsKind); HTransitionElementsKind* trans = HTransitionElementsKind::cast(instr); if (trans->original_map()->has_fast_double_elements()) { hoist_change_blockers.Add(kChangesElementsPointer); hoist_change_blockers.Add(kChangesDoubleArrayElements); } if (trans->transitioned_map()->has_fast_double_elements()) { hoist_change_blockers.Add(kChangesElementsPointer); hoist_change_blockers.Add(kChangesArrayElements); } if (FLAG_trace_gvn) { GVNFlagSet hoist_blockers = hoist_depends_blockers; hoist_blockers.Add(hoist_change_blockers); GVNFlagSet first_time = *first_time_changes; first_time.Add(*first_time_depends); TRACE_GVN_4("Checking dependencies on HTransitionElementsKind " "%d (%s) hoist blockers: %s; " "first-time accumulated: %s\n", instr->id(), instr->Mnemonic(), *GetGVNFlagsString(hoist_blockers), *GetGVNFlagsString(first_time)); } // It's possible to hoist transition from the current loop loop only if // they dominate all of the successor blocks in the same loop and there // are not any instructions that have Changes/DependsOn that intervene // between it and the beginning of the loop header. bool in_nested_loop = block != loop_header && ((block->parent_loop_header() != loop_header) || block->IsLoopHeader()); can_hoist = !in_nested_loop && block->IsLoopSuccessorDominator() && !first_time_depends->ContainsAnyOf(hoist_depends_blockers) && !first_time_changes->ContainsAnyOf(hoist_change_blockers); } if (can_hoist) { bool inputs_loop_invariant = true; for (int i = 0; i < instr->OperandCount(); ++i) { if (instr->OperandAt(i)->IsDefinedAfter(pre_header)) { inputs_loop_invariant = false; } } if (inputs_loop_invariant && ShouldMove(instr, loop_header)) { TRACE_GVN_1("Hoisting loop invariant instruction %d\n", instr->id()); // Move the instruction out of the loop. instr->Unlink(); instr->InsertBefore(pre_header->end()); if (instr->HasSideEffects()) removed_side_effects_ = true; hoisted = true; } } } if (!hoisted) { // If an instruction is not hoisted, we have to account for its side // effects when hoisting later HTransitionElementsKind instructions. GVNFlagSet previous_depends = *first_time_depends; GVNFlagSet previous_changes = *first_time_changes; first_time_depends->Add(instr->DependsOnFlags()); first_time_changes->Add(instr->ChangesFlags()); if (!(previous_depends == *first_time_depends)) { TRACE_GVN_1("Updated first-time accumulated %s\n", *GetGVNFlagsString(*first_time_depends)); } if (!(previous_changes == *first_time_changes)) { TRACE_GVN_1("Updated first-time accumulated %s\n", *GetGVNFlagsString(*first_time_changes)); } } instr = next; } } bool HGlobalValueNumberer::AllowCodeMotion() { return info()->shared_info()->opt_count() + 1 < Compiler::kDefaultMaxOptCount; } bool HGlobalValueNumberer::ShouldMove(HInstruction* instr, HBasicBlock* loop_header) { // If we've disabled code motion or we're in a block that unconditionally // deoptimizes, don't move any instructions. return AllowCodeMotion() && !instr->block()->IsDeoptimizing(); } GVNFlagSet HGlobalValueNumberer::CollectSideEffectsOnPathsToDominatedBlock( HBasicBlock* dominator, HBasicBlock* dominated) { GVNFlagSet side_effects; for (int i = 0; i < dominated->predecessors()->length(); ++i) { HBasicBlock* block = dominated->predecessors()->at(i); if (dominator->block_id() < block->block_id() && block->block_id() < dominated->block_id() && visited_on_paths_.Add(block->block_id())) { side_effects.Add(block_side_effects_[block->block_id()]); if (block->IsLoopHeader()) { side_effects.Add(loop_side_effects_[block->block_id()]); } side_effects.Add(CollectSideEffectsOnPathsToDominatedBlock( dominator, block)); } } return side_effects; } void HGlobalValueNumberer::AnalyzeBlock(HBasicBlock* block, HValueMap* map, HSideEffectMap* dominators) { TRACE_GVN_2("Analyzing block B%d%s\n", block->block_id(), block->IsLoopHeader() ? " (loop header)" : ""); // If this is a loop header kill everything killed by the loop. if (block->IsLoopHeader()) { map->Kill(loop_side_effects_[block->block_id()]); } // Go through all instructions of the current block. HInstruction* instr = block->first(); while (instr != NULL) { HInstruction* next = instr->next(); GVNFlagSet flags = instr->ChangesFlags(); if (!flags.IsEmpty()) { // Clear all instructions in the map that are affected by side effects. // Store instruction as the dominating one for tracked side effects. map->Kill(flags); dominators->Store(flags, instr); TRACE_GVN_2("Instruction %d %s\n", instr->id(), *GetGVNFlagsString(flags)); } if (instr->CheckFlag(HValue::kUseGVN)) { ASSERT(!instr->HasObservableSideEffects()); HValue* other = map->Lookup(instr); if (other != NULL) { ASSERT(instr->Equals(other) && other->Equals(instr)); TRACE_GVN_4("Replacing value %d (%s) with value %d (%s)\n", instr->id(), instr->Mnemonic(), other->id(), other->Mnemonic()); if (instr->HasSideEffects()) removed_side_effects_ = true; instr->DeleteAndReplaceWith(other); } else { map->Add(instr); } } if (instr->CheckFlag(HValue::kTrackSideEffectDominators)) { for (int i = 0; i < kNumberOfTrackedSideEffects; i++) { HValue* other = dominators->at(i); GVNFlag changes_flag = HValue::ChangesFlagFromInt(i); GVNFlag depends_on_flag = HValue::DependsOnFlagFromInt(i); if (instr->DependsOnFlags().Contains(depends_on_flag) && (other != NULL)) { TRACE_GVN_5("Side-effect #%d in %d (%s) is dominated by %d (%s)\n", i, instr->id(), instr->Mnemonic(), other->id(), other->Mnemonic()); instr->SetSideEffectDominator(changes_flag, other); } } } instr = next; } // Recursively continue analysis for all immediately dominated blocks. int length = block->dominated_blocks()->length(); for (int i = 0; i < length; ++i) { HBasicBlock* dominated = block->dominated_blocks()->at(i); // No need to copy the map for the last child in the dominator tree. HValueMap* successor_map = (i == length - 1) ? map : map->Copy(zone()); HSideEffectMap successor_dominators(dominators); // Kill everything killed on any path between this block and the // dominated block. We don't have to traverse these paths if the // value map and the dominators list is already empty. If the range // of block ids (block_id, dominated_id) is empty there are no such // paths. if ((!successor_map->IsEmpty() || !successor_dominators.IsEmpty()) && block->block_id() + 1 < dominated->block_id()) { visited_on_paths_.Clear(); GVNFlagSet side_effects_on_all_paths = CollectSideEffectsOnPathsToDominatedBlock(block, dominated); successor_map->Kill(side_effects_on_all_paths); successor_dominators.Kill(side_effects_on_all_paths); } AnalyzeBlock(dominated, successor_map, &successor_dominators); } } class HInferRepresentation BASE_EMBEDDED { public: explicit HInferRepresentation(HGraph* graph) : graph_(graph), worklist_(8), in_worklist_(graph->GetMaximumValueID(), graph->zone()) { } void Analyze(); private: Representation TryChange(HValue* current); void AddToWorklist(HValue* current); void InferBasedOnInputs(HValue* current); void AddDependantsToWorklist(HValue* current); void InferBasedOnUses(HValue* current); Zone* zone() { return graph_->zone(); } HGraph* graph_; ZoneList worklist_; BitVector in_worklist_; }; void HInferRepresentation::AddToWorklist(HValue* current) { if (current->representation().IsSpecialization()) return; if (!current->CheckFlag(HValue::kFlexibleRepresentation)) return; if (in_worklist_.Contains(current->id())) return; worklist_.Add(current); in_worklist_.Add(current->id()); } // This method tries to specialize the representation type of the value // given as a parameter. The value is asked to infer its representation type // based on its inputs. If the inferred type is more specialized, then this // becomes the new representation type of the node. void HInferRepresentation::InferBasedOnInputs(HValue* current) { Representation r = current->representation(); if (r.IsSpecialization()) return; ASSERT(current->CheckFlag(HValue::kFlexibleRepresentation)); Representation inferred = current->InferredRepresentation(); if (inferred.IsSpecialization()) { if (FLAG_trace_representation) { PrintF("Changing #%d representation %s -> %s based on inputs\n", current->id(), r.Mnemonic(), inferred.Mnemonic()); } current->ChangeRepresentation(inferred); AddDependantsToWorklist(current); } } void HInferRepresentation::AddDependantsToWorklist(HValue* value) { for (HUseIterator it(value->uses()); !it.Done(); it.Advance()) { AddToWorklist(it.value()); } for (int i = 0; i < value->OperandCount(); ++i) { AddToWorklist(value->OperandAt(i)); } } // This method calculates whether specializing the representation of the value // given as the parameter has a benefit in terms of less necessary type // conversions. If there is a benefit, then the representation of the value is // specialized. void HInferRepresentation::InferBasedOnUses(HValue* value) { Representation r = value->representation(); if (r.IsSpecialization() || value->HasNoUses()) return; ASSERT(value->CheckFlag(HValue::kFlexibleRepresentation)); Representation new_rep = TryChange(value); if (!new_rep.IsNone()) { if (!value->representation().Equals(new_rep)) { if (FLAG_trace_representation) { PrintF("Changing #%d representation %s -> %s based on uses\n", value->id(), r.Mnemonic(), new_rep.Mnemonic()); } value->ChangeRepresentation(new_rep); AddDependantsToWorklist(value); } } } Representation HInferRepresentation::TryChange(HValue* value) { // Array of use counts for each representation. int use_count[Representation::kNumRepresentations] = { 0 }; for (HUseIterator it(value->uses()); !it.Done(); it.Advance()) { HValue* use = it.value(); Representation rep = use->RequiredInputRepresentation(it.index()); if (rep.IsNone()) continue; if (use->IsPhi()) HPhi::cast(use)->AddIndirectUsesTo(&use_count[0]); use_count[rep.kind()] += use->LoopWeight(); } int tagged_count = use_count[Representation::kTagged]; int double_count = use_count[Representation::kDouble]; int int32_count = use_count[Representation::kInteger32]; int non_tagged_count = double_count + int32_count; // If a non-loop phi has tagged uses, don't convert it to untagged. if (value->IsPhi() && !value->block()->IsLoopHeader() && tagged_count > 0) { return Representation::None(); } // Prefer unboxing over boxing, the latter is more expensive. if (tagged_count > non_tagged_count) return Representation::None(); // Prefer Integer32 over Double, if possible. if (int32_count > 0 && value->IsConvertibleToInteger()) { return Representation::Integer32(); } if (double_count > 0) return Representation::Double(); return Representation::None(); } void HInferRepresentation::Analyze() { HPhase phase("H_Infer representations", graph_); // (1) Initialize bit vectors and count real uses. Each phi gets a // bit-vector of length . const ZoneList* phi_list = graph_->phi_list(); int phi_count = phi_list->length(); ZoneList connected_phis(phi_count); for (int i = 0; i < phi_count; ++i) { phi_list->at(i)->InitRealUses(i); BitVector* connected_set = new(zone()) BitVector(phi_count, graph_->zone()); connected_set->Add(i); connected_phis.Add(connected_set); } // (2) Do a fixed point iteration to find the set of connected phis. A // phi is connected to another phi if its value is used either directly or // indirectly through a transitive closure of the def-use relation. bool change = true; while (change) { change = false; // We normally have far more "forward edges" than "backward edges", // so we terminate faster when we walk backwards. for (int i = phi_count - 1; i >= 0; --i) { HPhi* phi = phi_list->at(i); for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) { HValue* use = it.value(); if (use->IsPhi()) { int id = HPhi::cast(use)->phi_id(); if (connected_phis[i]->UnionIsChanged(*connected_phis[id])) change = true; } } } } // (3) Use the phi reachability information from step 2 to // (a) sum up the non-phi use counts of all connected phis. // (b) push information about values which can't be converted to integer // without deoptimization through the phi use-def chains, avoiding // unnecessary deoptimizations later. for (int i = 0; i < phi_count; ++i) { HPhi* phi = phi_list->at(i); bool cti = phi->AllOperandsConvertibleToInteger(); for (BitVector::Iterator it(connected_phis.at(i)); !it.Done(); it.Advance()) { int index = it.Current(); HPhi* it_use = phi_list->at(it.Current()); if (index != i) phi->AddNonPhiUsesFrom(it_use); // Don't count twice! if (!cti) it_use->set_is_convertible_to_integer(false); } } // Initialize work list for (int i = 0; i < graph_->blocks()->length(); ++i) { HBasicBlock* block = graph_->blocks()->at(i); const ZoneList* phis = block->phis(); for (int j = 0; j < phis->length(); ++j) { AddToWorklist(phis->at(j)); } HInstruction* current = block->first(); while (current != NULL) { AddToWorklist(current); current = current->next(); } } // Do a fixed point iteration, trying to improve representations while (!worklist_.is_empty()) { HValue* current = worklist_.RemoveLast(); in_worklist_.Remove(current->id()); InferBasedOnInputs(current); InferBasedOnUses(current); } } void HGraph::InitializeInferredTypes() { HPhase phase("H_Inferring types", this); InitializeInferredTypes(0, this->blocks_.length() - 1); } void HGraph::InitializeInferredTypes(int from_inclusive, int to_inclusive) { for (int i = from_inclusive; i <= to_inclusive; ++i) { HBasicBlock* block = blocks_[i]; const ZoneList* phis = block->phis(); for (int j = 0; j < phis->length(); j++) { phis->at(j)->UpdateInferredType(); } HInstruction* current = block->first(); while (current != NULL) { current->UpdateInferredType(); current = current->next(); } if (block->IsLoopHeader()) { HBasicBlock* last_back_edge = block->loop_information()->GetLastBackEdge(); InitializeInferredTypes(i + 1, last_back_edge->block_id()); // Skip all blocks already processed by the recursive call. i = last_back_edge->block_id(); // Update phis of the loop header now after the whole loop body is // guaranteed to be processed. ZoneList worklist(block->phis()->length()); for (int j = 0; j < block->phis()->length(); ++j) { worklist.Add(block->phis()->at(j)); } InferTypes(&worklist); } } } void HGraph::PropagateMinusZeroChecks(HValue* value, BitVector* visited) { HValue* current = value; while (current != NULL) { if (visited->Contains(current->id())) return; // For phis, we must propagate the check to all of its inputs. if (current->IsPhi()) { visited->Add(current->id()); HPhi* phi = HPhi::cast(current); for (int i = 0; i < phi->OperandCount(); ++i) { PropagateMinusZeroChecks(phi->OperandAt(i), visited); } break; } // For multiplication and division, we must propagate to the left and // the right side. if (current->IsMul()) { HMul* mul = HMul::cast(current); mul->EnsureAndPropagateNotMinusZero(visited); PropagateMinusZeroChecks(mul->left(), visited); PropagateMinusZeroChecks(mul->right(), visited); } else if (current->IsDiv()) { HDiv* div = HDiv::cast(current); div->EnsureAndPropagateNotMinusZero(visited); PropagateMinusZeroChecks(div->left(), visited); PropagateMinusZeroChecks(div->right(), visited); } current = current->EnsureAndPropagateNotMinusZero(visited); } } void HGraph::InsertRepresentationChangeForUse(HValue* value, HValue* use_value, int use_index, Representation to) { // Insert the representation change right before its use. For phi-uses we // insert at the end of the corresponding predecessor. HInstruction* next = NULL; if (use_value->IsPhi()) { next = use_value->block()->predecessors()->at(use_index)->end(); } else { next = HInstruction::cast(use_value); } // For constants we try to make the representation change at compile // time. When a representation change is not possible without loss of // information we treat constants like normal instructions and insert the // change instructions for them. HInstruction* new_value = NULL; bool is_truncating = use_value->CheckFlag(HValue::kTruncatingToInt32); bool deoptimize_on_undefined = use_value->CheckFlag(HValue::kDeoptimizeOnUndefined); if (value->IsConstant()) { HConstant* constant = HConstant::cast(value); // Try to create a new copy of the constant with the new representation. new_value = is_truncating ? constant->CopyToTruncatedInt32() : constant->CopyToRepresentation(to); } if (new_value == NULL) { new_value = new(zone()) HChange(value, to, is_truncating, deoptimize_on_undefined); } new_value->InsertBefore(next); use_value->SetOperandAt(use_index, new_value); } void HGraph::InsertRepresentationChangesForValue(HValue* value) { Representation r = value->representation(); if (r.IsNone()) return; if (value->HasNoUses()) return; for (HUseIterator it(value->uses()); !it.Done(); it.Advance()) { HValue* use_value = it.value(); int use_index = it.index(); Representation req = use_value->RequiredInputRepresentation(use_index); if (req.IsNone() || req.Equals(r)) continue; InsertRepresentationChangeForUse(value, use_value, use_index, req); } if (value->HasNoUses()) { ASSERT(value->IsConstant()); value->DeleteAndReplaceWith(NULL); } // The only purpose of a HForceRepresentation is to represent the value // after the (possible) HChange instruction. We make it disappear. if (value->IsForceRepresentation()) { value->DeleteAndReplaceWith(HForceRepresentation::cast(value)->value()); } } void HGraph::InsertRepresentationChanges() { HPhase phase("H_Representation changes", this); // Compute truncation flag for phis: Initially assume that all // int32-phis allow truncation and iteratively remove the ones that // are used in an operation that does not allow a truncating // conversion. // TODO(fschneider): Replace this with a worklist-based iteration. for (int i = 0; i < phi_list()->length(); i++) { HPhi* phi = phi_list()->at(i); if (phi->representation().IsInteger32()) { phi->SetFlag(HValue::kTruncatingToInt32); } } bool change = true; while (change) { change = false; for (int i = 0; i < phi_list()->length(); i++) { HPhi* phi = phi_list()->at(i); if (!phi->CheckFlag(HValue::kTruncatingToInt32)) continue; if (!phi->CheckUsesForFlag(HValue::kTruncatingToInt32)) { phi->ClearFlag(HValue::kTruncatingToInt32); change = true; } } } for (int i = 0; i < blocks_.length(); ++i) { // Process phi instructions first. const ZoneList* phis = blocks_[i]->phis(); for (int j = 0; j < phis->length(); j++) { InsertRepresentationChangesForValue(phis->at(j)); } // Process normal instructions. HInstruction* current = blocks_[i]->first(); while (current != NULL) { InsertRepresentationChangesForValue(current); current = current->next(); } } } void HGraph::RecursivelyMarkPhiDeoptimizeOnUndefined(HPhi* phi) { if (phi->CheckFlag(HValue::kDeoptimizeOnUndefined)) return; phi->SetFlag(HValue::kDeoptimizeOnUndefined); for (int i = 0; i < phi->OperandCount(); ++i) { HValue* input = phi->OperandAt(i); if (input->IsPhi()) { RecursivelyMarkPhiDeoptimizeOnUndefined(HPhi::cast(input)); } } } void HGraph::MarkDeoptimizeOnUndefined() { HPhase phase("H_MarkDeoptimizeOnUndefined", this); // Compute DeoptimizeOnUndefined flag for phis. // Any phi that can reach a use with DeoptimizeOnUndefined set must // have DeoptimizeOnUndefined set. Currently only HCompareIDAndBranch, with // double input representation, has this flag set. // The flag is used by HChange tagged->double, which must deoptimize // if one of its uses has this flag set. for (int i = 0; i < phi_list()->length(); i++) { HPhi* phi = phi_list()->at(i); if (phi->representation().IsDouble()) { for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) { if (it.value()->CheckFlag(HValue::kDeoptimizeOnUndefined)) { RecursivelyMarkPhiDeoptimizeOnUndefined(phi); break; } } } } } void HGraph::ComputeMinusZeroChecks() { BitVector visited(GetMaximumValueID(), zone()); for (int i = 0; i < blocks_.length(); ++i) { for (HInstruction* current = blocks_[i]->first(); current != NULL; current = current->next()) { if (current->IsChange()) { HChange* change = HChange::cast(current); // Propagate flags for negative zero checks upwards from conversions // int32-to-tagged and int32-to-double. Representation from = change->value()->representation(); ASSERT(from.Equals(change->from())); if (from.IsInteger32()) { ASSERT(change->to().IsTagged() || change->to().IsDouble()); ASSERT(visited.IsEmpty()); PropagateMinusZeroChecks(change->value(), &visited); visited.Clear(); } } } } } // Implementation of utility class to encapsulate the translation state for // a (possibly inlined) function. FunctionState::FunctionState(HGraphBuilder* owner, CompilationInfo* info, TypeFeedbackOracle* oracle, ReturnHandlingFlag return_handling) : owner_(owner), compilation_info_(info), oracle_(oracle), call_context_(NULL), return_handling_(return_handling), function_return_(NULL), test_context_(NULL), entry_(NULL), arguments_elements_(NULL), outer_(owner->function_state()) { if (outer_ != NULL) { // State for an inline function. if (owner->ast_context()->IsTest()) { HBasicBlock* if_true = owner->graph()->CreateBasicBlock(); HBasicBlock* if_false = owner->graph()->CreateBasicBlock(); if_true->MarkAsInlineReturnTarget(); if_false->MarkAsInlineReturnTarget(); Expression* cond = TestContext::cast(owner->ast_context())->condition(); // The AstContext constructor pushed on the context stack. This newed // instance is the reason that AstContext can't be BASE_EMBEDDED. test_context_ = new TestContext(owner, cond, if_true, if_false); } else { function_return_ = owner->graph()->CreateBasicBlock(); function_return()->MarkAsInlineReturnTarget(); } // Set this after possibly allocating a new TestContext above. call_context_ = owner->ast_context(); } // Push on the state stack. owner->set_function_state(this); } FunctionState::~FunctionState() { delete test_context_; owner_->set_function_state(outer_); } // Implementation of utility classes to represent an expression's context in // the AST. AstContext::AstContext(HGraphBuilder* owner, Expression::Context kind) : owner_(owner), kind_(kind), outer_(owner->ast_context()), for_typeof_(false) { owner->set_ast_context(this); // Push. #ifdef DEBUG ASSERT(owner->environment()->frame_type() == JS_FUNCTION); original_length_ = owner->environment()->length(); #endif } AstContext::~AstContext() { owner_->set_ast_context(outer_); // Pop. } EffectContext::~EffectContext() { ASSERT(owner()->HasStackOverflow() || owner()->current_block() == NULL || (owner()->environment()->length() == original_length_ && owner()->environment()->frame_type() == JS_FUNCTION)); } ValueContext::~ValueContext() { ASSERT(owner()->HasStackOverflow() || owner()->current_block() == NULL || (owner()->environment()->length() == original_length_ + 1 && owner()->environment()->frame_type() == JS_FUNCTION)); } void EffectContext::ReturnValue(HValue* value) { // The value is simply ignored. } void ValueContext::ReturnValue(HValue* value) { // The value is tracked in the bailout environment, and communicated // through the environment as the result of the expression. if (!arguments_allowed() && value->CheckFlag(HValue::kIsArguments)) { owner()->Bailout("bad value context for arguments value"); } owner()->Push(value); } void TestContext::ReturnValue(HValue* value) { BuildBranch(value); } void EffectContext::ReturnInstruction(HInstruction* instr, int ast_id) { ASSERT(!instr->IsControlInstruction()); owner()->AddInstruction(instr); if (instr->HasObservableSideEffects()) owner()->AddSimulate(ast_id); } void EffectContext::ReturnControl(HControlInstruction* instr, int ast_id) { ASSERT(!instr->HasObservableSideEffects()); HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock(); HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock(); instr->SetSuccessorAt(0, empty_true); instr->SetSuccessorAt(1, empty_false); owner()->current_block()->Finish(instr); HBasicBlock* join = owner()->CreateJoin(empty_true, empty_false, ast_id); owner()->set_current_block(join); } void ValueContext::ReturnInstruction(HInstruction* instr, int ast_id) { ASSERT(!instr->IsControlInstruction()); if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) { return owner()->Bailout("bad value context for arguments object value"); } owner()->AddInstruction(instr); owner()->Push(instr); if (instr->HasObservableSideEffects()) owner()->AddSimulate(ast_id); } void ValueContext::ReturnControl(HControlInstruction* instr, int ast_id) { ASSERT(!instr->HasObservableSideEffects()); if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) { return owner()->Bailout("bad value context for arguments object value"); } HBasicBlock* materialize_false = owner()->graph()->CreateBasicBlock(); HBasicBlock* materialize_true = owner()->graph()->CreateBasicBlock(); instr->SetSuccessorAt(0, materialize_true); instr->SetSuccessorAt(1, materialize_false); owner()->current_block()->Finish(instr); owner()->set_current_block(materialize_true); owner()->Push(owner()->graph()->GetConstantTrue()); owner()->set_current_block(materialize_false); owner()->Push(owner()->graph()->GetConstantFalse()); HBasicBlock* join = owner()->CreateJoin(materialize_true, materialize_false, ast_id); owner()->set_current_block(join); } void TestContext::ReturnInstruction(HInstruction* instr, int ast_id) { ASSERT(!instr->IsControlInstruction()); HGraphBuilder* builder = owner(); builder->AddInstruction(instr); // We expect a simulate after every expression with side effects, though // this one isn't actually needed (and wouldn't work if it were targeted). if (instr->HasObservableSideEffects()) { builder->Push(instr); builder->AddSimulate(ast_id); builder->Pop(); } BuildBranch(instr); } void TestContext::ReturnControl(HControlInstruction* instr, int ast_id) { ASSERT(!instr->HasObservableSideEffects()); HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock(); HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock(); instr->SetSuccessorAt(0, empty_true); instr->SetSuccessorAt(1, empty_false); owner()->current_block()->Finish(instr); empty_true->Goto(if_true(), owner()->function_state()); empty_false->Goto(if_false(), owner()->function_state()); owner()->set_current_block(NULL); } void TestContext::BuildBranch(HValue* value) { // We expect the graph to be in edge-split form: there is no edge that // connects a branch node to a join node. We conservatively ensure that // property by always adding an empty block on the outgoing edges of this // branch. HGraphBuilder* builder = owner(); if (value != NULL && value->CheckFlag(HValue::kIsArguments)) { builder->Bailout("arguments object value in a test context"); } HBasicBlock* empty_true = builder->graph()->CreateBasicBlock(); HBasicBlock* empty_false = builder->graph()->CreateBasicBlock(); unsigned test_id = condition()->test_id(); ToBooleanStub::Types expected(builder->oracle()->ToBooleanTypes(test_id)); HBranch* test = new(zone()) HBranch(value, empty_true, empty_false, expected); builder->current_block()->Finish(test); empty_true->Goto(if_true(), owner()->function_state()); empty_false->Goto(if_false(), owner()->function_state()); builder->set_current_block(NULL); } // HGraphBuilder infrastructure for bailing out and checking bailouts. #define CHECK_BAILOUT(call) \ do { \ call; \ if (HasStackOverflow()) return; \ } while (false) #define CHECK_ALIVE(call) \ do { \ call; \ if (HasStackOverflow() || current_block() == NULL) return; \ } while (false) void HGraphBuilder::Bailout(const char* reason) { if (FLAG_trace_bailout) { SmartArrayPointer name( info()->shared_info()->DebugName()->ToCString()); PrintF("Bailout in HGraphBuilder: @\"%s\": %s\n", *name, reason); } SetStackOverflow(); } void HGraphBuilder::VisitForEffect(Expression* expr) { EffectContext for_effect(this); Visit(expr); } void HGraphBuilder::VisitForValue(Expression* expr, ArgumentsAllowedFlag flag) { ValueContext for_value(this, flag); Visit(expr); } void HGraphBuilder::VisitForTypeOf(Expression* expr) { ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED); for_value.set_for_typeof(true); Visit(expr); } void HGraphBuilder::VisitForControl(Expression* expr, HBasicBlock* true_block, HBasicBlock* false_block) { TestContext for_test(this, expr, true_block, false_block); Visit(expr); } HValue* HGraphBuilder::VisitArgument(Expression* expr) { VisitForValue(expr); if (HasStackOverflow() || current_block() == NULL) return NULL; HValue* value = Pop(); Push(AddInstruction(new(zone()) HPushArgument(value))); return value; } void HGraphBuilder::VisitArgumentList(ZoneList* arguments) { for (int i = 0; i < arguments->length(); i++) { CHECK_ALIVE(VisitArgument(arguments->at(i))); } } void HGraphBuilder::VisitExpressions(ZoneList* exprs) { for (int i = 0; i < exprs->length(); ++i) { CHECK_ALIVE(VisitForValue(exprs->at(i))); } } HGraph* HGraphBuilder::CreateGraph() { graph_ = new(zone()) HGraph(info()); if (FLAG_hydrogen_stats) HStatistics::Instance()->Initialize(info()); { HPhase phase("H_Block building"); current_block_ = graph()->entry_block(); Scope* scope = info()->scope(); if (scope->HasIllegalRedeclaration()) { Bailout("function with illegal redeclaration"); return NULL; } if (scope->calls_eval()) { Bailout("function calls eval"); return NULL; } SetUpScope(scope); // Add an edge to the body entry. This is warty: the graph's start // environment will be used by the Lithium translation as the initial // environment on graph entry, but it has now been mutated by the // Hydrogen translation of the instructions in the start block. This // environment uses values which have not been defined yet. These // Hydrogen instructions will then be replayed by the Lithium // translation, so they cannot have an environment effect. The edge to // the body's entry block (along with some special logic for the start // block in HInstruction::InsertAfter) seals the start block from // getting unwanted instructions inserted. // // TODO(kmillikin): Fix this. Stop mutating the initial environment. // Make the Hydrogen instructions in the initial block into Hydrogen // values (but not instructions), present in the initial environment and // not replayed by the Lithium translation. HEnvironment* initial_env = environment()->CopyWithoutHistory(); HBasicBlock* body_entry = CreateBasicBlock(initial_env); current_block()->Goto(body_entry); body_entry->SetJoinId(AstNode::kFunctionEntryId); set_current_block(body_entry); // Handle implicit declaration of the function name in named function // expressions before other declarations. if (scope->is_function_scope() && scope->function() != NULL) { VisitVariableDeclaration(scope->function()); } VisitDeclarations(scope->declarations()); AddSimulate(AstNode::kDeclarationsId); HValue* context = environment()->LookupContext(); AddInstruction( new(zone()) HStackCheck(context, HStackCheck::kFunctionEntry)); VisitStatements(info()->function()->body()); if (HasStackOverflow()) return NULL; if (current_block() != NULL) { HReturn* instr = new(zone()) HReturn(graph()->GetConstantUndefined()); current_block()->FinishExit(instr); set_current_block(NULL); } } graph()->OrderBlocks(); graph()->AssignDominators(); #ifdef DEBUG // Do a full verify after building the graph and computing dominators. graph()->Verify(true); #endif graph()->PropagateDeoptimizingMark(); if (!graph()->CheckConstPhiUses()) { Bailout("Unsupported phi use of const variable"); return NULL; } graph()->EliminateRedundantPhis(); if (!graph()->CheckArgumentsPhiUses()) { Bailout("Unsupported phi use of arguments"); return NULL; } if (FLAG_eliminate_dead_phis) graph()->EliminateUnreachablePhis(); graph()->CollectPhis(); if (graph()->has_osr_loop_entry()) { const ZoneList* phis = graph()->osr_loop_entry()->phis(); for (int j = 0; j < phis->length(); j++) { HPhi* phi = phis->at(j); graph()->osr_values()->at(phi->merged_index())->set_incoming_value(phi); } } HInferRepresentation rep(graph()); rep.Analyze(); graph()->MarkDeoptimizeOnUndefined(); graph()->InsertRepresentationChanges(); graph()->InitializeInferredTypes(); graph()->Canonicalize(); // Perform common subexpression elimination and loop-invariant code motion. if (FLAG_use_gvn) { HPhase phase("H_Global value numbering", graph()); HGlobalValueNumberer gvn(graph(), info()); bool removed_side_effects = gvn.Analyze(); // Trigger a second analysis pass to further eliminate duplicate values that // could only be discovered by removing side-effect-generating instructions // during the first pass. if (FLAG_smi_only_arrays && removed_side_effects) { removed_side_effects = gvn.Analyze(); ASSERT(!removed_side_effects); } } if (FLAG_use_range) { HRangeAnalysis rangeAnalysis(graph()); rangeAnalysis.Analyze(); } graph()->ComputeMinusZeroChecks(); // Eliminate redundant stack checks on backwards branches. HStackCheckEliminator sce(graph()); sce.Process(); graph()->EliminateRedundantBoundsChecks(); graph()->DehoistSimpleArrayIndexComputations(); return graph(); } // We try to "factor up" HBoundsCheck instructions towards the root of the // dominator tree. // For now we handle checks where the index is like "exp + int32value". // If in the dominator tree we check "exp + v1" and later (dominated) // "exp + v2", if v2 <= v1 we can safely remove the second check, and if // v2 > v1 we can use v2 in the 1st check and again remove the second. // To do so we keep a dictionary of all checks where the key if the pair // "exp, length". // The class BoundsCheckKey represents this key. class BoundsCheckKey : public ZoneObject { public: HValue* IndexBase() const { return index_base_; } HValue* Length() const { return length_; } uint32_t Hash() { return static_cast(index_base_->Hashcode() ^ length_->Hashcode()); } static BoundsCheckKey* Create(Zone* zone, HBoundsCheck* check, int32_t* offset) { HValue* index_base = NULL; HConstant* constant = NULL; bool is_sub = false; if (check->index()->IsAdd()) { HAdd* index = HAdd::cast(check->index()); if (index->left()->IsConstant()) { constant = HConstant::cast(index->left()); index_base = index->right(); } else if (index->right()->IsConstant()) { constant = HConstant::cast(index->right()); index_base = index->left(); } } else if (check->index()->IsSub()) { HSub* index = HSub::cast(check->index()); is_sub = true; if (index->left()->IsConstant()) { constant = HConstant::cast(index->left()); index_base = index->right(); } else if (index->right()->IsConstant()) { constant = HConstant::cast(index->right()); index_base = index->left(); } } if (constant != NULL && constant->HasInteger32Value()) { *offset = is_sub ? - constant->Integer32Value() : constant->Integer32Value(); } else { *offset = 0; index_base = check->index(); } return new(zone) BoundsCheckKey(index_base, check->length()); } private: BoundsCheckKey(HValue* index_base, HValue* length) : index_base_(index_base), length_(length) { } HValue* index_base_; HValue* length_; }; // Data about each HBoundsCheck that can be eliminated or moved. // It is the "value" in the dictionary indexed by "base-index, length" // (the key is BoundsCheckKey). // We scan the code with a dominator tree traversal. // Traversing the dominator tree we keep a stack (implemented as a singly // linked list) of "data" for each basic block that contains a relevant check // with the same key (the dictionary holds the head of the list). // We also keep all the "data" created for a given basic block in a list, and // use it to "clean up" the dictionary when backtracking in the dominator tree // traversal. // Doing this each dictionary entry always directly points to the check that // is dominating the code being examined now. // We also track the current "offset" of the index expression and use it to // decide if any check is already "covered" (so it can be removed) or not. class BoundsCheckBbData: public ZoneObject { public: BoundsCheckKey* Key() const { return key_; } int32_t LowerOffset() const { return lower_offset_; } int32_t UpperOffset() const { return upper_offset_; } HBasicBlock* BasicBlock() const { return basic_block_; } HBoundsCheck* Check() const { return check_; } BoundsCheckBbData* NextInBasicBlock() const { return next_in_bb_; } BoundsCheckBbData* FatherInDominatorTree() const { return father_in_dt_; } bool OffsetIsCovered(int32_t offset) const { return offset >= LowerOffset() && offset <= UpperOffset(); } // This method removes new_check and modifies the current check so that it // also "covers" what new_check covered. // The obvious precondition is that new_check follows Check() in the // same basic block, and that new_offset is not covered (otherwise we // could simply remove new_check). // As a consequence LowerOffset() or UpperOffset() change (the covered // range grows). // // In the general case the check covering the current range should be like // these two checks: // 0 <= Key()->IndexBase() + LowerOffset() // Key()->IndexBase() + UpperOffset() < Key()->Length() // // We can transform the second check like this: // Key()->IndexBase() + LowerOffset() < // Key()->Length() + (LowerOffset() - UpperOffset()) // so we can handle both checks with a single unsigned comparison. // // The bulk of this method changes Check()->index() and Check()->length() // replacing them with new HAdd instructions to perform the transformation // described above. void CoverCheck(HBoundsCheck* new_check, int32_t new_offset) { ASSERT(new_check->index()->representation().IsInteger32()); if (new_offset > upper_offset_) { upper_offset_ = new_offset; } else if (new_offset < lower_offset_) { lower_offset_ = new_offset; } else { ASSERT(false); } BuildOffsetAdd(&added_index_, &added_index_offset_, Key()->IndexBase(), new_check->index()->representation(), lower_offset_); Check()->SetOperandAt(0, added_index_); BuildOffsetAdd(&added_length_, &added_length_offset_, Key()->Length(), new_check->length()->representation(), lower_offset_ - upper_offset_); Check()->SetOperandAt(1, added_length_); new_check->DeleteAndReplaceWith(NULL); } void RemoveZeroOperations() { RemoveZeroAdd(&added_index_, &added_index_offset_); RemoveZeroAdd(&added_length_, &added_length_offset_); } BoundsCheckBbData(BoundsCheckKey* key, int32_t lower_offset, int32_t upper_offset, HBasicBlock* bb, HBoundsCheck* check, BoundsCheckBbData* next_in_bb, BoundsCheckBbData* father_in_dt) : key_(key), lower_offset_(lower_offset), upper_offset_(upper_offset), basic_block_(bb), check_(check), added_index_offset_(NULL), added_index_(NULL), added_length_offset_(NULL), added_length_(NULL), next_in_bb_(next_in_bb), father_in_dt_(father_in_dt) { } private: BoundsCheckKey* key_; int32_t lower_offset_; int32_t upper_offset_; HBasicBlock* basic_block_; HBoundsCheck* check_; HConstant* added_index_offset_; HAdd* added_index_; HConstant* added_length_offset_; HAdd* added_length_; BoundsCheckBbData* next_in_bb_; BoundsCheckBbData* father_in_dt_; void BuildOffsetAdd(HAdd** add, HConstant** constant, HValue* original_value, Representation representation, int32_t new_offset) { HConstant* new_constant = new(BasicBlock()->zone()) HConstant(Handle(Smi::FromInt(new_offset)), Representation::Integer32()); if (*add == NULL) { new_constant->InsertBefore(Check()); *add = new(BasicBlock()->zone()) HAdd(NULL, original_value, new_constant); (*add)->AssumeRepresentation(representation); (*add)->InsertBefore(Check()); } else { new_constant->InsertBefore(*add); (*constant)->DeleteAndReplaceWith(new_constant); } *constant = new_constant; } void RemoveZeroAdd(HAdd** add, HConstant** constant) { if (*add != NULL && (*constant)->Integer32Value() == 0) { (*add)->DeleteAndReplaceWith((*add)->left()); (*constant)->DeleteAndReplaceWith(NULL); } } }; static bool BoundsCheckKeyMatch(void* key1, void* key2) { BoundsCheckKey* k1 = static_cast(key1); BoundsCheckKey* k2 = static_cast(key2); return k1->IndexBase() == k2->IndexBase() && k1->Length() == k2->Length(); } class BoundsCheckTable : private ZoneHashMap { public: BoundsCheckBbData** LookupOrInsert(BoundsCheckKey* key) { return reinterpret_cast( &(Lookup(key, key->Hash(), true)->value)); } void Insert(BoundsCheckKey* key, BoundsCheckBbData* data) { Lookup(key, key->Hash(), true)->value = data; } void Delete(BoundsCheckKey* key) { Remove(key, key->Hash()); } BoundsCheckTable() : ZoneHashMap(BoundsCheckKeyMatch) { } }; // Eliminates checks in bb and recursively in the dominated blocks. // Also replace the results of check instructions with the original value, if // the result is used. This is safe now, since we don't do code motion after // this point. It enables better register allocation since the value produced // by check instructions is really a copy of the original value. void HGraph::EliminateRedundantBoundsChecks(HBasicBlock* bb, BoundsCheckTable* table) { BoundsCheckBbData* bb_data_list = NULL; for (HInstruction* i = bb->first(); i != NULL; i = i->next()) { if (!i->IsBoundsCheck()) continue; HBoundsCheck* check = HBoundsCheck::cast(i); check->ReplaceAllUsesWith(check->index()); if (!FLAG_array_bounds_checks_elimination) continue; int32_t offset; BoundsCheckKey* key = BoundsCheckKey::Create(bb->zone(), check, &offset); BoundsCheckBbData** data_p = table->LookupOrInsert(key); BoundsCheckBbData* data = *data_p; if (data == NULL) { bb_data_list = new(zone()) BoundsCheckBbData(key, offset, offset, bb, check, bb_data_list, NULL); *data_p = bb_data_list; } else if (data->OffsetIsCovered(offset)) { check->DeleteAndReplaceWith(NULL); } else if (data->BasicBlock() == bb) { data->CoverCheck(check, offset); } else { int32_t new_lower_offset = offset < data->LowerOffset() ? offset : data->LowerOffset(); int32_t new_upper_offset = offset > data->UpperOffset() ? offset : data->UpperOffset(); bb_data_list = new(bb->zone()) BoundsCheckBbData(key, new_lower_offset, new_upper_offset, bb, check, bb_data_list, data); table->Insert(key, bb_data_list); } } for (int i = 0; i < bb->dominated_blocks()->length(); ++i) { EliminateRedundantBoundsChecks(bb->dominated_blocks()->at(i), table); } for (BoundsCheckBbData* data = bb_data_list; data != NULL; data = data->NextInBasicBlock()) { data->RemoveZeroOperations(); if (data->FatherInDominatorTree()) { table->Insert(data->Key(), data->FatherInDominatorTree()); } else { table->Delete(data->Key()); } } } void HGraph::EliminateRedundantBoundsChecks() { HPhase phase("H_Eliminate bounds checks", this); AssertNoAllocation no_gc; BoundsCheckTable checks_table; EliminateRedundantBoundsChecks(entry_block(), &checks_table); } static void DehoistArrayIndex(ArrayInstructionInterface* array_operation) { HValue* index = array_operation->GetKey(); HConstant* constant; HValue* subexpression; int32_t sign; if (index->IsAdd()) { sign = 1; HAdd* add = HAdd::cast(index); if (add->left()->IsConstant()) { subexpression = add->right(); constant = HConstant::cast(add->left()); } else if (add->right()->IsConstant()) { subexpression = add->left(); constant = HConstant::cast(add->right()); } else { return; } } else if (index->IsSub()) { sign = -1; HSub* sub = HSub::cast(index); if (sub->left()->IsConstant()) { subexpression = sub->right(); constant = HConstant::cast(sub->left()); } else if (sub->right()->IsConstant()) { subexpression = sub->left(); constant = HConstant::cast(sub->right()); } return; } else { return; } if (!constant->HasInteger32Value()) return; int32_t value = constant->Integer32Value() * sign; // We limit offset values to 30 bits because we want to avoid the risk of // overflows when the offset is added to the object header size. if (value >= 1 << 30 || value < 0) return; array_operation->SetKey(subexpression); if (index->HasNoUses()) { index->DeleteAndReplaceWith(NULL); } ASSERT(value >= 0); array_operation->SetIndexOffset(static_cast(value)); array_operation->SetDehoisted(true); } void HGraph::DehoistSimpleArrayIndexComputations() { if (!FLAG_array_index_dehoisting) return; HPhase phase("H_Dehoist index computations", this); for (int i = 0; i < blocks()->length(); ++i) { for (HInstruction* instr = blocks()->at(i)->first(); instr != NULL; instr = instr->next()) { ArrayInstructionInterface* array_instruction = NULL; if (instr->IsLoadKeyedFastElement()) { HLoadKeyedFastElement* op = HLoadKeyedFastElement::cast(instr); array_instruction = static_cast(op); } else if (instr->IsLoadKeyedFastDoubleElement()) { HLoadKeyedFastDoubleElement* op = HLoadKeyedFastDoubleElement::cast(instr); array_instruction = static_cast(op); } else if (instr->IsLoadKeyedSpecializedArrayElement()) { HLoadKeyedSpecializedArrayElement* op = HLoadKeyedSpecializedArrayElement::cast(instr); array_instruction = static_cast(op); } else if (instr->IsStoreKeyedFastElement()) { HStoreKeyedFastElement* op = HStoreKeyedFastElement::cast(instr); array_instruction = static_cast(op); } else if (instr->IsStoreKeyedFastDoubleElement()) { HStoreKeyedFastDoubleElement* op = HStoreKeyedFastDoubleElement::cast(instr); array_instruction = static_cast(op); } else if (instr->IsStoreKeyedSpecializedArrayElement()) { HStoreKeyedSpecializedArrayElement* op = HStoreKeyedSpecializedArrayElement::cast(instr); array_instruction = static_cast(op); } else { continue; } DehoistArrayIndex(array_instruction); } } } HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) { ASSERT(current_block() != NULL); current_block()->AddInstruction(instr); return instr; } void HGraphBuilder::AddSimulate(int ast_id) { ASSERT(current_block() != NULL); current_block()->AddSimulate(ast_id); } void HGraphBuilder::AddPhi(HPhi* instr) { ASSERT(current_block() != NULL); current_block()->AddPhi(instr); } void HGraphBuilder::PushAndAdd(HInstruction* instr) { Push(instr); AddInstruction(instr); } template HInstruction* HGraphBuilder::PreProcessCall(Instruction* call) { int count = call->argument_count(); ZoneList arguments(count); for (int i = 0; i < count; ++i) { arguments.Add(Pop()); } while (!arguments.is_empty()) { AddInstruction(new(zone()) HPushArgument(arguments.RemoveLast())); } return call; } void HGraphBuilder::SetUpScope(Scope* scope) { HConstant* undefined_constant = new(zone()) HConstant( isolate()->factory()->undefined_value(), Representation::Tagged()); AddInstruction(undefined_constant); graph_->set_undefined_constant(undefined_constant); HArgumentsObject* object = new(zone()) HArgumentsObject; AddInstruction(object); graph()->SetArgumentsObject(object); // Set the initial values of parameters including "this". "This" has // parameter index 0. ASSERT_EQ(scope->num_parameters() + 1, environment()->parameter_count()); for (int i = 0; i < environment()->parameter_count(); ++i) { HInstruction* parameter = AddInstruction(new(zone()) HParameter(i)); environment()->Bind(i, parameter); } // First special is HContext. HInstruction* context = AddInstruction(new(zone()) HContext); environment()->BindContext(context); // Initialize specials and locals to undefined. for (int i = environment()->parameter_count() + 1; i < environment()->length(); ++i) { environment()->Bind(i, undefined_constant); } // Handle the arguments and arguments shadow variables specially (they do // not have declarations). if (scope->arguments() != NULL) { if (!scope->arguments()->IsStackAllocated()) { return Bailout("context-allocated arguments"); } environment()->Bind(scope->arguments(), graph()->GetArgumentsObject()); } } void HGraphBuilder::VisitStatements(ZoneList* statements) { for (int i = 0; i < statements->length(); i++) { CHECK_ALIVE(Visit(statements->at(i))); } } HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) { HBasicBlock* b = graph()->CreateBasicBlock(); b->SetInitialEnvironment(env); return b; } HBasicBlock* HGraphBuilder::CreateLoopHeaderBlock() { HBasicBlock* header = graph()->CreateBasicBlock(); HEnvironment* entry_env = environment()->CopyAsLoopHeader(header); header->SetInitialEnvironment(entry_env); header->AttachLoopInformation(); return header; } void HGraphBuilder::VisitBlock(Block* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); if (stmt->scope() != NULL) { return Bailout("ScopedBlock"); } BreakAndContinueInfo break_info(stmt); { BreakAndContinueScope push(&break_info, this); CHECK_BAILOUT(VisitStatements(stmt->statements())); } HBasicBlock* break_block = break_info.break_block(); if (break_block != NULL) { if (current_block() != NULL) current_block()->Goto(break_block); break_block->SetJoinId(stmt->ExitId()); set_current_block(break_block); } } void HGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); VisitForEffect(stmt->expression()); } void HGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); } void HGraphBuilder::VisitIfStatement(IfStatement* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); if (stmt->condition()->ToBooleanIsTrue()) { AddSimulate(stmt->ThenId()); Visit(stmt->then_statement()); } else if (stmt->condition()->ToBooleanIsFalse()) { AddSimulate(stmt->ElseId()); Visit(stmt->else_statement()); } else { HBasicBlock* cond_true = graph()->CreateBasicBlock(); HBasicBlock* cond_false = graph()->CreateBasicBlock(); CHECK_BAILOUT(VisitForControl(stmt->condition(), cond_true, cond_false)); if (cond_true->HasPredecessor()) { cond_true->SetJoinId(stmt->ThenId()); set_current_block(cond_true); CHECK_BAILOUT(Visit(stmt->then_statement())); cond_true = current_block(); } else { cond_true = NULL; } if (cond_false->HasPredecessor()) { cond_false->SetJoinId(stmt->ElseId()); set_current_block(cond_false); CHECK_BAILOUT(Visit(stmt->else_statement())); cond_false = current_block(); } else { cond_false = NULL; } HBasicBlock* join = CreateJoin(cond_true, cond_false, stmt->IfId()); set_current_block(join); } } HBasicBlock* HGraphBuilder::BreakAndContinueScope::Get( BreakableStatement* stmt, BreakType type, int* drop_extra) { *drop_extra = 0; BreakAndContinueScope* current = this; while (current != NULL && current->info()->target() != stmt) { *drop_extra += current->info()->drop_extra(); current = current->next(); } ASSERT(current != NULL); // Always found (unless stack is malformed). if (type == BREAK) { *drop_extra += current->info()->drop_extra(); } HBasicBlock* block = NULL; switch (type) { case BREAK: block = current->info()->break_block(); if (block == NULL) { block = current->owner()->graph()->CreateBasicBlock(); current->info()->set_break_block(block); } break; case CONTINUE: block = current->info()->continue_block(); if (block == NULL) { block = current->owner()->graph()->CreateBasicBlock(); current->info()->set_continue_block(block); } break; } return block; } void HGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); int drop_extra = 0; HBasicBlock* continue_block = break_scope()->Get(stmt->target(), CONTINUE, &drop_extra); Drop(drop_extra); current_block()->Goto(continue_block); set_current_block(NULL); } void HGraphBuilder::VisitBreakStatement(BreakStatement* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); int drop_extra = 0; HBasicBlock* break_block = break_scope()->Get(stmt->target(), BREAK, &drop_extra); Drop(drop_extra); current_block()->Goto(break_block); set_current_block(NULL); } void HGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); AstContext* context = call_context(); if (context == NULL) { // Not an inlined return, so an actual one. CHECK_ALIVE(VisitForValue(stmt->expression())); HValue* result = environment()->Pop(); current_block()->FinishExit(new(zone()) HReturn(result)); } else if (function_state()->is_construct()) { // Return from an inlined construct call. In a test context the return // value will always evaluate to true, in a value context the return value // needs to be a JSObject. if (context->IsTest()) { TestContext* test = TestContext::cast(context); CHECK_ALIVE(VisitForEffect(stmt->expression())); current_block()->Goto(test->if_true(), function_state()); } else if (context->IsEffect()) { CHECK_ALIVE(VisitForEffect(stmt->expression())); current_block()->Goto(function_return(), function_state()); } else { ASSERT(context->IsValue()); CHECK_ALIVE(VisitForValue(stmt->expression())); HValue* return_value = Pop(); HValue* receiver = environment()->Lookup(0); HHasInstanceTypeAndBranch* typecheck = new(zone()) HHasInstanceTypeAndBranch(return_value, FIRST_SPEC_OBJECT_TYPE, LAST_SPEC_OBJECT_TYPE); HBasicBlock* if_spec_object = graph()->CreateBasicBlock(); HBasicBlock* not_spec_object = graph()->CreateBasicBlock(); typecheck->SetSuccessorAt(0, if_spec_object); typecheck->SetSuccessorAt(1, not_spec_object); current_block()->Finish(typecheck); if_spec_object->AddLeaveInlined(return_value, function_return(), function_state()); not_spec_object->AddLeaveInlined(receiver, function_return(), function_state()); } } else { // Return from an inlined function, visit the subexpression in the // expression context of the call. if (context->IsTest()) { TestContext* test = TestContext::cast(context); VisitForControl(stmt->expression(), test->if_true(), test->if_false()); } else if (context->IsEffect()) { CHECK_ALIVE(VisitForEffect(stmt->expression())); current_block()->Goto(function_return(), function_state()); } else { ASSERT(context->IsValue()); CHECK_ALIVE(VisitForValue(stmt->expression())); HValue* return_value = Pop(); current_block()->AddLeaveInlined(return_value, function_return(), function_state()); } } set_current_block(NULL); } void HGraphBuilder::VisitWithStatement(WithStatement* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); return Bailout("WithStatement"); } void HGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); // We only optimize switch statements with smi-literal smi comparisons, // with a bounded number of clauses. const int kCaseClauseLimit = 128; ZoneList* clauses = stmt->cases(); int clause_count = clauses->length(); if (clause_count > kCaseClauseLimit) { return Bailout("SwitchStatement: too many clauses"); } HValue* context = environment()->LookupContext(); CHECK_ALIVE(VisitForValue(stmt->tag())); AddSimulate(stmt->EntryId()); HValue* tag_value = Pop(); HBasicBlock* first_test_block = current_block(); SwitchType switch_type = UNKNOWN_SWITCH; // 1. Extract clause type for (int i = 0; i < clause_count; ++i) { CaseClause* clause = clauses->at(i); if (clause->is_default()) continue; if (switch_type == UNKNOWN_SWITCH) { if (clause->label()->IsSmiLiteral()) { switch_type = SMI_SWITCH; } else if (clause->label()->IsStringLiteral()) { switch_type = STRING_SWITCH; } else { return Bailout("SwitchStatement: non-literal switch label"); } } else if ((switch_type == STRING_SWITCH && !clause->label()->IsStringLiteral()) || (switch_type == SMI_SWITCH && !clause->label()->IsSmiLiteral())) { return Bailout("SwitchStatemnt: mixed label types are not supported"); } } HUnaryControlInstruction* string_check = NULL; HBasicBlock* not_string_block = NULL; // Test switch's tag value if all clauses are string literals if (switch_type == STRING_SWITCH) { string_check = new(zone()) HIsStringAndBranch(tag_value); first_test_block = graph()->CreateBasicBlock(); not_string_block = graph()->CreateBasicBlock(); string_check->SetSuccessorAt(0, first_test_block); string_check->SetSuccessorAt(1, not_string_block); current_block()->Finish(string_check); set_current_block(first_test_block); } // 2. Build all the tests, with dangling true branches int default_id = AstNode::kNoNumber; for (int i = 0; i < clause_count; ++i) { CaseClause* clause = clauses->at(i); if (clause->is_default()) { default_id = clause->EntryId(); continue; } if (switch_type == SMI_SWITCH) { clause->RecordTypeFeedback(oracle()); } // Generate a compare and branch. CHECK_ALIVE(VisitForValue(clause->label())); HValue* label_value = Pop(); HBasicBlock* next_test_block = graph()->CreateBasicBlock(); HBasicBlock* body_block = graph()->CreateBasicBlock(); HControlInstruction* compare; if (switch_type == SMI_SWITCH) { if (!clause->IsSmiCompare()) { // Finish with deoptimize and add uses of enviroment values to // account for invisible uses. current_block()->FinishExitWithDeoptimization(HDeoptimize::kUseAll); set_current_block(NULL); break; } HCompareIDAndBranch* compare_ = new(zone()) HCompareIDAndBranch(tag_value, label_value, Token::EQ_STRICT); compare_->SetInputRepresentation(Representation::Integer32()); compare = compare_; } else { compare = new(zone()) HStringCompareAndBranch(context, tag_value, label_value, Token::EQ_STRICT); } compare->SetSuccessorAt(0, body_block); compare->SetSuccessorAt(1, next_test_block); current_block()->Finish(compare); set_current_block(next_test_block); } // Save the current block to use for the default or to join with the // exit. This block is NULL if we deoptimized. HBasicBlock* last_block = current_block(); if (not_string_block != NULL) { int join_id = (default_id != AstNode::kNoNumber) ? default_id : stmt->ExitId(); last_block = CreateJoin(last_block, not_string_block, join_id); } // 3. Loop over the clauses and the linked list of tests in lockstep, // translating the clause bodies. HBasicBlock* curr_test_block = first_test_block; HBasicBlock* fall_through_block = NULL; BreakAndContinueInfo break_info(stmt); { BreakAndContinueScope push(&break_info, this); for (int i = 0; i < clause_count; ++i) { CaseClause* clause = clauses->at(i); // Identify the block where normal (non-fall-through) control flow // goes to. HBasicBlock* normal_block = NULL; if (clause->is_default()) { if (last_block != NULL) { normal_block = last_block; last_block = NULL; // Cleared to indicate we've handled it. } } else if (!curr_test_block->end()->IsDeoptimize()) { normal_block = curr_test_block->end()->FirstSuccessor(); curr_test_block = curr_test_block->end()->SecondSuccessor(); } // Identify a block to emit the body into. if (normal_block == NULL) { if (fall_through_block == NULL) { // (a) Unreachable. if (clause->is_default()) { continue; // Might still be reachable clause bodies. } else { break; } } else { // (b) Reachable only as fall through. set_current_block(fall_through_block); } } else if (fall_through_block == NULL) { // (c) Reachable only normally. set_current_block(normal_block); } else { // (d) Reachable both ways. HBasicBlock* join = CreateJoin(fall_through_block, normal_block, clause->EntryId()); set_current_block(join); } CHECK_BAILOUT(VisitStatements(clause->statements())); fall_through_block = current_block(); } } // Create an up-to-3-way join. Use the break block if it exists since // it's already a join block. HBasicBlock* break_block = break_info.break_block(); if (break_block == NULL) { set_current_block(CreateJoin(fall_through_block, last_block, stmt->ExitId())); } else { if (fall_through_block != NULL) fall_through_block->Goto(break_block); if (last_block != NULL) last_block->Goto(break_block); break_block->SetJoinId(stmt->ExitId()); set_current_block(break_block); } } bool HGraphBuilder::HasOsrEntryAt(IterationStatement* statement) { return statement->OsrEntryId() == info()->osr_ast_id(); } bool HGraphBuilder::PreProcessOsrEntry(IterationStatement* statement) { if (!HasOsrEntryAt(statement)) return false; HBasicBlock* non_osr_entry = graph()->CreateBasicBlock(); HBasicBlock* osr_entry = graph()->CreateBasicBlock(); HValue* true_value = graph()->GetConstantTrue(); HBranch* test = new(zone()) HBranch(true_value, non_osr_entry, osr_entry); current_block()->Finish(test); HBasicBlock* loop_predecessor = graph()->CreateBasicBlock(); non_osr_entry->Goto(loop_predecessor); set_current_block(osr_entry); int osr_entry_id = statement->OsrEntryId(); int first_expression_index = environment()->first_expression_index(); int length = environment()->length(); ZoneList* osr_values = new(zone()) ZoneList(length); for (int i = 0; i < first_expression_index; ++i) { HUnknownOSRValue* osr_value = new(zone()) HUnknownOSRValue; AddInstruction(osr_value); environment()->Bind(i, osr_value); osr_values->Add(osr_value); } if (first_expression_index != length) { environment()->Drop(length - first_expression_index); for (int i = first_expression_index; i < length; ++i) { HUnknownOSRValue* osr_value = new(zone()) HUnknownOSRValue; AddInstruction(osr_value); environment()->Push(osr_value); osr_values->Add(osr_value); } } graph()->set_osr_values(osr_values); AddSimulate(osr_entry_id); AddInstruction(new(zone()) HOsrEntry(osr_entry_id)); HContext* context = new(zone()) HContext; AddInstruction(context); environment()->BindContext(context); current_block()->Goto(loop_predecessor); loop_predecessor->SetJoinId(statement->EntryId()); set_current_block(loop_predecessor); return true; } void HGraphBuilder::VisitLoopBody(IterationStatement* stmt, HBasicBlock* loop_entry, BreakAndContinueInfo* break_info) { BreakAndContinueScope push(break_info, this); AddSimulate(stmt->StackCheckId()); HValue* context = environment()->LookupContext(); HStackCheck* stack_check = new(zone()) HStackCheck(context, HStackCheck::kBackwardsBranch); AddInstruction(stack_check); ASSERT(loop_entry->IsLoopHeader()); loop_entry->loop_information()->set_stack_check(stack_check); CHECK_BAILOUT(Visit(stmt->body())); } void HGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); ASSERT(current_block() != NULL); bool osr_entry = PreProcessOsrEntry(stmt); HBasicBlock* loop_entry = CreateLoopHeaderBlock(); current_block()->Goto(loop_entry); set_current_block(loop_entry); if (osr_entry) graph()->set_osr_loop_entry(loop_entry); BreakAndContinueInfo break_info(stmt); CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info)); HBasicBlock* body_exit = JoinContinue(stmt, current_block(), break_info.continue_block()); HBasicBlock* loop_successor = NULL; if (body_exit != NULL && !stmt->cond()->ToBooleanIsTrue()) { set_current_block(body_exit); // The block for a true condition, the actual predecessor block of the // back edge. body_exit = graph()->CreateBasicBlock(); loop_successor = graph()->CreateBasicBlock(); CHECK_BAILOUT(VisitForControl(stmt->cond(), body_exit, loop_successor)); if (body_exit->HasPredecessor()) { body_exit->SetJoinId(stmt->BackEdgeId()); } else { body_exit = NULL; } if (loop_successor->HasPredecessor()) { loop_successor->SetJoinId(stmt->ExitId()); } else { loop_successor = NULL; } } HBasicBlock* loop_exit = CreateLoop(stmt, loop_entry, body_exit, loop_successor, break_info.break_block()); set_current_block(loop_exit); } void HGraphBuilder::VisitWhileStatement(WhileStatement* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); ASSERT(current_block() != NULL); bool osr_entry = PreProcessOsrEntry(stmt); HBasicBlock* loop_entry = CreateLoopHeaderBlock(); current_block()->Goto(loop_entry); set_current_block(loop_entry); if (osr_entry) graph()->set_osr_loop_entry(loop_entry); // If the condition is constant true, do not generate a branch. HBasicBlock* loop_successor = NULL; if (!stmt->cond()->ToBooleanIsTrue()) { HBasicBlock* body_entry = graph()->CreateBasicBlock(); loop_successor = graph()->CreateBasicBlock(); CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor)); if (body_entry->HasPredecessor()) { body_entry->SetJoinId(stmt->BodyId()); set_current_block(body_entry); } if (loop_successor->HasPredecessor()) { loop_successor->SetJoinId(stmt->ExitId()); } else { loop_successor = NULL; } } BreakAndContinueInfo break_info(stmt); if (current_block() != NULL) { CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info)); } HBasicBlock* body_exit = JoinContinue(stmt, current_block(), break_info.continue_block()); HBasicBlock* loop_exit = CreateLoop(stmt, loop_entry, body_exit, loop_successor, break_info.break_block()); set_current_block(loop_exit); } void HGraphBuilder::VisitForStatement(ForStatement* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); if (stmt->init() != NULL) { CHECK_ALIVE(Visit(stmt->init())); } ASSERT(current_block() != NULL); bool osr_entry = PreProcessOsrEntry(stmt); HBasicBlock* loop_entry = CreateLoopHeaderBlock(); current_block()->Goto(loop_entry); set_current_block(loop_entry); if (osr_entry) graph()->set_osr_loop_entry(loop_entry); HBasicBlock* loop_successor = NULL; if (stmt->cond() != NULL) { HBasicBlock* body_entry = graph()->CreateBasicBlock(); loop_successor = graph()->CreateBasicBlock(); CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor)); if (body_entry->HasPredecessor()) { body_entry->SetJoinId(stmt->BodyId()); set_current_block(body_entry); } if (loop_successor->HasPredecessor()) { loop_successor->SetJoinId(stmt->ExitId()); } else { loop_successor = NULL; } } BreakAndContinueInfo break_info(stmt); if (current_block() != NULL) { CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info)); } HBasicBlock* body_exit = JoinContinue(stmt, current_block(), break_info.continue_block()); if (stmt->next() != NULL && body_exit != NULL) { set_current_block(body_exit); CHECK_BAILOUT(Visit(stmt->next())); body_exit = current_block(); } HBasicBlock* loop_exit = CreateLoop(stmt, loop_entry, body_exit, loop_successor, break_info.break_block()); set_current_block(loop_exit); } void HGraphBuilder::VisitForInStatement(ForInStatement* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); if (!FLAG_optimize_for_in) { return Bailout("ForInStatement optimization is disabled"); } if (!oracle()->IsForInFastCase(stmt)) { return Bailout("ForInStatement is not fast case"); } if (!stmt->each()->IsVariableProxy() || !stmt->each()->AsVariableProxy()->var()->IsStackLocal()) { return Bailout("ForInStatement with non-local each variable"); } Variable* each_var = stmt->each()->AsVariableProxy()->var(); CHECK_ALIVE(VisitForValue(stmt->enumerable())); HValue* enumerable = Top(); // Leave enumerable at the top. HInstruction* map = AddInstruction(new(zone()) HForInPrepareMap( environment()->LookupContext(), enumerable)); AddSimulate(stmt->PrepareId()); HInstruction* array = AddInstruction( new(zone()) HForInCacheArray( enumerable, map, DescriptorArray::kEnumCacheBridgeCacheIndex)); HInstruction* array_length = AddInstruction( new(zone()) HFixedArrayBaseLength(array)); HInstruction* start_index = AddInstruction(new(zone()) HConstant( Handle(Smi::FromInt(0)), Representation::Integer32())); Push(map); Push(array); Push(array_length); Push(start_index); HInstruction* index_cache = AddInstruction( new(zone()) HForInCacheArray( enumerable, map, DescriptorArray::kEnumCacheBridgeIndicesCacheIndex)); HForInCacheArray::cast(array)->set_index_cache( HForInCacheArray::cast(index_cache)); bool osr_entry = PreProcessOsrEntry(stmt); HBasicBlock* loop_entry = CreateLoopHeaderBlock(); current_block()->Goto(loop_entry); set_current_block(loop_entry); if (osr_entry) graph()->set_osr_loop_entry(loop_entry); HValue* index = environment()->ExpressionStackAt(0); HValue* limit = environment()->ExpressionStackAt(1); // Check that we still have more keys. HCompareIDAndBranch* compare_index = new(zone()) HCompareIDAndBranch(index, limit, Token::LT); compare_index->SetInputRepresentation(Representation::Integer32()); HBasicBlock* loop_body = graph()->CreateBasicBlock(); HBasicBlock* loop_successor = graph()->CreateBasicBlock(); compare_index->SetSuccessorAt(0, loop_body); compare_index->SetSuccessorAt(1, loop_successor); current_block()->Finish(compare_index); set_current_block(loop_successor); Drop(5); set_current_block(loop_body); HValue* key = AddInstruction( new(zone()) HLoadKeyedFastElement( environment()->ExpressionStackAt(2), // Enum cache. environment()->ExpressionStackAt(0), // Iteration index. OMIT_HOLE_CHECK)); // Check if the expected map still matches that of the enumerable. // If not just deoptimize. AddInstruction(new(zone()) HCheckMapValue( environment()->ExpressionStackAt(4), environment()->ExpressionStackAt(3))); Bind(each_var, key); BreakAndContinueInfo break_info(stmt, 5); CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info)); HBasicBlock* body_exit = JoinContinue(stmt, current_block(), break_info.continue_block()); if (body_exit != NULL) { set_current_block(body_exit); HValue* current_index = Pop(); HInstruction* new_index = new(zone()) HAdd(environment()->LookupContext(), current_index, graph()->GetConstant1()); new_index->AssumeRepresentation(Representation::Integer32()); PushAndAdd(new_index); body_exit = current_block(); } HBasicBlock* loop_exit = CreateLoop(stmt, loop_entry, body_exit, loop_successor, break_info.break_block()); set_current_block(loop_exit); } void HGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); return Bailout("TryCatchStatement"); } void HGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); return Bailout("TryFinallyStatement"); } void HGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); return Bailout("DebuggerStatement"); } static Handle SearchSharedFunctionInfo( Code* unoptimized_code, FunctionLiteral* expr) { int start_position = expr->start_position(); RelocIterator it(unoptimized_code); for (;!it.done(); it.next()) { RelocInfo* rinfo = it.rinfo(); if (rinfo->rmode() != RelocInfo::EMBEDDED_OBJECT) continue; Object* obj = rinfo->target_object(); if (obj->IsSharedFunctionInfo()) { SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj); if (shared->start_position() == start_position) { return Handle(shared); } } } return Handle(); } void HGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); Handle shared_info = SearchSharedFunctionInfo(info()->shared_info()->code(), expr); if (shared_info.is_null()) { shared_info = Compiler::BuildFunctionInfo(expr, info()->script()); } // We also have a stack overflow if the recursive compilation did. if (HasStackOverflow()) return; HValue* context = environment()->LookupContext(); HFunctionLiteral* instr = new(zone()) HFunctionLiteral(context, shared_info, expr->pretenure()); return ast_context()->ReturnInstruction(instr, expr->id()); } void HGraphBuilder::VisitSharedFunctionInfoLiteral( SharedFunctionInfoLiteral* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); return Bailout("SharedFunctionInfoLiteral"); } void HGraphBuilder::VisitConditional(Conditional* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); HBasicBlock* cond_true = graph()->CreateBasicBlock(); HBasicBlock* cond_false = graph()->CreateBasicBlock(); CHECK_BAILOUT(VisitForControl(expr->condition(), cond_true, cond_false)); // Visit the true and false subexpressions in the same AST context as the // whole expression. if (cond_true->HasPredecessor()) { cond_true->SetJoinId(expr->ThenId()); set_current_block(cond_true); CHECK_BAILOUT(Visit(expr->then_expression())); cond_true = current_block(); } else { cond_true = NULL; } if (cond_false->HasPredecessor()) { cond_false->SetJoinId(expr->ElseId()); set_current_block(cond_false); CHECK_BAILOUT(Visit(expr->else_expression())); cond_false = current_block(); } else { cond_false = NULL; } if (!ast_context()->IsTest()) { HBasicBlock* join = CreateJoin(cond_true, cond_false, expr->id()); set_current_block(join); if (join != NULL && !ast_context()->IsEffect()) { return ast_context()->ReturnValue(Pop()); } } } HGraphBuilder::GlobalPropertyAccess HGraphBuilder::LookupGlobalProperty( Variable* var, LookupResult* lookup, bool is_store) { if (var->is_this() || !info()->has_global_object()) { return kUseGeneric; } Handle global(info()->global_object()); global->Lookup(*var->name(), lookup); if (!lookup->IsFound() || lookup->type() != NORMAL || (is_store && lookup->IsReadOnly()) || lookup->holder() != *global) { return kUseGeneric; } return kUseCell; } HValue* HGraphBuilder::BuildContextChainWalk(Variable* var) { ASSERT(var->IsContextSlot()); HValue* context = environment()->LookupContext(); int length = info()->scope()->ContextChainLength(var->scope()); while (length-- > 0) { HInstruction* context_instruction = new(zone()) HOuterContext(context); AddInstruction(context_instruction); context = context_instruction; } return context; } void HGraphBuilder::VisitVariableProxy(VariableProxy* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); Variable* variable = expr->var(); switch (variable->location()) { case Variable::UNALLOCATED: { if (variable->mode() == LET || variable->mode() == CONST_HARMONY) { return Bailout("reference to global harmony declared variable"); } // Handle known global constants like 'undefined' specially to avoid a // load from a global cell for them. Handle constant_value = isolate()->factory()->GlobalConstantFor(variable->name()); if (!constant_value.is_null()) { HConstant* instr = new(zone()) HConstant(constant_value, Representation::Tagged()); return ast_context()->ReturnInstruction(instr, expr->id()); } LookupResult lookup(isolate()); GlobalPropertyAccess type = LookupGlobalProperty(variable, &lookup, false); if (type == kUseCell && info()->global_object()->IsAccessCheckNeeded()) { type = kUseGeneric; } if (type == kUseCell) { Handle global(info()->global_object()); Handle cell(global->GetPropertyCell(&lookup)); HLoadGlobalCell* instr = new(zone()) HLoadGlobalCell(cell, lookup.GetPropertyDetails()); return ast_context()->ReturnInstruction(instr, expr->id()); } else { HValue* context = environment()->LookupContext(); HGlobalObject* global_object = new(zone()) HGlobalObject(context); AddInstruction(global_object); HLoadGlobalGeneric* instr = new(zone()) HLoadGlobalGeneric(context, global_object, variable->name(), ast_context()->is_for_typeof()); instr->set_position(expr->position()); return ast_context()->ReturnInstruction(instr, expr->id()); } } case Variable::PARAMETER: case Variable::LOCAL: { HValue* value = environment()->Lookup(variable); if (value == graph()->GetConstantHole()) { ASSERT(variable->mode() == CONST || variable->mode() == CONST_HARMONY || variable->mode() == LET); return Bailout("reference to uninitialized variable"); } return ast_context()->ReturnValue(value); } case Variable::CONTEXT: { HValue* context = BuildContextChainWalk(variable); HLoadContextSlot* instr = new(zone()) HLoadContextSlot(context, variable); return ast_context()->ReturnInstruction(instr, expr->id()); } case Variable::LOOKUP: return Bailout("reference to a variable which requires dynamic lookup"); } } void HGraphBuilder::VisitLiteral(Literal* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); HConstant* instr = new(zone()) HConstant(expr->handle(), Representation::Tagged()); return ast_context()->ReturnInstruction(instr, expr->id()); } void HGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); HValue* context = environment()->LookupContext(); HRegExpLiteral* instr = new(zone()) HRegExpLiteral(context, expr->pattern(), expr->flags(), expr->literal_index()); return ast_context()->ReturnInstruction(instr, expr->id()); } // Determines whether the given array or object literal boilerplate satisfies // all limits to be considered for fast deep-copying and computes the total // size of all objects that are part of the graph. static bool IsFastLiteral(Handle boilerplate, int max_depth, int* max_properties, int* total_size) { ASSERT(max_depth >= 0 && *max_properties >= 0); if (max_depth == 0) return false; Handle elements(boilerplate->elements()); if (elements->length() > 0 && elements->map() != boilerplate->GetHeap()->fixed_cow_array_map()) { if (boilerplate->HasFastDoubleElements()) { *total_size += FixedDoubleArray::SizeFor(elements->length()); } else if (boilerplate->HasFastObjectElements()) { Handle fast_elements = Handle::cast(elements); int length = elements->length(); for (int i = 0; i < length; i++) { if ((*max_properties)-- == 0) return false; Handle value(fast_elements->get(i)); if (value->IsJSObject()) { Handle value_object = Handle::cast(value); if (!IsFastLiteral(value_object, max_depth - 1, max_properties, total_size)) { return false; } } } *total_size += FixedArray::SizeFor(length); } else { return false; } } Handle properties(boilerplate->properties()); if (properties->length() > 0) { return false; } else { int nof = boilerplate->map()->inobject_properties(); for (int i = 0; i < nof; i++) { if ((*max_properties)-- == 0) return false; Handle value(boilerplate->InObjectPropertyAt(i)); if (value->IsJSObject()) { Handle value_object = Handle::cast(value); if (!IsFastLiteral(value_object, max_depth - 1, max_properties, total_size)) { return false; } } } } *total_size += boilerplate->map()->instance_size(); return true; } void HGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); Handle closure = function_state()->compilation_info()->closure(); HValue* context = environment()->LookupContext(); HInstruction* literal; // Check whether to use fast or slow deep-copying for boilerplate. int total_size = 0; int max_properties = HFastLiteral::kMaxLiteralProperties; Handle boilerplate(closure->literals()->get(expr->literal_index())); if (boilerplate->IsJSObject() && IsFastLiteral(Handle::cast(boilerplate), HFastLiteral::kMaxLiteralDepth, &max_properties, &total_size)) { Handle boilerplate_object = Handle::cast(boilerplate); literal = new(zone()) HFastLiteral(context, boilerplate_object, total_size, expr->literal_index(), expr->depth()); } else { literal = new(zone()) HObjectLiteral(context, expr->constant_properties(), expr->fast_elements(), expr->literal_index(), expr->depth(), expr->has_function()); } // The object is expected in the bailout environment during computation // of the property values and is the value of the entire expression. PushAndAdd(literal); expr->CalculateEmitStore(); for (int i = 0; i < expr->properties()->length(); i++) { ObjectLiteral::Property* property = expr->properties()->at(i); if (property->IsCompileTimeValue()) continue; Literal* key = property->key(); Expression* value = property->value(); switch (property->kind()) { case ObjectLiteral::Property::MATERIALIZED_LITERAL: ASSERT(!CompileTimeValue::IsCompileTimeValue(value)); // Fall through. case ObjectLiteral::Property::COMPUTED: if (key->handle()->IsSymbol()) { if (property->emit_store()) { property->RecordTypeFeedback(oracle()); CHECK_ALIVE(VisitForValue(value)); HValue* value = Pop(); HInstruction* store = BuildStoreNamed(literal, value, property); AddInstruction(store); if (store->HasObservableSideEffects()) AddSimulate(key->id()); } else { CHECK_ALIVE(VisitForEffect(value)); } break; } // Fall through. case ObjectLiteral::Property::PROTOTYPE: case ObjectLiteral::Property::SETTER: case ObjectLiteral::Property::GETTER: return Bailout("Object literal with complex property"); default: UNREACHABLE(); } } if (expr->has_function()) { // Return the result of the transformation to fast properties // instead of the original since this operation changes the map // of the object. This makes sure that the original object won't // be used by other optimized code before it is transformed // (e.g. because of code motion). HToFastProperties* result = new(zone()) HToFastProperties(Pop()); AddInstruction(result); return ast_context()->ReturnValue(result); } else { return ast_context()->ReturnValue(Pop()); } } void HGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); ZoneList* subexprs = expr->values(); int length = subexprs->length(); HValue* context = environment()->LookupContext(); HInstruction* literal; Handle literals(environment()->closure()->literals()); Handle raw_boilerplate(literals->get(expr->literal_index())); if (raw_boilerplate->IsUndefined()) { raw_boilerplate = Runtime::CreateArrayLiteralBoilerplate( isolate(), literals, expr->constant_elements()); if (raw_boilerplate.is_null()) { return Bailout("array boilerplate creation failed"); } literals->set(expr->literal_index(), *raw_boilerplate); if (JSObject::cast(*raw_boilerplate)->elements()->map() == isolate()->heap()->fixed_cow_array_map()) { isolate()->counters()->cow_arrays_created_runtime()->Increment(); } } Handle boilerplate = Handle::cast(raw_boilerplate); ElementsKind boilerplate_elements_kind = Handle::cast(boilerplate)->GetElementsKind(); // Check whether to use fast or slow deep-copying for boilerplate. int total_size = 0; int max_properties = HFastLiteral::kMaxLiteralProperties; if (IsFastLiteral(boilerplate, HFastLiteral::kMaxLiteralDepth, &max_properties, &total_size)) { literal = new(zone()) HFastLiteral(context, boilerplate, total_size, expr->literal_index(), expr->depth()); } else { literal = new(zone()) HArrayLiteral(context, boilerplate, length, expr->literal_index(), expr->depth()); } // The array is expected in the bailout environment during computation // of the property values and is the value of the entire expression. PushAndAdd(literal); HLoadElements* elements = NULL; for (int i = 0; i < length; i++) { Expression* subexpr = subexprs->at(i); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue; CHECK_ALIVE(VisitForValue(subexpr)); HValue* value = Pop(); if (!Smi::IsValid(i)) return Bailout("Non-smi key in array literal"); elements = new(zone()) HLoadElements(literal); AddInstruction(elements); HValue* key = AddInstruction( new(zone()) HConstant(Handle(Smi::FromInt(i)), Representation::Integer32())); switch (boilerplate_elements_kind) { case FAST_SMI_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: // Smi-only arrays need a smi check. AddInstruction(new(zone()) HCheckSmi(value)); // Fall through. case FAST_ELEMENTS: case FAST_HOLEY_ELEMENTS: AddInstruction(new(zone()) HStoreKeyedFastElement( elements, key, value, boilerplate_elements_kind)); break; case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: AddInstruction(new(zone()) HStoreKeyedFastDoubleElement(elements, key, value)); break; default: UNREACHABLE(); break; } AddSimulate(expr->GetIdForElement(i)); } return ast_context()->ReturnValue(Pop()); } // Sets the lookup result and returns true if the load/store can be inlined. static bool ComputeLoadStoreField(Handle type, Handle name, LookupResult* lookup, bool is_store) { type->LookupInDescriptors(NULL, *name, lookup); if (!lookup->IsFound()) return false; if (lookup->type() == FIELD) return true; return is_store && (lookup->type() == MAP_TRANSITION) && (type->unused_property_fields() > 0); } static int ComputeLoadStoreFieldIndex(Handle type, Handle name, LookupResult* lookup) { ASSERT(lookup->type() == FIELD || lookup->type() == MAP_TRANSITION); if (lookup->type() == FIELD) { return lookup->GetLocalFieldIndexFromMap(*type); } else { Map* transition = lookup->GetTransitionMapFromMap(*type); return transition->PropertyIndexFor(*name) - type->inobject_properties(); } } HInstruction* HGraphBuilder::BuildStoreNamedField(HValue* object, Handle name, HValue* value, Handle type, LookupResult* lookup, bool smi_and_map_check) { if (smi_and_map_check) { AddInstruction(new(zone()) HCheckNonSmi(object)); AddInstruction(HCheckMaps::NewWithTransitions(object, type)); } int index = ComputeLoadStoreFieldIndex(type, name, lookup); bool is_in_object = index < 0; int offset = index * kPointerSize; if (index < 0) { // Negative property indices are in-object properties, indexed // from the end of the fixed part of the object. offset += type->instance_size(); } else { offset += FixedArray::kHeaderSize; } HStoreNamedField* instr = new(zone()) HStoreNamedField(object, name, value, is_in_object, offset); if (lookup->type() == MAP_TRANSITION) { Handle transition(lookup->GetTransitionMapFromMap(*type)); instr->set_transition(transition); // TODO(fschneider): Record the new map type of the object in the IR to // enable elimination of redundant checks after the transition store. instr->SetGVNFlag(kChangesMaps); } return instr; } HInstruction* HGraphBuilder::BuildStoreNamedGeneric(HValue* object, Handle name, HValue* value) { HValue* context = environment()->LookupContext(); return new(zone()) HStoreNamedGeneric( context, object, name, value, function_strict_mode_flag()); } HInstruction* HGraphBuilder::BuildStoreNamed(HValue* object, HValue* value, ObjectLiteral::Property* prop) { Literal* key = prop->key()->AsLiteral(); Handle name = Handle::cast(key->handle()); ASSERT(!name.is_null()); LookupResult lookup(isolate()); Handle type = prop->GetReceiverType(); bool is_monomorphic = prop->IsMonomorphic() && ComputeLoadStoreField(type, name, &lookup, true); return is_monomorphic ? BuildStoreNamedField(object, name, value, type, &lookup, true) // Needs smi and map check. : BuildStoreNamedGeneric(object, name, value); } HInstruction* HGraphBuilder::BuildStoreNamed(HValue* object, HValue* value, Expression* expr) { Property* prop = (expr->AsProperty() != NULL) ? expr->AsProperty() : expr->AsAssignment()->target()->AsProperty(); Literal* key = prop->key()->AsLiteral(); Handle name = Handle::cast(key->handle()); ASSERT(!name.is_null()); LookupResult lookup(isolate()); SmallMapList* types = expr->GetReceiverTypes(); bool is_monomorphic = expr->IsMonomorphic() && ComputeLoadStoreField(types->first(), name, &lookup, true); return is_monomorphic ? BuildStoreNamedField(object, name, value, types->first(), &lookup, true) // Needs smi and map check. : BuildStoreNamedGeneric(object, name, value); } void HGraphBuilder::HandlePolymorphicLoadNamedField(Property* expr, HValue* object, SmallMapList* types, Handle name) { int count = 0; int previous_field_offset = 0; bool previous_field_is_in_object = false; bool is_monomorphic_field = true; Handle map; LookupResult lookup(isolate()); for (int i = 0; i < types->length() && count < kMaxLoadPolymorphism; ++i) { map = types->at(i); if (ComputeLoadStoreField(map, name, &lookup, false)) { int index = ComputeLoadStoreFieldIndex(map, name, &lookup); bool is_in_object = index < 0; int offset = index * kPointerSize; if (index < 0) { // Negative property indices are in-object properties, indexed // from the end of the fixed part of the object. offset += map->instance_size(); } else { offset += FixedArray::kHeaderSize; } if (count == 0) { previous_field_offset = offset; previous_field_is_in_object = is_in_object; } else if (is_monomorphic_field) { is_monomorphic_field = (offset == previous_field_offset) && (is_in_object == previous_field_is_in_object); } ++count; } } // Use monomorphic load if property lookup results in the same field index // for all maps. Requires special map check on the set of all handled maps. HInstruction* instr; if (count == types->length() && is_monomorphic_field) { AddInstruction(new(zone()) HCheckMaps(object, types)); instr = BuildLoadNamedField(object, expr, map, &lookup, false); } else { HValue* context = environment()->LookupContext(); instr = new(zone()) HLoadNamedFieldPolymorphic(context, object, types, name); } instr->set_position(expr->position()); return ast_context()->ReturnInstruction(instr, expr->id()); } void HGraphBuilder::HandlePolymorphicStoreNamedField(Assignment* expr, HValue* object, HValue* value, SmallMapList* types, Handle name) { // TODO(ager): We should recognize when the prototype chains for different // maps are identical. In that case we can avoid repeatedly generating the // same prototype map checks. int count = 0; HBasicBlock* join = NULL; for (int i = 0; i < types->length() && count < kMaxStorePolymorphism; ++i) { Handle map = types->at(i); LookupResult lookup(isolate()); if (ComputeLoadStoreField(map, name, &lookup, true)) { if (count == 0) { AddInstruction(new(zone()) HCheckNonSmi(object)); // Only needed once. join = graph()->CreateBasicBlock(); } ++count; HBasicBlock* if_true = graph()->CreateBasicBlock(); HBasicBlock* if_false = graph()->CreateBasicBlock(); HCompareMap* compare = new(zone()) HCompareMap(object, map, if_true, if_false); current_block()->Finish(compare); set_current_block(if_true); HInstruction* instr = BuildStoreNamedField(object, name, value, map, &lookup, false); instr->set_position(expr->position()); // Goto will add the HSimulate for the store. AddInstruction(instr); if (!ast_context()->IsEffect()) Push(value); current_block()->Goto(join); set_current_block(if_false); } } // Finish up. Unconditionally deoptimize if we've handled all the maps we // know about and do not want to handle ones we've never seen. Otherwise // use a generic IC. if (count == types->length() && FLAG_deoptimize_uncommon_cases) { current_block()->FinishExitWithDeoptimization(HDeoptimize::kNoUses); } else { HInstruction* instr = BuildStoreNamedGeneric(object, name, value); instr->set_position(expr->position()); AddInstruction(instr); if (join != NULL) { if (!ast_context()->IsEffect()) Push(value); current_block()->Goto(join); } else { // The HSimulate for the store should not see the stored value in // effect contexts (it is not materialized at expr->id() in the // unoptimized code). if (instr->HasObservableSideEffects()) { if (ast_context()->IsEffect()) { AddSimulate(expr->id()); } else { Push(value); AddSimulate(expr->id()); Drop(1); } } return ast_context()->ReturnValue(value); } } ASSERT(join != NULL); join->SetJoinId(expr->id()); set_current_block(join); if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop()); } void HGraphBuilder::HandlePropertyAssignment(Assignment* expr) { Property* prop = expr->target()->AsProperty(); ASSERT(prop != NULL); expr->RecordTypeFeedback(oracle()); CHECK_ALIVE(VisitForValue(prop->obj())); HValue* value = NULL; HInstruction* instr = NULL; if (prop->key()->IsPropertyName()) { // Named store. CHECK_ALIVE(VisitForValue(expr->value())); value = Pop(); HValue* object = Pop(); Literal* key = prop->key()->AsLiteral(); Handle name = Handle::cast(key->handle()); ASSERT(!name.is_null()); SmallMapList* types = expr->GetReceiverTypes(); LookupResult lookup(isolate()); if (expr->IsMonomorphic()) { instr = BuildStoreNamed(object, value, expr); } else if (types != NULL && types->length() > 1) { HandlePolymorphicStoreNamedField(expr, object, value, types, name); return; } else { instr = BuildStoreNamedGeneric(object, name, value); } } else { // Keyed store. CHECK_ALIVE(VisitForValue(prop->key())); CHECK_ALIVE(VisitForValue(expr->value())); value = Pop(); HValue* key = Pop(); HValue* object = Pop(); bool has_side_effects = false; HandleKeyedElementAccess(object, key, value, expr, expr->AssignmentId(), expr->position(), true, // is_store &has_side_effects); Push(value); ASSERT(has_side_effects); // Stores always have side effects. AddSimulate(expr->AssignmentId()); return ast_context()->ReturnValue(Pop()); } Push(value); instr->set_position(expr->position()); AddInstruction(instr); if (instr->HasObservableSideEffects()) AddSimulate(expr->AssignmentId()); return ast_context()->ReturnValue(Pop()); } // Because not every expression has a position and there is not common // superclass of Assignment and CountOperation, we cannot just pass the // owning expression instead of position and ast_id separately. void HGraphBuilder::HandleGlobalVariableAssignment(Variable* var, HValue* value, int position, int ast_id) { LookupResult lookup(isolate()); GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, true); if (type == kUseCell) { Handle global(info()->global_object()); Handle cell(global->GetPropertyCell(&lookup)); HInstruction* instr = new(zone()) HStoreGlobalCell(value, cell, lookup.GetPropertyDetails()); instr->set_position(position); AddInstruction(instr); if (instr->HasObservableSideEffects()) AddSimulate(ast_id); } else { HValue* context = environment()->LookupContext(); HGlobalObject* global_object = new(zone()) HGlobalObject(context); AddInstruction(global_object); HStoreGlobalGeneric* instr = new(zone()) HStoreGlobalGeneric(context, global_object, var->name(), value, function_strict_mode_flag()); instr->set_position(position); AddInstruction(instr); ASSERT(instr->HasObservableSideEffects()); if (instr->HasObservableSideEffects()) AddSimulate(ast_id); } } void HGraphBuilder::HandleCompoundAssignment(Assignment* expr) { Expression* target = expr->target(); VariableProxy* proxy = target->AsVariableProxy(); Property* prop = target->AsProperty(); ASSERT(proxy == NULL || prop == NULL); // We have a second position recorded in the FullCodeGenerator to have // type feedback for the binary operation. BinaryOperation* operation = expr->binary_operation(); if (proxy != NULL) { Variable* var = proxy->var(); if (var->mode() == LET) { return Bailout("unsupported let compound assignment"); } CHECK_ALIVE(VisitForValue(operation)); switch (var->location()) { case Variable::UNALLOCATED: HandleGlobalVariableAssignment(var, Top(), expr->position(), expr->AssignmentId()); break; case Variable::PARAMETER: case Variable::LOCAL: if (var->mode() == CONST) { return Bailout("unsupported const compound assignment"); } Bind(var, Top()); break; case Variable::CONTEXT: { // Bail out if we try to mutate a parameter value in a function // using the arguments object. We do not (yet) correctly handle the // arguments property of the function. if (info()->scope()->arguments() != NULL) { // Parameters will be allocated to context slots. We have no // direct way to detect that the variable is a parameter so we do // a linear search of the parameter variables. int count = info()->scope()->num_parameters(); for (int i = 0; i < count; ++i) { if (var == info()->scope()->parameter(i)) { Bailout( "assignment to parameter, function uses arguments object"); } } } HStoreContextSlot::Mode mode; switch (var->mode()) { case LET: mode = HStoreContextSlot::kCheckDeoptimize; break; case CONST: return ast_context()->ReturnValue(Pop()); case CONST_HARMONY: // This case is checked statically so no need to // perform checks here UNREACHABLE(); default: mode = HStoreContextSlot::kNoCheck; } HValue* context = BuildContextChainWalk(var); HStoreContextSlot* instr = new(zone()) HStoreContextSlot(context, var->index(), mode, Top()); AddInstruction(instr); if (instr->HasObservableSideEffects()) { AddSimulate(expr->AssignmentId()); } break; } case Variable::LOOKUP: return Bailout("compound assignment to lookup slot"); } return ast_context()->ReturnValue(Pop()); } else if (prop != NULL) { prop->RecordTypeFeedback(oracle()); if (prop->key()->IsPropertyName()) { // Named property. CHECK_ALIVE(VisitForValue(prop->obj())); HValue* obj = Top(); HInstruction* load = NULL; if (prop->IsMonomorphic()) { Handle name = prop->key()->AsLiteral()->AsPropertyName(); Handle map = prop->GetReceiverTypes()->first(); load = BuildLoadNamed(obj, prop, map, name); } else { load = BuildLoadNamedGeneric(obj, prop); } PushAndAdd(load); if (load->HasObservableSideEffects()) AddSimulate(expr->CompoundLoadId()); CHECK_ALIVE(VisitForValue(expr->value())); HValue* right = Pop(); HValue* left = Pop(); HInstruction* instr = BuildBinaryOperation(operation, left, right); PushAndAdd(instr); if (instr->HasObservableSideEffects()) AddSimulate(operation->id()); HInstruction* store = BuildStoreNamed(obj, instr, prop); AddInstruction(store); // Drop the simulated receiver and value. Return the value. Drop(2); Push(instr); if (store->HasObservableSideEffects()) AddSimulate(expr->AssignmentId()); return ast_context()->ReturnValue(Pop()); } else { // Keyed property. CHECK_ALIVE(VisitForValue(prop->obj())); CHECK_ALIVE(VisitForValue(prop->key())); HValue* obj = environment()->ExpressionStackAt(1); HValue* key = environment()->ExpressionStackAt(0); bool has_side_effects = false; HValue* load = HandleKeyedElementAccess( obj, key, NULL, prop, expr->CompoundLoadId(), RelocInfo::kNoPosition, false, // is_store &has_side_effects); Push(load); if (has_side_effects) AddSimulate(expr->CompoundLoadId()); CHECK_ALIVE(VisitForValue(expr->value())); HValue* right = Pop(); HValue* left = Pop(); HInstruction* instr = BuildBinaryOperation(operation, left, right); PushAndAdd(instr); if (instr->HasObservableSideEffects()) AddSimulate(operation->id()); expr->RecordTypeFeedback(oracle()); HandleKeyedElementAccess(obj, key, instr, expr, expr->AssignmentId(), RelocInfo::kNoPosition, true, // is_store &has_side_effects); // Drop the simulated receiver, key, and value. Return the value. Drop(3); Push(instr); ASSERT(has_side_effects); // Stores always have side effects. AddSimulate(expr->AssignmentId()); return ast_context()->ReturnValue(Pop()); } } else { return Bailout("invalid lhs in compound assignment"); } } void HGraphBuilder::VisitAssignment(Assignment* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); VariableProxy* proxy = expr->target()->AsVariableProxy(); Property* prop = expr->target()->AsProperty(); ASSERT(proxy == NULL || prop == NULL); if (expr->is_compound()) { HandleCompoundAssignment(expr); return; } if (prop != NULL) { HandlePropertyAssignment(expr); } else if (proxy != NULL) { Variable* var = proxy->var(); if (var->mode() == CONST) { if (expr->op() != Token::INIT_CONST) { CHECK_ALIVE(VisitForValue(expr->value())); return ast_context()->ReturnValue(Pop()); } if (var->IsStackAllocated()) { // We insert a use of the old value to detect unsupported uses of const // variables (e.g. initialization inside a loop). HValue* old_value = environment()->Lookup(var); AddInstruction(new HUseConst(old_value)); } } else if (var->mode() == CONST_HARMONY) { if (expr->op() != Token::INIT_CONST_HARMONY) { return Bailout("non-initializer assignment to const"); } } if (proxy->IsArguments()) return Bailout("assignment to arguments"); // Handle the assignment. switch (var->location()) { case Variable::UNALLOCATED: CHECK_ALIVE(VisitForValue(expr->value())); HandleGlobalVariableAssignment(var, Top(), expr->position(), expr->AssignmentId()); return ast_context()->ReturnValue(Pop()); case Variable::PARAMETER: case Variable::LOCAL: { // Perform an initialization check for let declared variables // or parameters. if (var->mode() == LET && expr->op() == Token::ASSIGN) { HValue* env_value = environment()->Lookup(var); if (env_value == graph()->GetConstantHole()) { return Bailout("assignment to let variable before initialization"); } } // We do not allow the arguments object to occur in a context where it // may escape, but assignments to stack-allocated locals are // permitted. CHECK_ALIVE(VisitForValue(expr->value(), ARGUMENTS_ALLOWED)); HValue* value = Pop(); Bind(var, value); return ast_context()->ReturnValue(value); } case Variable::CONTEXT: { // Bail out if we try to mutate a parameter value in a function using // the arguments object. We do not (yet) correctly handle the // arguments property of the function. if (info()->scope()->arguments() != NULL) { // Parameters will rewrite to context slots. We have no direct way // to detect that the variable is a parameter. int count = info()->scope()->num_parameters(); for (int i = 0; i < count; ++i) { if (var == info()->scope()->parameter(i)) { return Bailout("assignment to parameter in arguments object"); } } } CHECK_ALIVE(VisitForValue(expr->value())); HStoreContextSlot::Mode mode; if (expr->op() == Token::ASSIGN) { switch (var->mode()) { case LET: mode = HStoreContextSlot::kCheckDeoptimize; break; case CONST: return ast_context()->ReturnValue(Pop()); case CONST_HARMONY: // This case is checked statically so no need to // perform checks here UNREACHABLE(); default: mode = HStoreContextSlot::kNoCheck; } } else if (expr->op() == Token::INIT_VAR || expr->op() == Token::INIT_LET || expr->op() == Token::INIT_CONST_HARMONY) { mode = HStoreContextSlot::kNoCheck; } else { ASSERT(expr->op() == Token::INIT_CONST); mode = HStoreContextSlot::kCheckIgnoreAssignment; } HValue* context = BuildContextChainWalk(var); HStoreContextSlot* instr = new(zone()) HStoreContextSlot( context, var->index(), mode, Top()); AddInstruction(instr); if (instr->HasObservableSideEffects()) { AddSimulate(expr->AssignmentId()); } return ast_context()->ReturnValue(Pop()); } case Variable::LOOKUP: return Bailout("assignment to LOOKUP variable"); } } else { return Bailout("invalid left-hand side in assignment"); } } void HGraphBuilder::VisitThrow(Throw* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); // We don't optimize functions with invalid left-hand sides in // assignments, count operations, or for-in. Consequently throw can // currently only occur in an effect context. ASSERT(ast_context()->IsEffect()); CHECK_ALIVE(VisitForValue(expr->exception())); HValue* context = environment()->LookupContext(); HValue* value = environment()->Pop(); HThrow* instr = new(zone()) HThrow(context, value); instr->set_position(expr->position()); AddInstruction(instr); AddSimulate(expr->id()); current_block()->FinishExit(new(zone()) HAbnormalExit); set_current_block(NULL); } HLoadNamedField* HGraphBuilder::BuildLoadNamedField(HValue* object, Property* expr, Handle type, LookupResult* lookup, bool smi_and_map_check) { if (smi_and_map_check) { AddInstruction(new(zone()) HCheckNonSmi(object)); AddInstruction(HCheckMaps::NewWithTransitions(object, type)); } int index = lookup->GetLocalFieldIndexFromMap(*type); if (index < 0) { // Negative property indices are in-object properties, indexed // from the end of the fixed part of the object. int offset = (index * kPointerSize) + type->instance_size(); return new(zone()) HLoadNamedField(object, true, offset); } else { // Non-negative property indices are in the properties array. int offset = (index * kPointerSize) + FixedArray::kHeaderSize; return new(zone()) HLoadNamedField(object, false, offset); } } HInstruction* HGraphBuilder::BuildLoadNamedGeneric(HValue* obj, Property* expr) { if (expr->IsUninitialized() && !FLAG_always_opt) { AddInstruction(new(zone()) HSoftDeoptimize); current_block()->MarkAsDeoptimizing(); } ASSERT(expr->key()->IsPropertyName()); Handle name = expr->key()->AsLiteral()->handle(); HValue* context = environment()->LookupContext(); return new(zone()) HLoadNamedGeneric(context, obj, name); } HInstruction* HGraphBuilder::BuildLoadNamed(HValue* obj, Property* expr, Handle map, Handle name) { LookupResult lookup(isolate()); map->LookupInDescriptors(NULL, *name, &lookup); if (lookup.IsFound() && lookup.type() == FIELD) { return BuildLoadNamedField(obj, expr, map, &lookup, true); } else if (lookup.IsFound() && lookup.type() == CONSTANT_FUNCTION) { AddInstruction(new(zone()) HCheckNonSmi(obj)); AddInstruction(HCheckMaps::NewWithTransitions(obj, map)); Handle function(lookup.GetConstantFunctionFromMap(*map)); return new(zone()) HConstant(function, Representation::Tagged()); } else { return BuildLoadNamedGeneric(obj, expr); } } HInstruction* HGraphBuilder::BuildLoadKeyedGeneric(HValue* object, HValue* key) { HValue* context = environment()->LookupContext(); return new(zone()) HLoadKeyedGeneric(context, object, key); } HInstruction* HGraphBuilder::BuildExternalArrayElementAccess( HValue* external_elements, HValue* checked_key, HValue* val, ElementsKind elements_kind, bool is_store) { if (is_store) { ASSERT(val != NULL); switch (elements_kind) { case EXTERNAL_PIXEL_ELEMENTS: { val = AddInstruction(new(zone()) HClampToUint8(val)); break; } case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: { if (!val->representation().IsInteger32()) { val = AddInstruction(new(zone()) HChange( val, Representation::Integer32(), true, // Truncate to int32. false)); // Don't deoptimize undefined (irrelevant here). } break; } case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: break; case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } return new(zone()) HStoreKeyedSpecializedArrayElement( external_elements, checked_key, val, elements_kind); } else { ASSERT(val == NULL); return new(zone()) HLoadKeyedSpecializedArrayElement( external_elements, checked_key, elements_kind); } } HInstruction* HGraphBuilder::BuildFastElementAccess(HValue* elements, HValue* checked_key, HValue* val, ElementsKind elements_kind, bool is_store) { if (is_store) { ASSERT(val != NULL); switch (elements_kind) { case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: return new(zone()) HStoreKeyedFastDoubleElement( elements, checked_key, val); case FAST_SMI_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: // Smi-only arrays need a smi check. AddInstruction(new(zone()) HCheckSmi(val)); // Fall through. case FAST_ELEMENTS: case FAST_HOLEY_ELEMENTS: return new(zone()) HStoreKeyedFastElement( elements, checked_key, val, elements_kind); default: UNREACHABLE(); return NULL; } } // It's an element load (!is_store). HoleCheckMode mode = IsFastPackedElementsKind(elements_kind) ? OMIT_HOLE_CHECK : PERFORM_HOLE_CHECK; if (IsFastDoubleElementsKind(elements_kind)) { return new(zone()) HLoadKeyedFastDoubleElement(elements, checked_key, mode); } else { // Smi or Object elements. return new(zone()) HLoadKeyedFastElement(elements, checked_key, mode); } } HInstruction* HGraphBuilder::BuildMonomorphicElementAccess(HValue* object, HValue* key, HValue* val, HValue* dependency, Handle map, bool is_store) { HInstruction* mapcheck = AddInstruction(new(zone()) HCheckMaps(object, map, dependency)); // No GVNFlag is necessary for ElementsKind if there is an explicit dependency // on a HElementsTransition instruction. The flag can also be removed if the // map to check has FAST_HOLEY_ELEMENTS, since there can be no further // ElementsKind transitions. Finally, the dependency can be removed for stores // for FAST_ELEMENTS, since a transition to HOLEY elements won't change the // generated store code. if (dependency || (map->elements_kind() == FAST_HOLEY_ELEMENTS) || (map->elements_kind() == FAST_ELEMENTS && is_store)) { mapcheck->ClearGVNFlag(kDependsOnElementsKind); } bool fast_smi_only_elements = map->has_fast_smi_elements(); bool fast_elements = map->has_fast_object_elements(); HInstruction* elements = AddInstruction(new(zone()) HLoadElements(object)); if (is_store && (fast_elements || fast_smi_only_elements)) { HCheckMaps* check_cow_map = new(zone()) HCheckMaps( elements, isolate()->factory()->fixed_array_map()); check_cow_map->ClearGVNFlag(kDependsOnElementsKind); AddInstruction(check_cow_map); } HInstruction* length = NULL; HInstruction* checked_key = NULL; if (map->has_external_array_elements()) { length = AddInstruction(new(zone()) HFixedArrayBaseLength(elements)); checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length)); HLoadExternalArrayPointer* external_elements = new(zone()) HLoadExternalArrayPointer(elements); AddInstruction(external_elements); return BuildExternalArrayElementAccess(external_elements, checked_key, val, map->elements_kind(), is_store); } ASSERT(fast_smi_only_elements || fast_elements || map->has_fast_double_elements()); if (map->instance_type() == JS_ARRAY_TYPE) { length = AddInstruction(new(zone()) HJSArrayLength(object, mapcheck)); } else { length = AddInstruction(new(zone()) HFixedArrayBaseLength(elements)); } checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length)); return BuildFastElementAccess(elements, checked_key, val, map->elements_kind(), is_store); } HValue* HGraphBuilder::HandlePolymorphicElementAccess(HValue* object, HValue* key, HValue* val, Expression* prop, int ast_id, int position, bool is_store, bool* has_side_effects) { *has_side_effects = false; AddInstruction(new(zone()) HCheckNonSmi(object)); SmallMapList* maps = prop->GetReceiverTypes(); bool todo_external_array = false; static const int kNumElementTypes = kElementsKindCount; bool type_todo[kNumElementTypes]; for (int i = 0; i < kNumElementTypes; ++i) { type_todo[i] = false; } // Elements_kind transition support. MapHandleList transition_target(maps->length()); // Collect possible transition targets. MapHandleList possible_transitioned_maps(maps->length()); for (int i = 0; i < maps->length(); ++i) { Handle map = maps->at(i); ElementsKind elements_kind = map->elements_kind(); if (IsFastElementsKind(elements_kind) && elements_kind != GetInitialFastElementsKind()) { possible_transitioned_maps.Add(map); } } // Get transition target for each map (NULL == no transition). for (int i = 0; i < maps->length(); ++i) { Handle map = maps->at(i); Handle transitioned_map = map->FindTransitionedMap(&possible_transitioned_maps); transition_target.Add(transitioned_map); } int num_untransitionable_maps = 0; Handle untransitionable_map; HTransitionElementsKind* transition = NULL; for (int i = 0; i < maps->length(); ++i) { Handle map = maps->at(i); ASSERT(map->IsMap()); if (!transition_target.at(i).is_null()) { ASSERT(Map::IsValidElementsTransition( map->elements_kind(), transition_target.at(i)->elements_kind())); transition = new(zone()) HTransitionElementsKind( object, map, transition_target.at(i)); AddInstruction(transition); } else { type_todo[map->elements_kind()] = true; if (map->elements_kind() >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND) { todo_external_array = true; } num_untransitionable_maps++; untransitionable_map = map; } } // If only one map is left after transitioning, handle this case // monomorphically. if (num_untransitionable_maps == 1) { HInstruction* instr = NULL; if (untransitionable_map->has_slow_elements_kind()) { instr = AddInstruction(is_store ? BuildStoreKeyedGeneric(object, key, val) : BuildLoadKeyedGeneric(object, key)); } else { instr = AddInstruction(BuildMonomorphicElementAccess( object, key, val, transition, untransitionable_map, is_store)); } *has_side_effects |= instr->HasObservableSideEffects(); instr->set_position(position); return is_store ? NULL : instr; } AddInstruction(HCheckInstanceType::NewIsSpecObject(object)); HBasicBlock* join = graph()->CreateBasicBlock(); HInstruction* elements_kind_instr = AddInstruction(new(zone()) HElementsKind(object)); HCompareConstantEqAndBranch* elements_kind_branch = NULL; HInstruction* elements = AddInstruction(new(zone()) HLoadElements(object)); HLoadExternalArrayPointer* external_elements = NULL; HInstruction* checked_key = NULL; // Generated code assumes that FAST_* and DICTIONARY_ELEMENTS ElementsKinds // are handled before external arrays. STATIC_ASSERT(FAST_SMI_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND); STATIC_ASSERT(FAST_HOLEY_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND); STATIC_ASSERT(FAST_DOUBLE_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND); STATIC_ASSERT(DICTIONARY_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND); for (ElementsKind elements_kind = FIRST_ELEMENTS_KIND; elements_kind <= LAST_ELEMENTS_KIND; elements_kind = ElementsKind(elements_kind + 1)) { // After having handled FAST_* and DICTIONARY_ELEMENTS, we need to add some // code that's executed for all external array cases. STATIC_ASSERT(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND == LAST_ELEMENTS_KIND); if (elements_kind == FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND && todo_external_array) { HInstruction* length = AddInstruction(new(zone()) HFixedArrayBaseLength(elements)); checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length)); external_elements = new(zone()) HLoadExternalArrayPointer(elements); AddInstruction(external_elements); } if (type_todo[elements_kind]) { HBasicBlock* if_true = graph()->CreateBasicBlock(); HBasicBlock* if_false = graph()->CreateBasicBlock(); elements_kind_branch = new(zone()) HCompareConstantEqAndBranch( elements_kind_instr, elements_kind, Token::EQ_STRICT); elements_kind_branch->SetSuccessorAt(0, if_true); elements_kind_branch->SetSuccessorAt(1, if_false); current_block()->Finish(elements_kind_branch); set_current_block(if_true); HInstruction* access; if (IsFastElementsKind(elements_kind)) { if (is_store && !IsFastDoubleElementsKind(elements_kind)) { AddInstruction(new(zone()) HCheckMaps( elements, isolate()->factory()->fixed_array_map(), elements_kind_branch)); } // TODO(jkummerow): The need for these two blocks could be avoided // in one of two ways: // (1) Introduce ElementsKinds for JSArrays that are distinct from // those for fast objects. // (2) Put the common instructions into a third "join" block. This // requires additional AST IDs that we can deopt to from inside // that join block. They must be added to the Property class (when // it's a keyed property) and registered in the full codegen. HBasicBlock* if_jsarray = graph()->CreateBasicBlock(); HBasicBlock* if_fastobject = graph()->CreateBasicBlock(); HHasInstanceTypeAndBranch* typecheck = new(zone()) HHasInstanceTypeAndBranch(object, JS_ARRAY_TYPE); typecheck->SetSuccessorAt(0, if_jsarray); typecheck->SetSuccessorAt(1, if_fastobject); current_block()->Finish(typecheck); set_current_block(if_jsarray); HInstruction* length; length = AddInstruction(new(zone()) HJSArrayLength(object, typecheck)); checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length)); access = AddInstruction(BuildFastElementAccess( elements, checked_key, val, elements_kind, is_store)); if (!is_store) { Push(access); } *has_side_effects |= access->HasObservableSideEffects(); if (position != -1) { access->set_position(position); } if_jsarray->Goto(join); set_current_block(if_fastobject); length = AddInstruction(new(zone()) HFixedArrayBaseLength(elements)); checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length)); access = AddInstruction(BuildFastElementAccess( elements, checked_key, val, elements_kind, is_store)); } else if (elements_kind == DICTIONARY_ELEMENTS) { if (is_store) { access = AddInstruction(BuildStoreKeyedGeneric(object, key, val)); } else { access = AddInstruction(BuildLoadKeyedGeneric(object, key)); } } else { // External array elements. access = AddInstruction(BuildExternalArrayElementAccess( external_elements, checked_key, val, elements_kind, is_store)); } *has_side_effects |= access->HasObservableSideEffects(); access->set_position(position); if (!is_store) { Push(access); } current_block()->Goto(join); set_current_block(if_false); } } // Deopt if none of the cases matched. current_block()->FinishExitWithDeoptimization(HDeoptimize::kNoUses); join->SetJoinId(ast_id); set_current_block(join); return is_store ? NULL : Pop(); } HValue* HGraphBuilder::HandleKeyedElementAccess(HValue* obj, HValue* key, HValue* val, Expression* expr, int ast_id, int position, bool is_store, bool* has_side_effects) { ASSERT(!expr->IsPropertyName()); HInstruction* instr = NULL; if (expr->IsMonomorphic()) { Handle map = expr->GetMonomorphicReceiverType(); if (map->has_slow_elements_kind()) { instr = is_store ? BuildStoreKeyedGeneric(obj, key, val) : BuildLoadKeyedGeneric(obj, key); } else { AddInstruction(new(zone()) HCheckNonSmi(obj)); instr = BuildMonomorphicElementAccess(obj, key, val, NULL, map, is_store); } } else if (expr->GetReceiverTypes() != NULL && !expr->GetReceiverTypes()->is_empty()) { return HandlePolymorphicElementAccess( obj, key, val, expr, ast_id, position, is_store, has_side_effects); } else { if (is_store) { instr = BuildStoreKeyedGeneric(obj, key, val); } else { instr = BuildLoadKeyedGeneric(obj, key); } } instr->set_position(position); AddInstruction(instr); *has_side_effects = instr->HasObservableSideEffects(); return instr; } HInstruction* HGraphBuilder::BuildStoreKeyedGeneric(HValue* object, HValue* key, HValue* value) { HValue* context = environment()->LookupContext(); return new(zone()) HStoreKeyedGeneric( context, object, key, value, function_strict_mode_flag()); } void HGraphBuilder::EnsureArgumentsArePushedForAccess() { // Outermost function already has arguments on the stack. if (function_state()->outer() == NULL) return; if (function_state()->arguments_pushed()) return; // Push arguments when entering inlined function. HEnterInlined* entry = function_state()->entry(); ZoneList* arguments_values = entry->arguments_values(); HInstruction* insert_after = entry; for (int i = 0; i < arguments_values->length(); i++) { HValue* argument = arguments_values->at(i); HInstruction* push_argument = new(zone()) HPushArgument(argument); push_argument->InsertAfter(insert_after); insert_after = push_argument; } HArgumentsElements* arguments_elements = new(zone()) HArgumentsElements(true); arguments_elements->ClearFlag(HValue::kUseGVN); arguments_elements->InsertAfter(insert_after); function_state()->set_arguments_elements(arguments_elements); } bool HGraphBuilder::TryArgumentsAccess(Property* expr) { VariableProxy* proxy = expr->obj()->AsVariableProxy(); if (proxy == NULL) return false; if (!proxy->var()->IsStackAllocated()) return false; if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) { return false; } HInstruction* result = NULL; if (expr->key()->IsPropertyName()) { Handle name = expr->key()->AsLiteral()->AsPropertyName(); if (!name->IsEqualTo(CStrVector("length"))) return false; if (function_state()->outer() == NULL) { HInstruction* elements = AddInstruction( new(zone()) HArgumentsElements(false)); result = new(zone()) HArgumentsLength(elements); } else { // Number of arguments without receiver. int argument_count = environment()-> arguments_environment()->parameter_count() - 1; result = new(zone()) HConstant( Handle(Smi::FromInt(argument_count)), Representation::Integer32()); } } else { Push(graph()->GetArgumentsObject()); VisitForValue(expr->key()); if (HasStackOverflow() || current_block() == NULL) return true; HValue* key = Pop(); Drop(1); // Arguments object. if (function_state()->outer() == NULL) { HInstruction* elements = AddInstruction( new(zone()) HArgumentsElements(false)); HInstruction* length = AddInstruction( new(zone()) HArgumentsLength(elements)); HInstruction* checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length)); result = new(zone()) HAccessArgumentsAt(elements, length, checked_key); } else { EnsureArgumentsArePushedForAccess(); // Number of arguments without receiver. HInstruction* elements = function_state()->arguments_elements(); int argument_count = environment()-> arguments_environment()->parameter_count() - 1; HInstruction* length = AddInstruction(new(zone()) HConstant( Handle(Smi::FromInt(argument_count)), Representation::Integer32())); HInstruction* checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length)); result = new(zone()) HAccessArgumentsAt(elements, length, checked_key); } } ast_context()->ReturnInstruction(result, expr->id()); return true; } void HGraphBuilder::VisitProperty(Property* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); expr->RecordTypeFeedback(oracle()); if (TryArgumentsAccess(expr)) return; CHECK_ALIVE(VisitForValue(expr->obj())); HInstruction* instr = NULL; if (expr->AsProperty()->IsArrayLength()) { HValue* array = Pop(); AddInstruction(new(zone()) HCheckNonSmi(array)); HInstruction* mapcheck = AddInstruction(HCheckInstanceType::NewIsJSArray(array)); instr = new(zone()) HJSArrayLength(array, mapcheck); } else if (expr->IsStringLength()) { HValue* string = Pop(); AddInstruction(new(zone()) HCheckNonSmi(string)); AddInstruction(HCheckInstanceType::NewIsString(string)); instr = new(zone()) HStringLength(string); } else if (expr->IsStringAccess()) { CHECK_ALIVE(VisitForValue(expr->key())); HValue* index = Pop(); HValue* string = Pop(); HValue* context = environment()->LookupContext(); HStringCharCodeAt* char_code = BuildStringCharCodeAt(context, string, index); AddInstruction(char_code); instr = new(zone()) HStringCharFromCode(context, char_code); } else if (expr->IsFunctionPrototype()) { HValue* function = Pop(); AddInstruction(new(zone()) HCheckNonSmi(function)); instr = new(zone()) HLoadFunctionPrototype(function); } else if (expr->key()->IsPropertyName()) { Handle name = expr->key()->AsLiteral()->AsPropertyName(); SmallMapList* types = expr->GetReceiverTypes(); HValue* obj = Pop(); if (expr->IsMonomorphic()) { instr = BuildLoadNamed(obj, expr, types->first(), name); } else if (types != NULL && types->length() > 1) { AddInstruction(new(zone()) HCheckNonSmi(obj)); HandlePolymorphicLoadNamedField(expr, obj, types, name); return; } else { instr = BuildLoadNamedGeneric(obj, expr); } } else { CHECK_ALIVE(VisitForValue(expr->key())); HValue* key = Pop(); HValue* obj = Pop(); bool has_side_effects = false; HValue* load = HandleKeyedElementAccess( obj, key, NULL, expr, expr->id(), expr->position(), false, // is_store &has_side_effects); if (has_side_effects) { if (ast_context()->IsEffect()) { AddSimulate(expr->id()); } else { Push(load); AddSimulate(expr->id()); Drop(1); } } return ast_context()->ReturnValue(load); } instr->set_position(expr->position()); return ast_context()->ReturnInstruction(instr, expr->id()); } void HGraphBuilder::AddCheckConstantFunction(Call* expr, HValue* receiver, Handle receiver_map, bool smi_and_map_check) { // Constant functions have the nice property that the map will change if they // are overwritten. Therefore it is enough to check the map of the holder and // its prototypes. if (smi_and_map_check) { AddInstruction(new(zone()) HCheckNonSmi(receiver)); AddInstruction(HCheckMaps::NewWithTransitions(receiver, receiver_map)); } if (!expr->holder().is_null()) { AddInstruction(new(zone()) HCheckPrototypeMaps( Handle(JSObject::cast(receiver_map->prototype())), expr->holder())); } } class FunctionSorter { public: FunctionSorter() : index_(0), ticks_(0), ast_length_(0), src_length_(0) { } FunctionSorter(int index, int ticks, int ast_length, int src_length) : index_(index), ticks_(ticks), ast_length_(ast_length), src_length_(src_length) { } int index() const { return index_; } int ticks() const { return ticks_; } int ast_length() const { return ast_length_; } int src_length() const { return src_length_; } private: int index_; int ticks_; int ast_length_; int src_length_; }; static int CompareHotness(void const* a, void const* b) { FunctionSorter const* function1 = reinterpret_cast(a); FunctionSorter const* function2 = reinterpret_cast(b); int diff = function1->ticks() - function2->ticks(); if (diff != 0) return -diff; diff = function1->ast_length() - function2->ast_length(); if (diff != 0) return diff; return function1->src_length() - function2->src_length(); } void HGraphBuilder::HandlePolymorphicCallNamed(Call* expr, HValue* receiver, SmallMapList* types, Handle name) { // TODO(ager): We should recognize when the prototype chains for different // maps are identical. In that case we can avoid repeatedly generating the // same prototype map checks. int argument_count = expr->arguments()->length() + 1; // Includes receiver. HBasicBlock* join = NULL; FunctionSorter order[kMaxCallPolymorphism]; int ordered_functions = 0; for (int i = 0; i < types->length() && ordered_functions < kMaxCallPolymorphism; ++i) { Handle map = types->at(i); if (expr->ComputeTarget(map, name)) { order[ordered_functions++] = FunctionSorter(i, expr->target()->shared()->profiler_ticks(), InliningAstSize(expr->target()), expr->target()->shared()->SourceSize()); } } qsort(reinterpret_cast(&order[0]), ordered_functions, sizeof(order[0]), &CompareHotness); for (int fn = 0; fn < ordered_functions; ++fn) { int i = order[fn].index(); Handle map = types->at(i); if (fn == 0) { // Only needed once. AddInstruction(new(zone()) HCheckNonSmi(receiver)); join = graph()->CreateBasicBlock(); } HBasicBlock* if_true = graph()->CreateBasicBlock(); HBasicBlock* if_false = graph()->CreateBasicBlock(); HCompareMap* compare = new(zone()) HCompareMap(receiver, map, if_true, if_false); current_block()->Finish(compare); set_current_block(if_true); expr->ComputeTarget(map, name); AddCheckConstantFunction(expr, receiver, map, false); if (FLAG_trace_inlining && FLAG_polymorphic_inlining) { Handle caller = info()->closure(); SmartArrayPointer caller_name = caller->shared()->DebugName()->ToCString(); PrintF("Trying to inline the polymorphic call to %s from %s\n", *name->ToCString(), *caller_name); } if (FLAG_polymorphic_inlining && TryInlineCall(expr)) { // Trying to inline will signal that we should bailout from the // entire compilation by setting stack overflow on the visitor. if (HasStackOverflow()) return; } else { HCallConstantFunction* call = new(zone()) HCallConstantFunction(expr->target(), argument_count); call->set_position(expr->position()); PreProcessCall(call); AddInstruction(call); if (!ast_context()->IsEffect()) Push(call); } if (current_block() != NULL) current_block()->Goto(join); set_current_block(if_false); } // Finish up. Unconditionally deoptimize if we've handled all the maps we // know about and do not want to handle ones we've never seen. Otherwise // use a generic IC. if (ordered_functions == types->length() && FLAG_deoptimize_uncommon_cases) { current_block()->FinishExitWithDeoptimization(HDeoptimize::kNoUses); } else { HValue* context = environment()->LookupContext(); HCallNamed* call = new(zone()) HCallNamed(context, name, argument_count); call->set_position(expr->position()); PreProcessCall(call); if (join != NULL) { AddInstruction(call); if (!ast_context()->IsEffect()) Push(call); current_block()->Goto(join); } else { return ast_context()->ReturnInstruction(call, expr->id()); } } // We assume that control flow is always live after an expression. So // even without predecessors to the join block, we set it as the exit // block and continue by adding instructions there. ASSERT(join != NULL); if (join->HasPredecessor()) { set_current_block(join); join->SetJoinId(expr->id()); if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop()); } else { set_current_block(NULL); } } void HGraphBuilder::TraceInline(Handle target, Handle caller, const char* reason) { if (FLAG_trace_inlining) { SmartArrayPointer target_name = target->shared()->DebugName()->ToCString(); SmartArrayPointer caller_name = caller->shared()->DebugName()->ToCString(); if (reason == NULL) { PrintF("Inlined %s called from %s.\n", *target_name, *caller_name); } else { PrintF("Did not inline %s called from %s (%s).\n", *target_name, *caller_name, reason); } } } static const int kNotInlinable = 1000000000; int HGraphBuilder::InliningAstSize(Handle target) { if (!FLAG_use_inlining) return kNotInlinable; // Precondition: call is monomorphic and we have found a target with the // appropriate arity. Handle caller = info()->closure(); Handle target_shared(target->shared()); // Do a quick check on source code length to avoid parsing large // inlining candidates. if (target_shared->SourceSize() > Min(FLAG_max_inlined_source_size, kUnlimitedMaxInlinedSourceSize)) { TraceInline(target, caller, "target text too big"); return kNotInlinable; } // Target must be inlineable. if (!target->IsInlineable()) { TraceInline(target, caller, "target not inlineable"); return kNotInlinable; } if (target_shared->dont_inline() || target_shared->dont_optimize()) { TraceInline(target, caller, "target contains unsupported syntax [early]"); return kNotInlinable; } int nodes_added = target_shared->ast_node_count(); return nodes_added; } bool HGraphBuilder::TryInline(CallKind call_kind, Handle target, ZoneList* arguments, HValue* receiver, int ast_id, int return_id, ReturnHandlingFlag return_handling) { int nodes_added = InliningAstSize(target); if (nodes_added == kNotInlinable) return false; Handle caller = info()->closure(); if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) { TraceInline(target, caller, "target AST is too large [early]"); return false; } Handle target_shared(target->shared()); #if !defined(V8_TARGET_ARCH_IA32) // Target must be able to use caller's context. CompilationInfo* outer_info = info(); if (target->context() != outer_info->closure()->context() || outer_info->scope()->contains_with() || outer_info->scope()->num_heap_slots() > 0) { TraceInline(target, caller, "target requires context change"); return false; } #endif // Don't inline deeper than kMaxInliningLevels calls. HEnvironment* env = environment(); int current_level = 1; while (env->outer() != NULL) { if (current_level == Compiler::kMaxInliningLevels) { TraceInline(target, caller, "inline depth limit reached"); return false; } if (env->outer()->frame_type() == JS_FUNCTION) { current_level++; } env = env->outer(); } // Don't inline recursive functions. for (FunctionState* state = function_state(); state != NULL; state = state->outer()) { if (state->compilation_info()->closure()->shared() == *target_shared) { TraceInline(target, caller, "target is recursive"); return false; } } // We don't want to add more than a certain number of nodes from inlining. if (inlined_count_ > Min(FLAG_max_inlined_nodes_cumulative, kUnlimitedMaxInlinedNodesCumulative)) { TraceInline(target, caller, "cumulative AST node limit reached"); return false; } // Parse and allocate variables. CompilationInfo target_info(target); if (!ParserApi::Parse(&target_info, kNoParsingFlags) || !Scope::Analyze(&target_info)) { if (target_info.isolate()->has_pending_exception()) { // Parse or scope error, never optimize this function. SetStackOverflow(); target_shared->DisableOptimization(); } TraceInline(target, caller, "parse failure"); return false; } if (target_info.scope()->num_heap_slots() > 0) { TraceInline(target, caller, "target has context-allocated variables"); return false; } FunctionLiteral* function = target_info.function(); // The following conditions must be checked again after re-parsing, because // earlier the information might not have been complete due to lazy parsing. nodes_added = function->ast_node_count(); if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) { TraceInline(target, caller, "target AST is too large [late]"); return false; } AstProperties::Flags* flags(function->flags()); if (flags->Contains(kDontInline) || flags->Contains(kDontOptimize)) { TraceInline(target, caller, "target contains unsupported syntax [late]"); return false; } // If the function uses the arguments object check that inlining of functions // with arguments object is enabled and the arguments-variable is // stack allocated. if (function->scope()->arguments() != NULL) { if (!FLAG_inline_arguments) { TraceInline(target, caller, "target uses arguments object"); return false; } if (!function->scope()->arguments()->IsStackAllocated()) { TraceInline(target, caller, "target uses non-stackallocated arguments object"); return false; } } // All declarations must be inlineable. ZoneList* decls = target_info.scope()->declarations(); int decl_count = decls->length(); for (int i = 0; i < decl_count; ++i) { if (!decls->at(i)->IsInlineable()) { TraceInline(target, caller, "target has non-trivial declaration"); return false; } } // Generate the deoptimization data for the unoptimized version of // the target function if we don't already have it. if (!target_shared->has_deoptimization_support()) { // Note that we compile here using the same AST that we will use for // generating the optimized inline code. target_info.EnableDeoptimizationSupport(); if (!FullCodeGenerator::MakeCode(&target_info)) { TraceInline(target, caller, "could not generate deoptimization info"); return false; } if (target_shared->scope_info() == ScopeInfo::Empty()) { // The scope info might not have been set if a lazily compiled // function is inlined before being called for the first time. Handle target_scope_info = ScopeInfo::Create(target_info.scope()); target_shared->set_scope_info(*target_scope_info); } target_shared->EnableDeoptimizationSupport(*target_info.code()); Compiler::RecordFunctionCompilation(Logger::FUNCTION_TAG, &target_info, target_shared); } // ---------------------------------------------------------------- // After this point, we've made a decision to inline this function (so // TryInline should always return true). // Save the pending call context and type feedback oracle. Set up new ones // for the inlined function. ASSERT(target_shared->has_deoptimization_support()); TypeFeedbackOracle target_oracle( Handle(target_shared->code()), Handle(target->context()->global_context()), isolate()); // The function state is new-allocated because we need to delete it // in two different places. FunctionState* target_state = new FunctionState( this, &target_info, &target_oracle, return_handling); HConstant* undefined = graph()->GetConstantUndefined(); HEnvironment* inner_env = environment()->CopyForInlining(target, arguments->length(), function, undefined, call_kind, function_state()->is_construct()); #ifdef V8_TARGET_ARCH_IA32 // IA32 only, overwrite the caller's context in the deoptimization // environment with the correct one. // // TODO(kmillikin): implement the same inlining on other platforms so we // can remove the unsightly ifdefs in this function. HConstant* context = new HConstant(Handle(target->context()), Representation::Tagged()); AddInstruction(context); inner_env->BindContext(context); #endif AddSimulate(return_id); current_block()->UpdateEnvironment(inner_env); ZoneList* arguments_values = NULL; // If the function uses arguments copy current arguments values // to use them for materialization. if (function->scope()->arguments() != NULL) { HEnvironment* arguments_env = inner_env->arguments_environment(); int arguments_count = arguments_env->parameter_count(); arguments_values = new(zone()) ZoneList(arguments_count); for (int i = 0; i < arguments_count; i++) { arguments_values->Add(arguments_env->Lookup(i)); } } HEnterInlined* enter_inlined = new(zone()) HEnterInlined(target, arguments->length(), function, call_kind, function_state()->is_construct(), function->scope()->arguments(), arguments_values); function_state()->set_entry(enter_inlined); AddInstruction(enter_inlined); // If the function uses arguments object create and bind one. if (function->scope()->arguments() != NULL) { ASSERT(function->scope()->arguments()->IsStackAllocated()); inner_env->Bind(function->scope()->arguments(), graph()->GetArgumentsObject()); } VisitDeclarations(target_info.scope()->declarations()); VisitStatements(function->body()); if (HasStackOverflow()) { // Bail out if the inline function did, as we cannot residualize a call // instead. TraceInline(target, caller, "inline graph construction failed"); target_shared->DisableOptimization(); inline_bailout_ = true; delete target_state; return true; } // Update inlined nodes count. inlined_count_ += nodes_added; TraceInline(target, caller, NULL); if (current_block() != NULL) { // Add default return value (i.e. undefined for normals calls or the newly // allocated receiver for construct calls) if control can fall off the // body. In a test context, undefined is false and any JSObject is true. if (call_context()->IsValue()) { ASSERT(function_return() != NULL); HValue* return_value = function_state()->is_construct() ? receiver : undefined; current_block()->AddLeaveInlined(return_value, function_return(), function_state()); } else if (call_context()->IsEffect()) { ASSERT(function_return() != NULL); current_block()->Goto(function_return(), function_state()); } else { ASSERT(call_context()->IsTest()); ASSERT(inlined_test_context() != NULL); HBasicBlock* target = function_state()->is_construct() ? inlined_test_context()->if_true() : inlined_test_context()->if_false(); current_block()->Goto(target, function_state()); } } // Fix up the function exits. if (inlined_test_context() != NULL) { HBasicBlock* if_true = inlined_test_context()->if_true(); HBasicBlock* if_false = inlined_test_context()->if_false(); // Pop the return test context from the expression context stack. ASSERT(ast_context() == inlined_test_context()); ClearInlinedTestContext(); delete target_state; // Forward to the real test context. if (if_true->HasPredecessor()) { if_true->SetJoinId(ast_id); HBasicBlock* true_target = TestContext::cast(ast_context())->if_true(); if_true->Goto(true_target, function_state()); } if (if_false->HasPredecessor()) { if_false->SetJoinId(ast_id); HBasicBlock* false_target = TestContext::cast(ast_context())->if_false(); if_false->Goto(false_target, function_state()); } set_current_block(NULL); return true; } else if (function_return()->HasPredecessor()) { function_return()->SetJoinId(ast_id); set_current_block(function_return()); } else { set_current_block(NULL); } delete target_state; return true; } bool HGraphBuilder::TryInlineCall(Call* expr, bool drop_extra) { // The function call we are inlining is a method call if the call // is a property call. CallKind call_kind = (expr->expression()->AsProperty() == NULL) ? CALL_AS_FUNCTION : CALL_AS_METHOD; return TryInline(call_kind, expr->target(), expr->arguments(), NULL, expr->id(), expr->ReturnId(), drop_extra ? DROP_EXTRA_ON_RETURN : NORMAL_RETURN); } bool HGraphBuilder::TryInlineConstruct(CallNew* expr, HValue* receiver) { return TryInline(CALL_AS_FUNCTION, expr->target(), expr->arguments(), receiver, expr->id(), expr->ReturnId(), CONSTRUCT_CALL_RETURN); } bool HGraphBuilder::TryInlineBuiltinFunctionCall(Call* expr, bool drop_extra) { if (!expr->target()->shared()->HasBuiltinFunctionId()) return false; BuiltinFunctionId id = expr->target()->shared()->builtin_function_id(); switch (id) { case kMathRound: case kMathAbs: case kMathSqrt: case kMathLog: case kMathSin: case kMathCos: case kMathTan: if (expr->arguments()->length() == 1) { HValue* argument = Pop(); HValue* context = environment()->LookupContext(); Drop(1); // Receiver. HUnaryMathOperation* op = new(zone()) HUnaryMathOperation(context, argument, id); op->set_position(expr->position()); if (drop_extra) Drop(1); // Optionally drop the function. ast_context()->ReturnInstruction(op, expr->id()); return true; } break; default: // Not supported for inlining yet. break; } return false; } bool HGraphBuilder::TryInlineBuiltinMethodCall(Call* expr, HValue* receiver, Handle receiver_map, CheckType check_type) { ASSERT(check_type != RECEIVER_MAP_CHECK || !receiver_map.is_null()); // Try to inline calls like Math.* as operations in the calling function. if (!expr->target()->shared()->HasBuiltinFunctionId()) return false; BuiltinFunctionId id = expr->target()->shared()->builtin_function_id(); int argument_count = expr->arguments()->length() + 1; // Plus receiver. switch (id) { case kStringCharCodeAt: case kStringCharAt: if (argument_count == 2 && check_type == STRING_CHECK) { HValue* index = Pop(); HValue* string = Pop(); HValue* context = environment()->LookupContext(); ASSERT(!expr->holder().is_null()); AddInstruction(new(zone()) HCheckPrototypeMaps( oracle()->GetPrototypeForPrimitiveCheck(STRING_CHECK), expr->holder())); HStringCharCodeAt* char_code = BuildStringCharCodeAt(context, string, index); if (id == kStringCharCodeAt) { ast_context()->ReturnInstruction(char_code, expr->id()); return true; } AddInstruction(char_code); HStringCharFromCode* result = new(zone()) HStringCharFromCode(context, char_code); ast_context()->ReturnInstruction(result, expr->id()); return true; } break; case kMathRound: case kMathFloor: case kMathAbs: case kMathSqrt: case kMathLog: case kMathSin: case kMathCos: case kMathTan: if (argument_count == 2 && check_type == RECEIVER_MAP_CHECK) { AddCheckConstantFunction(expr, receiver, receiver_map, true); HValue* argument = Pop(); HValue* context = environment()->LookupContext(); Drop(1); // Receiver. HUnaryMathOperation* op = new(zone()) HUnaryMathOperation(context, argument, id); op->set_position(expr->position()); ast_context()->ReturnInstruction(op, expr->id()); return true; } break; case kMathPow: if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) { AddCheckConstantFunction(expr, receiver, receiver_map, true); HValue* right = Pop(); HValue* left = Pop(); Pop(); // Pop receiver. HValue* context = environment()->LookupContext(); HInstruction* result = NULL; // Use sqrt() if exponent is 0.5 or -0.5. if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) { double exponent = HConstant::cast(right)->DoubleValue(); if (exponent == 0.5) { result = new(zone()) HUnaryMathOperation(context, left, kMathPowHalf); } else if (exponent == -0.5) { HConstant* double_one = new(zone()) HConstant(Handle(Smi::FromInt(1)), Representation::Double()); AddInstruction(double_one); HUnaryMathOperation* square_root = new(zone()) HUnaryMathOperation(context, left, kMathPowHalf); AddInstruction(square_root); // MathPowHalf doesn't have side effects so there's no need for // an environment simulation here. ASSERT(!square_root->HasObservableSideEffects()); result = new(zone()) HDiv(context, double_one, square_root); } else if (exponent == 2.0) { result = new(zone()) HMul(context, left, left); } } else if (right->IsConstant() && HConstant::cast(right)->HasInteger32Value() && HConstant::cast(right)->Integer32Value() == 2) { result = new(zone()) HMul(context, left, left); } if (result == NULL) { result = new(zone()) HPower(left, right); } ast_context()->ReturnInstruction(result, expr->id()); return true; } break; case kMathRandom: if (argument_count == 1 && check_type == RECEIVER_MAP_CHECK) { AddCheckConstantFunction(expr, receiver, receiver_map, true); Drop(1); // Receiver. HValue* context = environment()->LookupContext(); HGlobalObject* global_object = new(zone()) HGlobalObject(context); AddInstruction(global_object); HRandom* result = new(zone()) HRandom(global_object); ast_context()->ReturnInstruction(result, expr->id()); return true; } break; case kMathMax: case kMathMin: if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) { AddCheckConstantFunction(expr, receiver, receiver_map, true); HValue* right = Pop(); HValue* left = Pop(); Pop(); // Pop receiver. HValue* left_operand = left; HValue* right_operand = right; // If we do not have two integers, we convert to double for comparison. if (!left->representation().IsInteger32() || !right->representation().IsInteger32()) { if (!left->representation().IsDouble()) { HChange* left_convert = new(zone()) HChange( left, Representation::Double(), false, // Do not truncate when converting to double. true); // Deoptimize for undefined. left_convert->SetFlag(HValue::kBailoutOnMinusZero); left_operand = AddInstruction(left_convert); } if (!right->representation().IsDouble()) { HChange* right_convert = new(zone()) HChange( right, Representation::Double(), false, // Do not truncate when converting to double. true); // Deoptimize for undefined. right_convert->SetFlag(HValue::kBailoutOnMinusZero); right_operand = AddInstruction(right_convert); } } ASSERT(left_operand->representation().Equals( right_operand->representation())); ASSERT(!left_operand->representation().IsTagged()); Token::Value op = (id == kMathMin) ? Token::LT : Token::GT; HCompareIDAndBranch* compare = new(zone()) HCompareIDAndBranch(left_operand, right_operand, op); compare->SetInputRepresentation(left_operand->representation()); HBasicBlock* return_left = graph()->CreateBasicBlock(); HBasicBlock* return_right = graph()->CreateBasicBlock(); compare->SetSuccessorAt(0, return_left); compare->SetSuccessorAt(1, return_right); current_block()->Finish(compare); set_current_block(return_left); Push(left); set_current_block(return_right); // The branch above always returns the right operand if either of // them is NaN, but the spec requires that max/min(NaN, X) = NaN. // We add another branch that checks if the left operand is NaN or not. if (left_operand->representation().IsDouble()) { // If left_operand != left_operand then it is NaN. HCompareIDAndBranch* compare_nan = new(zone()) HCompareIDAndBranch( left_operand, left_operand, Token::EQ); compare_nan->SetInputRepresentation(left_operand->representation()); HBasicBlock* left_is_number = graph()->CreateBasicBlock(); HBasicBlock* left_is_nan = graph()->CreateBasicBlock(); compare_nan->SetSuccessorAt(0, left_is_number); compare_nan->SetSuccessorAt(1, left_is_nan); current_block()->Finish(compare_nan); set_current_block(left_is_nan); Push(left); set_current_block(left_is_number); Push(right); return_right = CreateJoin(left_is_number, left_is_nan, expr->id()); } else { Push(right); } HBasicBlock* join = CreateJoin(return_left, return_right, expr->id()); set_current_block(join); ast_context()->ReturnValue(Pop()); return true; } break; default: // Not yet supported for inlining. break; } return false; } bool HGraphBuilder::TryCallApply(Call* expr) { Expression* callee = expr->expression(); Property* prop = callee->AsProperty(); ASSERT(prop != NULL); if (!expr->IsMonomorphic() || expr->check_type() != RECEIVER_MAP_CHECK) { return false; } Handle function_map = expr->GetReceiverTypes()->first(); if (function_map->instance_type() != JS_FUNCTION_TYPE || !expr->target()->shared()->HasBuiltinFunctionId() || expr->target()->shared()->builtin_function_id() != kFunctionApply) { return false; } if (info()->scope()->arguments() == NULL) return false; ZoneList* args = expr->arguments(); if (args->length() != 2) return false; VariableProxy* arg_two = args->at(1)->AsVariableProxy(); if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false; HValue* arg_two_value = environment()->Lookup(arg_two->var()); if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false; // Found pattern f.apply(receiver, arguments). VisitForValue(prop->obj()); if (HasStackOverflow() || current_block() == NULL) return true; HValue* function = Top(); AddCheckConstantFunction(expr, function, function_map, true); Drop(1); VisitForValue(args->at(0)); if (HasStackOverflow() || current_block() == NULL) return true; HValue* receiver = Pop(); if (function_state()->outer() == NULL) { HInstruction* elements = AddInstruction( new(zone()) HArgumentsElements(false)); HInstruction* length = AddInstruction(new(zone()) HArgumentsLength(elements)); HValue* wrapped_receiver = AddInstruction(new(zone()) HWrapReceiver(receiver, function)); HInstruction* result = new(zone()) HApplyArguments(function, wrapped_receiver, length, elements); result->set_position(expr->position()); ast_context()->ReturnInstruction(result, expr->id()); return true; } else { // We are inside inlined function and we know exactly what is inside // arguments object. HValue* context = environment()->LookupContext(); HValue* wrapped_receiver = AddInstruction(new(zone()) HWrapReceiver(receiver, function)); PushAndAdd(new(zone()) HPushArgument(wrapped_receiver)); HEnvironment* arguments_env = environment()->arguments_environment(); int parameter_count = arguments_env->parameter_count(); for (int i = 1; i < arguments_env->parameter_count(); i++) { PushAndAdd(new(zone()) HPushArgument(arguments_env->Lookup(i))); } HInvokeFunction* call = new(zone()) HInvokeFunction( context, function, parameter_count); Drop(parameter_count); call->set_position(expr->position()); ast_context()->ReturnInstruction(call, expr->id()); return true; } } void HGraphBuilder::VisitCall(Call* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); Expression* callee = expr->expression(); int argument_count = expr->arguments()->length() + 1; // Plus receiver. HInstruction* call = NULL; Property* prop = callee->AsProperty(); if (prop != NULL) { if (!prop->key()->IsPropertyName()) { // Keyed function call. CHECK_ALIVE(VisitArgument(prop->obj())); CHECK_ALIVE(VisitForValue(prop->key())); // Push receiver and key like the non-optimized code generator expects it. HValue* key = Pop(); HValue* receiver = Pop(); Push(key); Push(receiver); CHECK_ALIVE(VisitArgumentList(expr->arguments())); HValue* context = environment()->LookupContext(); call = new(zone()) HCallKeyed(context, key, argument_count); call->set_position(expr->position()); Drop(argument_count + 1); // 1 is the key. return ast_context()->ReturnInstruction(call, expr->id()); } // Named function call. expr->RecordTypeFeedback(oracle(), CALL_AS_METHOD); if (TryCallApply(expr)) return; CHECK_ALIVE(VisitForValue(prop->obj())); CHECK_ALIVE(VisitExpressions(expr->arguments())); Handle name = prop->key()->AsLiteral()->AsPropertyName(); SmallMapList* types = expr->GetReceiverTypes(); HValue* receiver = environment()->ExpressionStackAt(expr->arguments()->length()); if (expr->IsMonomorphic()) { Handle receiver_map = (types == NULL || types->is_empty()) ? Handle::null() : types->first(); if (TryInlineBuiltinMethodCall(expr, receiver, receiver_map, expr->check_type())) { if (FLAG_trace_inlining) { PrintF("Inlining builtin "); expr->target()->ShortPrint(); PrintF("\n"); } return; } if (CallStubCompiler::HasCustomCallGenerator(expr->target()) || expr->check_type() != RECEIVER_MAP_CHECK) { // When the target has a custom call IC generator, use the IC, // because it is likely to generate better code. Also use the IC // when a primitive receiver check is required. HValue* context = environment()->LookupContext(); call = PreProcessCall( new(zone()) HCallNamed(context, name, argument_count)); } else { AddCheckConstantFunction(expr, receiver, receiver_map, true); if (TryInlineCall(expr)) return; call = PreProcessCall( new(zone()) HCallConstantFunction(expr->target(), argument_count)); } } else if (types != NULL && types->length() > 1) { ASSERT(expr->check_type() == RECEIVER_MAP_CHECK); HandlePolymorphicCallNamed(expr, receiver, types, name); return; } else { HValue* context = environment()->LookupContext(); call = PreProcessCall( new(zone()) HCallNamed(context, name, argument_count)); } } else { expr->RecordTypeFeedback(oracle(), CALL_AS_FUNCTION); VariableProxy* proxy = expr->expression()->AsVariableProxy(); bool global_call = proxy != NULL && proxy->var()->IsUnallocated(); if (proxy != NULL && proxy->var()->is_possibly_eval()) { return Bailout("possible direct call to eval"); } if (global_call) { Variable* var = proxy->var(); bool known_global_function = false; // If there is a global property cell for the name at compile time and // access check is not enabled we assume that the function will not change // and generate optimized code for calling the function. LookupResult lookup(isolate()); GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, false); if (type == kUseCell && !info()->global_object()->IsAccessCheckNeeded()) { Handle global(info()->global_object()); known_global_function = expr->ComputeGlobalTarget(global, &lookup); } if (known_global_function) { // Push the global object instead of the global receiver because // code generated by the full code generator expects it. HValue* context = environment()->LookupContext(); HGlobalObject* global_object = new(zone()) HGlobalObject(context); PushAndAdd(global_object); CHECK_ALIVE(VisitExpressions(expr->arguments())); CHECK_ALIVE(VisitForValue(expr->expression())); HValue* function = Pop(); AddInstruction(new(zone()) HCheckFunction(function, expr->target())); // Replace the global object with the global receiver. HGlobalReceiver* global_receiver = new(zone()) HGlobalReceiver(global_object); // Index of the receiver from the top of the expression stack. const int receiver_index = argument_count - 1; AddInstruction(global_receiver); ASSERT(environment()->ExpressionStackAt(receiver_index)-> IsGlobalObject()); environment()->SetExpressionStackAt(receiver_index, global_receiver); if (TryInlineBuiltinFunctionCall(expr, false)) { // Nothing to drop. if (FLAG_trace_inlining) { PrintF("Inlining builtin "); expr->target()->ShortPrint(); PrintF("\n"); } return; } if (TryInlineCall(expr)) return; call = PreProcessCall(new(zone()) HCallKnownGlobal(expr->target(), argument_count)); } else { HValue* context = environment()->LookupContext(); HGlobalObject* receiver = new(zone()) HGlobalObject(context); AddInstruction(receiver); PushAndAdd(new(zone()) HPushArgument(receiver)); CHECK_ALIVE(VisitArgumentList(expr->arguments())); call = new(zone()) HCallGlobal(context, var->name(), argument_count); Drop(argument_count); } } else if (expr->IsMonomorphic()) { // The function is on the stack in the unoptimized code during // evaluation of the arguments. CHECK_ALIVE(VisitForValue(expr->expression())); HValue* function = Top(); HValue* context = environment()->LookupContext(); HGlobalObject* global = new(zone()) HGlobalObject(context); HGlobalReceiver* receiver = new(zone()) HGlobalReceiver(global); AddInstruction(global); PushAndAdd(receiver); CHECK_ALIVE(VisitExpressions(expr->arguments())); AddInstruction(new(zone()) HCheckFunction(function, expr->target())); if (TryInlineBuiltinFunctionCall(expr, true)) { // Drop the function. if (FLAG_trace_inlining) { PrintF("Inlining builtin "); expr->target()->ShortPrint(); PrintF("\n"); } return; } if (TryInlineCall(expr, true)) { // Drop function from environment. return; } else { call = PreProcessCall( new(zone()) HInvokeFunction(context, function, expr->target(), argument_count)); Drop(1); // The function. } } else { CHECK_ALIVE(VisitForValue(expr->expression())); HValue* function = Top(); HValue* context = environment()->LookupContext(); HGlobalObject* global_object = new(zone()) HGlobalObject(context); HGlobalReceiver* receiver = new(zone()) HGlobalReceiver(global_object); AddInstruction(global_object); AddInstruction(receiver); PushAndAdd(new(zone()) HPushArgument(receiver)); CHECK_ALIVE(VisitArgumentList(expr->arguments())); call = new(zone()) HCallFunction(context, function, argument_count); Drop(argument_count + 1); } } call->set_position(expr->position()); return ast_context()->ReturnInstruction(call, expr->id()); } // Checks whether allocation using the given constructor can be inlined. static bool IsAllocationInlineable(Handle constructor) { return constructor->has_initial_map() && constructor->initial_map()->instance_type() == JS_OBJECT_TYPE && constructor->initial_map()->instance_size() < HAllocateObject::kMaxSize; } void HGraphBuilder::VisitCallNew(CallNew* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); expr->RecordTypeFeedback(oracle()); int argument_count = expr->arguments()->length() + 1; // Plus constructor. HValue* context = environment()->LookupContext(); if (FLAG_inline_construct && expr->IsMonomorphic() && IsAllocationInlineable(expr->target())) { // The constructor function is on the stack in the unoptimized code // during evaluation of the arguments. CHECK_ALIVE(VisitForValue(expr->expression())); HValue* function = Top(); CHECK_ALIVE(VisitExpressions(expr->arguments())); Handle constructor = expr->target(); HValue* check = AddInstruction( new(zone()) HCheckFunction(function, constructor)); // Force completion of inobject slack tracking before generating // allocation code to finalize instance size. if (constructor->shared()->IsInobjectSlackTrackingInProgress()) { constructor->shared()->CompleteInobjectSlackTracking(); } // Replace the constructor function with a newly allocated receiver. HInstruction* receiver = new(zone()) HAllocateObject(context, constructor); // Index of the receiver from the top of the expression stack. const int receiver_index = argument_count - 1; AddInstruction(receiver); ASSERT(environment()->ExpressionStackAt(receiver_index) == function); environment()->SetExpressionStackAt(receiver_index, receiver); if (TryInlineConstruct(expr, receiver)) return; // TODO(mstarzinger): For now we remove the previous HAllocateObject and // add HPushArgument for the arguments in case inlining failed. What we // actually should do is emit HInvokeFunction on the constructor instead // of using HCallNew as a fallback. receiver->DeleteAndReplaceWith(NULL); check->DeleteAndReplaceWith(NULL); environment()->SetExpressionStackAt(receiver_index, function); HInstruction* call = PreProcessCall( new(zone()) HCallNew(context, function, argument_count)); call->set_position(expr->position()); return ast_context()->ReturnInstruction(call, expr->id()); } else { // The constructor function is both an operand to the instruction and an // argument to the construct call. HValue* constructor = NULL; CHECK_ALIVE(constructor = VisitArgument(expr->expression())); CHECK_ALIVE(VisitArgumentList(expr->arguments())); HInstruction* call = new(zone()) HCallNew(context, constructor, argument_count); Drop(argument_count); call->set_position(expr->position()); return ast_context()->ReturnInstruction(call, expr->id()); } } // Support for generating inlined runtime functions. // Lookup table for generators for runtime calls that are generated inline. // Elements of the table are member pointers to functions of HGraphBuilder. #define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \ &HGraphBuilder::Generate##Name, const HGraphBuilder::InlineFunctionGenerator HGraphBuilder::kInlineFunctionGenerators[] = { INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS) INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS) }; #undef INLINE_FUNCTION_GENERATOR_ADDRESS void HGraphBuilder::VisitCallRuntime(CallRuntime* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); if (expr->is_jsruntime()) { return Bailout("call to a JavaScript runtime function"); } const Runtime::Function* function = expr->function(); ASSERT(function != NULL); if (function->intrinsic_type == Runtime::INLINE) { ASSERT(expr->name()->length() > 0); ASSERT(expr->name()->Get(0) == '_'); // Call to an inline function. int lookup_index = static_cast(function->function_id) - static_cast(Runtime::kFirstInlineFunction); ASSERT(lookup_index >= 0); ASSERT(static_cast(lookup_index) < ARRAY_SIZE(kInlineFunctionGenerators)); InlineFunctionGenerator generator = kInlineFunctionGenerators[lookup_index]; // Call the inline code generator using the pointer-to-member. (this->*generator)(expr); } else { ASSERT(function->intrinsic_type == Runtime::RUNTIME); CHECK_ALIVE(VisitArgumentList(expr->arguments())); HValue* context = environment()->LookupContext(); Handle name = expr->name(); int argument_count = expr->arguments()->length(); HCallRuntime* call = new(zone()) HCallRuntime(context, name, function, argument_count); call->set_position(RelocInfo::kNoPosition); Drop(argument_count); return ast_context()->ReturnInstruction(call, expr->id()); } } void HGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); switch (expr->op()) { case Token::DELETE: return VisitDelete(expr); case Token::VOID: return VisitVoid(expr); case Token::TYPEOF: return VisitTypeof(expr); case Token::ADD: return VisitAdd(expr); case Token::SUB: return VisitSub(expr); case Token::BIT_NOT: return VisitBitNot(expr); case Token::NOT: return VisitNot(expr); default: UNREACHABLE(); } } void HGraphBuilder::VisitDelete(UnaryOperation* expr) { Property* prop = expr->expression()->AsProperty(); VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (prop != NULL) { CHECK_ALIVE(VisitForValue(prop->obj())); CHECK_ALIVE(VisitForValue(prop->key())); HValue* key = Pop(); HValue* obj = Pop(); HValue* context = environment()->LookupContext(); HDeleteProperty* instr = new(zone()) HDeleteProperty(context, obj, key); return ast_context()->ReturnInstruction(instr, expr->id()); } else if (proxy != NULL) { Variable* var = proxy->var(); if (var->IsUnallocated()) { Bailout("delete with global variable"); } else if (var->IsStackAllocated() || var->IsContextSlot()) { // Result of deleting non-global variables is false. 'this' is not // really a variable, though we implement it as one. The // subexpression does not have side effects. HValue* value = var->is_this() ? graph()->GetConstantTrue() : graph()->GetConstantFalse(); return ast_context()->ReturnValue(value); } else { Bailout("delete with non-global variable"); } } else { // Result of deleting non-property, non-variable reference is true. // Evaluate the subexpression for side effects. CHECK_ALIVE(VisitForEffect(expr->expression())); return ast_context()->ReturnValue(graph()->GetConstantTrue()); } } void HGraphBuilder::VisitVoid(UnaryOperation* expr) { CHECK_ALIVE(VisitForEffect(expr->expression())); return ast_context()->ReturnValue(graph()->GetConstantUndefined()); } void HGraphBuilder::VisitTypeof(UnaryOperation* expr) { CHECK_ALIVE(VisitForTypeOf(expr->expression())); HValue* value = Pop(); HValue* context = environment()->LookupContext(); HInstruction* instr = new(zone()) HTypeof(context, value); return ast_context()->ReturnInstruction(instr, expr->id()); } void HGraphBuilder::VisitAdd(UnaryOperation* expr) { CHECK_ALIVE(VisitForValue(expr->expression())); HValue* value = Pop(); HValue* context = environment()->LookupContext(); HInstruction* instr = new(zone()) HMul(context, value, graph_->GetConstant1()); return ast_context()->ReturnInstruction(instr, expr->id()); } void HGraphBuilder::VisitSub(UnaryOperation* expr) { CHECK_ALIVE(VisitForValue(expr->expression())); HValue* value = Pop(); HValue* context = environment()->LookupContext(); HInstruction* instr = new(zone()) HMul(context, value, graph_->GetConstantMinus1()); TypeInfo info = oracle()->UnaryType(expr); if (info.IsUninitialized()) { AddInstruction(new(zone()) HSoftDeoptimize); current_block()->MarkAsDeoptimizing(); info = TypeInfo::Unknown(); } Representation rep = ToRepresentation(info); TraceRepresentation(expr->op(), info, instr, rep); instr->AssumeRepresentation(rep); return ast_context()->ReturnInstruction(instr, expr->id()); } void HGraphBuilder::VisitBitNot(UnaryOperation* expr) { CHECK_ALIVE(VisitForValue(expr->expression())); HValue* value = Pop(); TypeInfo info = oracle()->UnaryType(expr); if (info.IsUninitialized()) { AddInstruction(new(zone()) HSoftDeoptimize); current_block()->MarkAsDeoptimizing(); } HInstruction* instr = new(zone()) HBitNot(value); return ast_context()->ReturnInstruction(instr, expr->id()); } void HGraphBuilder::VisitNot(UnaryOperation* expr) { if (ast_context()->IsTest()) { TestContext* context = TestContext::cast(ast_context()); VisitForControl(expr->expression(), context->if_false(), context->if_true()); return; } if (ast_context()->IsEffect()) { VisitForEffect(expr->expression()); return; } ASSERT(ast_context()->IsValue()); HBasicBlock* materialize_false = graph()->CreateBasicBlock(); HBasicBlock* materialize_true = graph()->CreateBasicBlock(); CHECK_BAILOUT(VisitForControl(expr->expression(), materialize_false, materialize_true)); if (materialize_false->HasPredecessor()) { materialize_false->SetJoinId(expr->MaterializeFalseId()); set_current_block(materialize_false); Push(graph()->GetConstantFalse()); } else { materialize_false = NULL; } if (materialize_true->HasPredecessor()) { materialize_true->SetJoinId(expr->MaterializeTrueId()); set_current_block(materialize_true); Push(graph()->GetConstantTrue()); } else { materialize_true = NULL; } HBasicBlock* join = CreateJoin(materialize_false, materialize_true, expr->id()); set_current_block(join); if (join != NULL) return ast_context()->ReturnValue(Pop()); } HInstruction* HGraphBuilder::BuildIncrement(bool returns_original_input, CountOperation* expr) { // The input to the count operation is on top of the expression stack. TypeInfo info = oracle()->IncrementType(expr); Representation rep = ToRepresentation(info); if (rep.IsTagged()) { rep = Representation::Integer32(); } if (returns_original_input) { // We need an explicit HValue representing ToNumber(input). The // actual HChange instruction we need is (sometimes) added in a later // phase, so it is not available now to be used as an input to HAdd and // as the return value. HInstruction* number_input = new(zone()) HForceRepresentation(Pop(), rep); AddInstruction(number_input); Push(number_input); } // The addition has no side effects, so we do not need // to simulate the expression stack after this instruction. // Any later failures deopt to the load of the input or earlier. HConstant* delta = (expr->op() == Token::INC) ? graph_->GetConstant1() : graph_->GetConstantMinus1(); HValue* context = environment()->LookupContext(); HInstruction* instr = new(zone()) HAdd(context, Top(), delta); TraceRepresentation(expr->op(), info, instr, rep); instr->AssumeRepresentation(rep); AddInstruction(instr); return instr; } void HGraphBuilder::VisitCountOperation(CountOperation* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); Expression* target = expr->expression(); VariableProxy* proxy = target->AsVariableProxy(); Property* prop = target->AsProperty(); if (proxy == NULL && prop == NULL) { return Bailout("invalid lhs in count operation"); } // Match the full code generator stack by simulating an extra stack // element for postfix operations in a non-effect context. The return // value is ToNumber(input). bool returns_original_input = expr->is_postfix() && !ast_context()->IsEffect(); HValue* input = NULL; // ToNumber(original_input). HValue* after = NULL; // The result after incrementing or decrementing. if (proxy != NULL) { Variable* var = proxy->var(); if (var->mode() == CONST) { return Bailout("unsupported count operation with const"); } // Argument of the count operation is a variable, not a property. ASSERT(prop == NULL); CHECK_ALIVE(VisitForValue(target)); after = BuildIncrement(returns_original_input, expr); input = returns_original_input ? Top() : Pop(); Push(after); switch (var->location()) { case Variable::UNALLOCATED: HandleGlobalVariableAssignment(var, after, expr->position(), expr->AssignmentId()); break; case Variable::PARAMETER: case Variable::LOCAL: Bind(var, after); break; case Variable::CONTEXT: { // Bail out if we try to mutate a parameter value in a function // using the arguments object. We do not (yet) correctly handle the // arguments property of the function. if (info()->scope()->arguments() != NULL) { // Parameters will rewrite to context slots. We have no direct // way to detect that the variable is a parameter so we use a // linear search of the parameter list. int count = info()->scope()->num_parameters(); for (int i = 0; i < count; ++i) { if (var == info()->scope()->parameter(i)) { return Bailout("assignment to parameter in arguments object"); } } } HValue* context = BuildContextChainWalk(var); HStoreContextSlot::Mode mode = (var->mode() == LET || var->mode() == CONST_HARMONY) ? HStoreContextSlot::kCheckDeoptimize : HStoreContextSlot::kNoCheck; HStoreContextSlot* instr = new(zone()) HStoreContextSlot(context, var->index(), mode, after); AddInstruction(instr); if (instr->HasObservableSideEffects()) { AddSimulate(expr->AssignmentId()); } break; } case Variable::LOOKUP: return Bailout("lookup variable in count operation"); } } else { // Argument of the count operation is a property. ASSERT(prop != NULL); prop->RecordTypeFeedback(oracle()); if (prop->key()->IsPropertyName()) { // Named property. if (returns_original_input) Push(graph_->GetConstantUndefined()); CHECK_ALIVE(VisitForValue(prop->obj())); HValue* obj = Top(); HInstruction* load = NULL; if (prop->IsMonomorphic()) { Handle name = prop->key()->AsLiteral()->AsPropertyName(); Handle map = prop->GetReceiverTypes()->first(); load = BuildLoadNamed(obj, prop, map, name); } else { load = BuildLoadNamedGeneric(obj, prop); } PushAndAdd(load); if (load->HasObservableSideEffects()) AddSimulate(expr->CountId()); after = BuildIncrement(returns_original_input, expr); input = Pop(); HInstruction* store = BuildStoreNamed(obj, after, prop); AddInstruction(store); // Overwrite the receiver in the bailout environment with the result // of the operation, and the placeholder with the original value if // necessary. environment()->SetExpressionStackAt(0, after); if (returns_original_input) environment()->SetExpressionStackAt(1, input); if (store->HasObservableSideEffects()) AddSimulate(expr->AssignmentId()); } else { // Keyed property. if (returns_original_input) Push(graph_->GetConstantUndefined()); CHECK_ALIVE(VisitForValue(prop->obj())); CHECK_ALIVE(VisitForValue(prop->key())); HValue* obj = environment()->ExpressionStackAt(1); HValue* key = environment()->ExpressionStackAt(0); bool has_side_effects = false; HValue* load = HandleKeyedElementAccess( obj, key, NULL, prop, expr->CountId(), RelocInfo::kNoPosition, false, // is_store &has_side_effects); Push(load); if (has_side_effects) AddSimulate(expr->CountId()); after = BuildIncrement(returns_original_input, expr); input = Pop(); expr->RecordTypeFeedback(oracle()); HandleKeyedElementAccess(obj, key, after, expr, expr->AssignmentId(), RelocInfo::kNoPosition, true, // is_store &has_side_effects); // Drop the key from the bailout environment. Overwrite the receiver // with the result of the operation, and the placeholder with the // original value if necessary. Drop(1); environment()->SetExpressionStackAt(0, after); if (returns_original_input) environment()->SetExpressionStackAt(1, input); ASSERT(has_side_effects); // Stores always have side effects. AddSimulate(expr->AssignmentId()); } } Drop(returns_original_input ? 2 : 1); return ast_context()->ReturnValue(expr->is_postfix() ? input : after); } HStringCharCodeAt* HGraphBuilder::BuildStringCharCodeAt(HValue* context, HValue* string, HValue* index) { AddInstruction(new(zone()) HCheckNonSmi(string)); AddInstruction(HCheckInstanceType::NewIsString(string)); HStringLength* length = new(zone()) HStringLength(string); AddInstruction(length); HInstruction* checked_index = AddInstruction(new(zone()) HBoundsCheck(index, length)); return new(zone()) HStringCharCodeAt(context, string, checked_index); } HInstruction* HGraphBuilder::BuildBinaryOperation(BinaryOperation* expr, HValue* left, HValue* right) { HValue* context = environment()->LookupContext(); TypeInfo info = oracle()->BinaryType(expr); if (info.IsUninitialized()) { AddInstruction(new(zone()) HSoftDeoptimize); current_block()->MarkAsDeoptimizing(); info = TypeInfo::Unknown(); } HInstruction* instr = NULL; switch (expr->op()) { case Token::ADD: if (info.IsString()) { AddInstruction(new(zone()) HCheckNonSmi(left)); AddInstruction(HCheckInstanceType::NewIsString(left)); AddInstruction(new(zone()) HCheckNonSmi(right)); AddInstruction(HCheckInstanceType::NewIsString(right)); instr = new(zone()) HStringAdd(context, left, right); } else { instr = HAdd::NewHAdd(zone(), context, left, right); } break; case Token::SUB: instr = HSub::NewHSub(zone(), context, left, right); break; case Token::MUL: instr = HMul::NewHMul(zone(), context, left, right); break; case Token::MOD: instr = HMod::NewHMod(zone(), context, left, right); break; case Token::DIV: instr = HDiv::NewHDiv(zone(), context, left, right); break; case Token::BIT_XOR: case Token::BIT_AND: case Token::BIT_OR: instr = HBitwise::NewHBitwise(zone(), expr->op(), context, left, right); break; case Token::SAR: instr = HSar::NewHSar(zone(), context, left, right); break; case Token::SHR: instr = HShr::NewHShr(zone(), context, left, right); break; case Token::SHL: instr = HShl::NewHShl(zone(), context, left, right); break; default: UNREACHABLE(); } // If we hit an uninitialized binary op stub we will get type info // for a smi operation. If one of the operands is a constant string // do not generate code assuming it is a smi operation. if (info.IsSmi() && ((left->IsConstant() && HConstant::cast(left)->HasStringValue()) || (right->IsConstant() && HConstant::cast(right)->HasStringValue()))) { return instr; } Representation rep = ToRepresentation(info); // We only generate either int32 or generic tagged bitwise operations. if (instr->IsBitwiseBinaryOperation() && rep.IsDouble()) { rep = Representation::Integer32(); } TraceRepresentation(expr->op(), info, instr, rep); instr->AssumeRepresentation(rep); return instr; } // Check for the form (%_ClassOf(foo) === 'BarClass'). static bool IsClassOfTest(CompareOperation* expr) { if (expr->op() != Token::EQ_STRICT) return false; CallRuntime* call = expr->left()->AsCallRuntime(); if (call == NULL) return false; Literal* literal = expr->right()->AsLiteral(); if (literal == NULL) return false; if (!literal->handle()->IsString()) return false; if (!call->name()->IsEqualTo(CStrVector("_ClassOf"))) return false; ASSERT(call->arguments()->length() == 1); return true; } void HGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); switch (expr->op()) { case Token::COMMA: return VisitComma(expr); case Token::OR: case Token::AND: return VisitLogicalExpression(expr); default: return VisitArithmeticExpression(expr); } } void HGraphBuilder::VisitComma(BinaryOperation* expr) { CHECK_ALIVE(VisitForEffect(expr->left())); // Visit the right subexpression in the same AST context as the entire // expression. Visit(expr->right()); } void HGraphBuilder::VisitLogicalExpression(BinaryOperation* expr) { bool is_logical_and = expr->op() == Token::AND; if (ast_context()->IsTest()) { TestContext* context = TestContext::cast(ast_context()); // Translate left subexpression. HBasicBlock* eval_right = graph()->CreateBasicBlock(); if (is_logical_and) { CHECK_BAILOUT(VisitForControl(expr->left(), eval_right, context->if_false())); } else { CHECK_BAILOUT(VisitForControl(expr->left(), context->if_true(), eval_right)); } // Translate right subexpression by visiting it in the same AST // context as the entire expression. if (eval_right->HasPredecessor()) { eval_right->SetJoinId(expr->RightId()); set_current_block(eval_right); Visit(expr->right()); } } else if (ast_context()->IsValue()) { CHECK_ALIVE(VisitForValue(expr->left())); ASSERT(current_block() != NULL); // We need an extra block to maintain edge-split form. HBasicBlock* empty_block = graph()->CreateBasicBlock(); HBasicBlock* eval_right = graph()->CreateBasicBlock(); unsigned test_id = expr->left()->test_id(); ToBooleanStub::Types expected(oracle()->ToBooleanTypes(test_id)); HBranch* test = is_logical_and ? new(zone()) HBranch(Top(), eval_right, empty_block, expected) : new(zone()) HBranch(Top(), empty_block, eval_right, expected); current_block()->Finish(test); set_current_block(eval_right); Drop(1); // Value of the left subexpression. CHECK_BAILOUT(VisitForValue(expr->right())); HBasicBlock* join_block = CreateJoin(empty_block, current_block(), expr->id()); set_current_block(join_block); return ast_context()->ReturnValue(Pop()); } else { ASSERT(ast_context()->IsEffect()); // In an effect context, we don't need the value of the left subexpression, // only its control flow and side effects. We need an extra block to // maintain edge-split form. HBasicBlock* empty_block = graph()->CreateBasicBlock(); HBasicBlock* right_block = graph()->CreateBasicBlock(); if (is_logical_and) { CHECK_BAILOUT(VisitForControl(expr->left(), right_block, empty_block)); } else { CHECK_BAILOUT(VisitForControl(expr->left(), empty_block, right_block)); } // TODO(kmillikin): Find a way to fix this. It's ugly that there are // actually two empty blocks (one here and one inserted by // TestContext::BuildBranch, and that they both have an HSimulate though the // second one is not a merge node, and that we really have no good AST ID to // put on that first HSimulate. if (empty_block->HasPredecessor()) { empty_block->SetJoinId(expr->id()); } else { empty_block = NULL; } if (right_block->HasPredecessor()) { right_block->SetJoinId(expr->RightId()); set_current_block(right_block); CHECK_BAILOUT(VisitForEffect(expr->right())); right_block = current_block(); } else { right_block = NULL; } HBasicBlock* join_block = CreateJoin(empty_block, right_block, expr->id()); set_current_block(join_block); // We did not materialize any value in the predecessor environments, // so there is no need to handle it here. } } void HGraphBuilder::VisitArithmeticExpression(BinaryOperation* expr) { CHECK_ALIVE(VisitForValue(expr->left())); CHECK_ALIVE(VisitForValue(expr->right())); HValue* right = Pop(); HValue* left = Pop(); HInstruction* instr = BuildBinaryOperation(expr, left, right); instr->set_position(expr->position()); return ast_context()->ReturnInstruction(instr, expr->id()); } void HGraphBuilder::TraceRepresentation(Token::Value op, TypeInfo info, HValue* value, Representation rep) { if (!FLAG_trace_representation) return; // TODO(svenpanne) Under which circumstances are we actually not flexible? // At first glance, this looks a bit weird... bool flexible = value->CheckFlag(HValue::kFlexibleRepresentation); PrintF("Operation %s has type info %s, %schange representation assumption " "for %s (ID %d) from %s to %s\n", Token::Name(op), info.ToString(), flexible ? "" : " DO NOT ", value->Mnemonic(), graph_->GetMaximumValueID(), value->representation().Mnemonic(), rep.Mnemonic()); } Representation HGraphBuilder::ToRepresentation(TypeInfo info) { if (info.IsSmi()) return Representation::Integer32(); if (info.IsInteger32()) return Representation::Integer32(); if (info.IsDouble()) return Representation::Double(); if (info.IsNumber()) return Representation::Double(); return Representation::Tagged(); } void HGraphBuilder::HandleLiteralCompareTypeof(CompareOperation* expr, HTypeof* typeof_expr, Handle check) { // Note: The HTypeof itself is removed during canonicalization, if possible. HValue* value = typeof_expr->value(); HTypeofIsAndBranch* instr = new(zone()) HTypeofIsAndBranch(value, check); instr->set_position(expr->position()); return ast_context()->ReturnControl(instr, expr->id()); } static bool MatchLiteralCompareNil(HValue* left, Token::Value op, HValue* right, Handle nil, HValue** expr) { if (left->IsConstant() && HConstant::cast(left)->handle().is_identical_to(nil) && Token::IsEqualityOp(op)) { *expr = right; return true; } return false; } static bool MatchLiteralCompareTypeof(HValue* left, Token::Value op, HValue* right, HTypeof** typeof_expr, Handle* check) { if (left->IsTypeof() && Token::IsEqualityOp(op) && right->IsConstant() && HConstant::cast(right)->HasStringValue()) { *typeof_expr = HTypeof::cast(left); *check = Handle::cast(HConstant::cast(right)->handle()); return true; } return false; } static bool IsLiteralCompareTypeof(HValue* left, Token::Value op, HValue* right, HTypeof** typeof_expr, Handle* check) { return MatchLiteralCompareTypeof(left, op, right, typeof_expr, check) || MatchLiteralCompareTypeof(right, op, left, typeof_expr, check); } static bool IsLiteralCompareNil(HValue* left, Token::Value op, HValue* right, Handle nil, HValue** expr) { return MatchLiteralCompareNil(left, op, right, nil, expr) || MatchLiteralCompareNil(right, op, left, nil, expr); } static bool IsLiteralCompareBool(HValue* left, Token::Value op, HValue* right) { return op == Token::EQ_STRICT && ((left->IsConstant() && HConstant::cast(left)->handle()->IsBoolean()) || (right->IsConstant() && HConstant::cast(right)->handle()->IsBoolean())); } void HGraphBuilder::VisitCompareOperation(CompareOperation* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); if (IsClassOfTest(expr)) { CallRuntime* call = expr->left()->AsCallRuntime(); ASSERT(call->arguments()->length() == 1); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); HValue* value = Pop(); Literal* literal = expr->right()->AsLiteral(); Handle rhs = Handle::cast(literal->handle()); HClassOfTestAndBranch* instr = new(zone()) HClassOfTestAndBranch(value, rhs); instr->set_position(expr->position()); return ast_context()->ReturnControl(instr, expr->id()); } TypeInfo type_info = oracle()->CompareType(expr); // Check if this expression was ever executed according to type feedback. // Note that for the special typeof/null/undefined cases we get unknown here. if (type_info.IsUninitialized()) { AddInstruction(new(zone()) HSoftDeoptimize); current_block()->MarkAsDeoptimizing(); type_info = TypeInfo::Unknown(); } CHECK_ALIVE(VisitForValue(expr->left())); CHECK_ALIVE(VisitForValue(expr->right())); HValue* context = environment()->LookupContext(); HValue* right = Pop(); HValue* left = Pop(); Token::Value op = expr->op(); HTypeof* typeof_expr = NULL; Handle check; if (IsLiteralCompareTypeof(left, op, right, &typeof_expr, &check)) { return HandleLiteralCompareTypeof(expr, typeof_expr, check); } HValue* sub_expr = NULL; Factory* f = graph()->isolate()->factory(); if (IsLiteralCompareNil(left, op, right, f->undefined_value(), &sub_expr)) { return HandleLiteralCompareNil(expr, sub_expr, kUndefinedValue); } if (IsLiteralCompareNil(left, op, right, f->null_value(), &sub_expr)) { return HandleLiteralCompareNil(expr, sub_expr, kNullValue); } if (IsLiteralCompareBool(left, op, right)) { HCompareObjectEqAndBranch* result = new(zone()) HCompareObjectEqAndBranch(left, right); result->set_position(expr->position()); return ast_context()->ReturnControl(result, expr->id()); } if (op == Token::INSTANCEOF) { // Check to see if the rhs of the instanceof is a global function not // residing in new space. If it is we assume that the function will stay the // same. Handle target = Handle::null(); VariableProxy* proxy = expr->right()->AsVariableProxy(); bool global_function = (proxy != NULL) && proxy->var()->IsUnallocated(); if (global_function && info()->has_global_object() && !info()->global_object()->IsAccessCheckNeeded()) { Handle name = proxy->name(); Handle global(info()->global_object()); LookupResult lookup(isolate()); global->Lookup(*name, &lookup); if (lookup.IsFound() && lookup.type() == NORMAL && lookup.GetValue()->IsJSFunction()) { Handle candidate(JSFunction::cast(lookup.GetValue())); // If the function is in new space we assume it's more likely to // change and thus prefer the general IC code. if (!isolate()->heap()->InNewSpace(*candidate)) { target = candidate; } } } // If the target is not null we have found a known global function that is // assumed to stay the same for this instanceof. if (target.is_null()) { HInstanceOf* result = new(zone()) HInstanceOf(context, left, right); result->set_position(expr->position()); return ast_context()->ReturnInstruction(result, expr->id()); } else { AddInstruction(new(zone()) HCheckFunction(right, target)); HInstanceOfKnownGlobal* result = new(zone()) HInstanceOfKnownGlobal(context, left, target); result->set_position(expr->position()); return ast_context()->ReturnInstruction(result, expr->id()); } } else if (op == Token::IN) { HIn* result = new(zone()) HIn(context, left, right); result->set_position(expr->position()); return ast_context()->ReturnInstruction(result, expr->id()); } else if (type_info.IsNonPrimitive()) { switch (op) { case Token::EQ: case Token::EQ_STRICT: { // Can we get away with map check and not instance type check? Handle map = oracle()->GetCompareMap(expr); if (!map.is_null()) { AddInstruction(new(zone()) HCheckNonSmi(left)); AddInstruction(HCheckMaps::NewWithTransitions(left, map)); AddInstruction(new(zone()) HCheckNonSmi(right)); AddInstruction(HCheckMaps::NewWithTransitions(right, map)); HCompareObjectEqAndBranch* result = new(zone()) HCompareObjectEqAndBranch(left, right); result->set_position(expr->position()); return ast_context()->ReturnControl(result, expr->id()); } else { AddInstruction(new(zone()) HCheckNonSmi(left)); AddInstruction(HCheckInstanceType::NewIsSpecObject(left)); AddInstruction(new(zone()) HCheckNonSmi(right)); AddInstruction(HCheckInstanceType::NewIsSpecObject(right)); HCompareObjectEqAndBranch* result = new(zone()) HCompareObjectEqAndBranch(left, right); result->set_position(expr->position()); return ast_context()->ReturnControl(result, expr->id()); } } default: return Bailout("Unsupported non-primitive compare"); } } else if (type_info.IsString() && oracle()->IsSymbolCompare(expr) && (op == Token::EQ || op == Token::EQ_STRICT)) { AddInstruction(new(zone()) HCheckNonSmi(left)); AddInstruction(HCheckInstanceType::NewIsSymbol(left)); AddInstruction(new(zone()) HCheckNonSmi(right)); AddInstruction(HCheckInstanceType::NewIsSymbol(right)); HCompareObjectEqAndBranch* result = new(zone()) HCompareObjectEqAndBranch(left, right); result->set_position(expr->position()); return ast_context()->ReturnControl(result, expr->id()); } else { Representation r = ToRepresentation(type_info); if (r.IsTagged()) { HCompareGeneric* result = new(zone()) HCompareGeneric(context, left, right, op); result->set_position(expr->position()); return ast_context()->ReturnInstruction(result, expr->id()); } else { HCompareIDAndBranch* result = new(zone()) HCompareIDAndBranch(left, right, op); result->set_position(expr->position()); result->SetInputRepresentation(r); return ast_context()->ReturnControl(result, expr->id()); } } } void HGraphBuilder::HandleLiteralCompareNil(CompareOperation* expr, HValue* value, NilValue nil) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); EqualityKind kind = expr->op() == Token::EQ_STRICT ? kStrictEquality : kNonStrictEquality; HIsNilAndBranch* instr = new(zone()) HIsNilAndBranch(value, kind, nil); instr->set_position(expr->position()); return ast_context()->ReturnControl(instr, expr->id()); } void HGraphBuilder::VisitThisFunction(ThisFunction* expr) { ASSERT(!HasStackOverflow()); ASSERT(current_block() != NULL); ASSERT(current_block()->HasPredecessor()); HThisFunction* self = new(zone()) HThisFunction( function_state()->compilation_info()->closure()); return ast_context()->ReturnInstruction(self, expr->id()); } void HGraphBuilder::VisitDeclarations(ZoneList* declarations) { ASSERT(globals_.is_empty()); AstVisitor::VisitDeclarations(declarations); if (!globals_.is_empty()) { Handle array = isolate()->factory()->NewFixedArray(globals_.length(), TENURED); for (int i = 0; i < globals_.length(); ++i) array->set(i, *globals_.at(i)); int flags = DeclareGlobalsEvalFlag::encode(info()->is_eval()) | DeclareGlobalsNativeFlag::encode(info()->is_native()) | DeclareGlobalsLanguageMode::encode(info()->language_mode()); HInstruction* result = new(zone()) HDeclareGlobals( environment()->LookupContext(), array, flags); AddInstruction(result); globals_.Clear(); } } void HGraphBuilder::VisitVariableDeclaration(VariableDeclaration* declaration) { VariableProxy* proxy = declaration->proxy(); VariableMode mode = declaration->mode(); Variable* variable = proxy->var(); bool hole_init = mode == CONST || mode == CONST_HARMONY || mode == LET; switch (variable->location()) { case Variable::UNALLOCATED: globals_.Add(variable->name()); globals_.Add(variable->binding_needs_init() ? isolate()->factory()->the_hole_value() : isolate()->factory()->undefined_value()); return; case Variable::PARAMETER: case Variable::LOCAL: if (hole_init) { HValue* value = graph()->GetConstantHole(); environment()->Bind(variable, value); } break; case Variable::CONTEXT: if (hole_init) { HValue* value = graph()->GetConstantHole(); HValue* context = environment()->LookupContext(); HStoreContextSlot* store = new HStoreContextSlot( context, variable->index(), HStoreContextSlot::kNoCheck, value); AddInstruction(store); if (store->HasObservableSideEffects()) AddSimulate(proxy->id()); } break; case Variable::LOOKUP: return Bailout("unsupported lookup slot in declaration"); } } void HGraphBuilder::VisitFunctionDeclaration(FunctionDeclaration* declaration) { VariableProxy* proxy = declaration->proxy(); Variable* variable = proxy->var(); switch (variable->location()) { case Variable::UNALLOCATED: { globals_.Add(variable->name()); Handle function = Compiler::BuildFunctionInfo(declaration->fun(), info()->script()); // Check for stack-overflow exception. if (function.is_null()) return SetStackOverflow(); globals_.Add(function); return; } case Variable::PARAMETER: case Variable::LOCAL: { CHECK_ALIVE(VisitForValue(declaration->fun())); HValue* value = Pop(); environment()->Bind(variable, value); break; } case Variable::CONTEXT: { CHECK_ALIVE(VisitForValue(declaration->fun())); HValue* value = Pop(); HValue* context = environment()->LookupContext(); HStoreContextSlot* store = new HStoreContextSlot( context, variable->index(), HStoreContextSlot::kNoCheck, value); AddInstruction(store); if (store->HasObservableSideEffects()) AddSimulate(proxy->id()); break; } case Variable::LOOKUP: return Bailout("unsupported lookup slot in declaration"); } } void HGraphBuilder::VisitModuleDeclaration(ModuleDeclaration* declaration) { UNREACHABLE(); } void HGraphBuilder::VisitImportDeclaration(ImportDeclaration* declaration) { UNREACHABLE(); } void HGraphBuilder::VisitExportDeclaration(ExportDeclaration* declaration) { UNREACHABLE(); } void HGraphBuilder::VisitModuleLiteral(ModuleLiteral* module) { UNREACHABLE(); } void HGraphBuilder::VisitModuleVariable(ModuleVariable* module) { UNREACHABLE(); } void HGraphBuilder::VisitModulePath(ModulePath* module) { UNREACHABLE(); } void HGraphBuilder::VisitModuleUrl(ModuleUrl* module) { UNREACHABLE(); } // Generators for inline runtime functions. // Support for types. void HGraphBuilder::GenerateIsSmi(CallRuntime* call) { ASSERT(call->arguments()->length() == 1); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); HValue* value = Pop(); HIsSmiAndBranch* result = new(zone()) HIsSmiAndBranch(value); return ast_context()->ReturnControl(result, call->id()); } void HGraphBuilder::GenerateIsSpecObject(CallRuntime* call) { ASSERT(call->arguments()->length() == 1); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); HValue* value = Pop(); HHasInstanceTypeAndBranch* result = new(zone()) HHasInstanceTypeAndBranch(value, FIRST_SPEC_OBJECT_TYPE, LAST_SPEC_OBJECT_TYPE); return ast_context()->ReturnControl(result, call->id()); } void HGraphBuilder::GenerateIsFunction(CallRuntime* call) { ASSERT(call->arguments()->length() == 1); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); HValue* value = Pop(); HHasInstanceTypeAndBranch* result = new(zone()) HHasInstanceTypeAndBranch(value, JS_FUNCTION_TYPE); return ast_context()->ReturnControl(result, call->id()); } void HGraphBuilder::GenerateHasCachedArrayIndex(CallRuntime* call) { ASSERT(call->arguments()->length() == 1); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); HValue* value = Pop(); HHasCachedArrayIndexAndBranch* result = new(zone()) HHasCachedArrayIndexAndBranch(value); return ast_context()->ReturnControl(result, call->id()); } void HGraphBuilder::GenerateIsArray(CallRuntime* call) { ASSERT(call->arguments()->length() == 1); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); HValue* value = Pop(); HHasInstanceTypeAndBranch* result = new(zone()) HHasInstanceTypeAndBranch(value, JS_ARRAY_TYPE); return ast_context()->ReturnControl(result, call->id()); } void HGraphBuilder::GenerateIsRegExp(CallRuntime* call) { ASSERT(call->arguments()->length() == 1); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); HValue* value = Pop(); HHasInstanceTypeAndBranch* result = new(zone()) HHasInstanceTypeAndBranch(value, JS_REGEXP_TYPE); return ast_context()->ReturnControl(result, call->id()); } void HGraphBuilder::GenerateIsObject(CallRuntime* call) { ASSERT(call->arguments()->length() == 1); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); HValue* value = Pop(); HIsObjectAndBranch* result = new(zone()) HIsObjectAndBranch(value); return ast_context()->ReturnControl(result, call->id()); } void HGraphBuilder::GenerateIsNonNegativeSmi(CallRuntime* call) { return Bailout("inlined runtime function: IsNonNegativeSmi"); } void HGraphBuilder::GenerateIsUndetectableObject(CallRuntime* call) { ASSERT(call->arguments()->length() == 1); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); HValue* value = Pop(); HIsUndetectableAndBranch* result = new(zone()) HIsUndetectableAndBranch(value); return ast_context()->ReturnControl(result, call->id()); } void HGraphBuilder::GenerateIsStringWrapperSafeForDefaultValueOf( CallRuntime* call) { return Bailout( "inlined runtime function: IsStringWrapperSafeForDefaultValueOf"); } // Support for construct call checks. void HGraphBuilder::GenerateIsConstructCall(CallRuntime* call) { ASSERT(call->arguments()->length() == 0); if (function_state()->outer() != NULL) { // We are generating graph for inlined function. HValue* value = function_state()->is_construct() ? graph()->GetConstantTrue() : graph()->GetConstantFalse(); return ast_context()->ReturnValue(value); } else { return ast_context()->ReturnControl(new(zone()) HIsConstructCallAndBranch, call->id()); } } // Support for arguments.length and arguments[?]. void HGraphBuilder::GenerateArgumentsLength(CallRuntime* call) { // Our implementation of arguments (based on this stack frame or an // adapter below it) does not work for inlined functions. This runtime // function is blacklisted by AstNode::IsInlineable. ASSERT(function_state()->outer() == NULL); ASSERT(call->arguments()->length() == 0); HInstruction* elements = AddInstruction( new(zone()) HArgumentsElements(false)); HArgumentsLength* result = new(zone()) HArgumentsLength(elements); return ast_context()->ReturnInstruction(result, call->id()); } void HGraphBuilder::GenerateArguments(CallRuntime* call) { // Our implementation of arguments (based on this stack frame or an // adapter below it) does not work for inlined functions. This runtime // function is blacklisted by AstNode::IsInlineable. ASSERT(function_state()->outer() == NULL); ASSERT(call->arguments()->length() == 1); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); HValue* index = Pop(); HInstruction* elements = AddInstruction( new(zone()) HArgumentsElements(false)); HInstruction* length = AddInstruction(new(zone()) HArgumentsLength(elements)); HAccessArgumentsAt* result = new(zone()) HAccessArgumentsAt(elements, length, index); return ast_context()->ReturnInstruction(result, call->id()); } // Support for accessing the class and value fields of an object. void HGraphBuilder::GenerateClassOf(CallRuntime* call) { // The special form detected by IsClassOfTest is detected before we get here // and does not cause a bailout. return Bailout("inlined runtime function: ClassOf"); } void HGraphBuilder::GenerateValueOf(CallRuntime* call) { ASSERT(call->arguments()->length() == 1); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); HValue* value = Pop(); HValueOf* result = new(zone()) HValueOf(value); return ast_context()->ReturnInstruction(result, call->id()); } void HGraphBuilder::GenerateDateField(CallRuntime* call) { ASSERT(call->arguments()->length() == 2); ASSERT_NE(NULL, call->arguments()->at(1)->AsLiteral()); Smi* index = Smi::cast(*(call->arguments()->at(1)->AsLiteral()->handle())); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); HValue* date = Pop(); HDateField* result = new(zone()) HDateField(date, index); return ast_context()->ReturnInstruction(result, call->id()); } void HGraphBuilder::GenerateSetValueOf(CallRuntime* call) { ASSERT(call->arguments()->length() == 2); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); CHECK_ALIVE(VisitForValue(call->arguments()->at(1))); HValue* value = Pop(); HValue* object = Pop(); // Check if object is a not a smi. HIsSmiAndBranch* smicheck = new(zone()) HIsSmiAndBranch(object); HBasicBlock* if_smi = graph()->CreateBasicBlock(); HBasicBlock* if_heap_object = graph()->CreateBasicBlock(); HBasicBlock* join = graph()->CreateBasicBlock(); smicheck->SetSuccessorAt(0, if_smi); smicheck->SetSuccessorAt(1, if_heap_object); current_block()->Finish(smicheck); if_smi->Goto(join); // Check if object is a JSValue. set_current_block(if_heap_object); HHasInstanceTypeAndBranch* typecheck = new(zone()) HHasInstanceTypeAndBranch(object, JS_VALUE_TYPE); HBasicBlock* if_js_value = graph()->CreateBasicBlock(); HBasicBlock* not_js_value = graph()->CreateBasicBlock(); typecheck->SetSuccessorAt(0, if_js_value); typecheck->SetSuccessorAt(1, not_js_value); current_block()->Finish(typecheck); not_js_value->Goto(join); // Create in-object property store to kValueOffset. set_current_block(if_js_value); Handle name = isolate()->factory()->undefined_symbol(); AddInstruction(new HStoreNamedField(object, name, value, true, // in-object store. JSValue::kValueOffset)); if_js_value->Goto(join); join->SetJoinId(call->id()); set_current_block(join); return ast_context()->ReturnValue(value); } // Fast support for charCodeAt(n). void HGraphBuilder::GenerateStringCharCodeAt(CallRuntime* call) { ASSERT(call->arguments()->length() == 2); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); CHECK_ALIVE(VisitForValue(call->arguments()->at(1))); HValue* index = Pop(); HValue* string = Pop(); HValue* context = environment()->LookupContext(); HStringCharCodeAt* result = BuildStringCharCodeAt(context, string, index); return ast_context()->ReturnInstruction(result, call->id()); } // Fast support for string.charAt(n) and string[n]. void HGraphBuilder::GenerateStringCharFromCode(CallRuntime* call) { ASSERT(call->arguments()->length() == 1); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); HValue* char_code = Pop(); HValue* context = environment()->LookupContext(); HStringCharFromCode* result = new(zone()) HStringCharFromCode(context, char_code); return ast_context()->ReturnInstruction(result, call->id()); } // Fast support for string.charAt(n) and string[n]. void HGraphBuilder::GenerateStringCharAt(CallRuntime* call) { ASSERT(call->arguments()->length() == 2); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); CHECK_ALIVE(VisitForValue(call->arguments()->at(1))); HValue* index = Pop(); HValue* string = Pop(); HValue* context = environment()->LookupContext(); HStringCharCodeAt* char_code = BuildStringCharCodeAt(context, string, index); AddInstruction(char_code); HStringCharFromCode* result = new(zone()) HStringCharFromCode(context, char_code); return ast_context()->ReturnInstruction(result, call->id()); } // Fast support for object equality testing. void HGraphBuilder::GenerateObjectEquals(CallRuntime* call) { ASSERT(call->arguments()->length() == 2); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); CHECK_ALIVE(VisitForValue(call->arguments()->at(1))); HValue* right = Pop(); HValue* left = Pop(); HCompareObjectEqAndBranch* result = new(zone()) HCompareObjectEqAndBranch(left, right); return ast_context()->ReturnControl(result, call->id()); } void HGraphBuilder::GenerateLog(CallRuntime* call) { // %_Log is ignored in optimized code. return ast_context()->ReturnValue(graph()->GetConstantUndefined()); } // Fast support for Math.random(). void HGraphBuilder::GenerateRandomHeapNumber(CallRuntime* call) { HValue* context = environment()->LookupContext(); HGlobalObject* global_object = new(zone()) HGlobalObject(context); AddInstruction(global_object); HRandom* result = new(zone()) HRandom(global_object); return ast_context()->ReturnInstruction(result, call->id()); } // Fast support for StringAdd. void HGraphBuilder::GenerateStringAdd(CallRuntime* call) { ASSERT_EQ(2, call->arguments()->length()); CHECK_ALIVE(VisitArgumentList(call->arguments())); HValue* context = environment()->LookupContext(); HCallStub* result = new(zone()) HCallStub(context, CodeStub::StringAdd, 2); Drop(2); return ast_context()->ReturnInstruction(result, call->id()); } // Fast support for SubString. void HGraphBuilder::GenerateSubString(CallRuntime* call) { ASSERT_EQ(3, call->arguments()->length()); CHECK_ALIVE(VisitArgumentList(call->arguments())); HValue* context = environment()->LookupContext(); HCallStub* result = new(zone()) HCallStub(context, CodeStub::SubString, 3); Drop(3); return ast_context()->ReturnInstruction(result, call->id()); } // Fast support for StringCompare. void HGraphBuilder::GenerateStringCompare(CallRuntime* call) { ASSERT_EQ(2, call->arguments()->length()); CHECK_ALIVE(VisitArgumentList(call->arguments())); HValue* context = environment()->LookupContext(); HCallStub* result = new(zone()) HCallStub(context, CodeStub::StringCompare, 2); Drop(2); return ast_context()->ReturnInstruction(result, call->id()); } // Support for direct calls from JavaScript to native RegExp code. void HGraphBuilder::GenerateRegExpExec(CallRuntime* call) { ASSERT_EQ(4, call->arguments()->length()); CHECK_ALIVE(VisitArgumentList(call->arguments())); HValue* context = environment()->LookupContext(); HCallStub* result = new(zone()) HCallStub(context, CodeStub::RegExpExec, 4); Drop(4); return ast_context()->ReturnInstruction(result, call->id()); } // Construct a RegExp exec result with two in-object properties. void HGraphBuilder::GenerateRegExpConstructResult(CallRuntime* call) { ASSERT_EQ(3, call->arguments()->length()); CHECK_ALIVE(VisitArgumentList(call->arguments())); HValue* context = environment()->LookupContext(); HCallStub* result = new(zone()) HCallStub(context, CodeStub::RegExpConstructResult, 3); Drop(3); return ast_context()->ReturnInstruction(result, call->id()); } // Support for fast native caches. void HGraphBuilder::GenerateGetFromCache(CallRuntime* call) { return Bailout("inlined runtime function: GetFromCache"); } // Fast support for number to string. void HGraphBuilder::GenerateNumberToString(CallRuntime* call) { ASSERT_EQ(1, call->arguments()->length()); CHECK_ALIVE(VisitArgumentList(call->arguments())); HValue* context = environment()->LookupContext(); HCallStub* result = new(zone()) HCallStub(context, CodeStub::NumberToString, 1); Drop(1); return ast_context()->ReturnInstruction(result, call->id()); } // Fast call for custom callbacks. void HGraphBuilder::GenerateCallFunction(CallRuntime* call) { // 1 ~ The function to call is not itself an argument to the call. int arg_count = call->arguments()->length() - 1; ASSERT(arg_count >= 1); // There's always at least a receiver. for (int i = 0; i < arg_count; ++i) { CHECK_ALIVE(VisitArgument(call->arguments()->at(i))); } CHECK_ALIVE(VisitForValue(call->arguments()->last())); HValue* function = Pop(); HValue* context = environment()->LookupContext(); // Branch for function proxies, or other non-functions. HHasInstanceTypeAndBranch* typecheck = new(zone()) HHasInstanceTypeAndBranch(function, JS_FUNCTION_TYPE); HBasicBlock* if_jsfunction = graph()->CreateBasicBlock(); HBasicBlock* if_nonfunction = graph()->CreateBasicBlock(); HBasicBlock* join = graph()->CreateBasicBlock(); typecheck->SetSuccessorAt(0, if_jsfunction); typecheck->SetSuccessorAt(1, if_nonfunction); current_block()->Finish(typecheck); set_current_block(if_jsfunction); HInstruction* invoke_result = AddInstruction( new(zone()) HInvokeFunction(context, function, arg_count)); Drop(arg_count); Push(invoke_result); if_jsfunction->Goto(join); set_current_block(if_nonfunction); HInstruction* call_result = AddInstruction( new(zone()) HCallFunction(context, function, arg_count)); Drop(arg_count); Push(call_result); if_nonfunction->Goto(join); set_current_block(join); join->SetJoinId(call->id()); return ast_context()->ReturnValue(Pop()); } // Fast call to math functions. void HGraphBuilder::GenerateMathPow(CallRuntime* call) { ASSERT_EQ(2, call->arguments()->length()); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); CHECK_ALIVE(VisitForValue(call->arguments()->at(1))); HValue* right = Pop(); HValue* left = Pop(); HPower* result = new(zone()) HPower(left, right); return ast_context()->ReturnInstruction(result, call->id()); } void HGraphBuilder::GenerateMathSin(CallRuntime* call) { ASSERT_EQ(1, call->arguments()->length()); CHECK_ALIVE(VisitArgumentList(call->arguments())); HValue* context = environment()->LookupContext(); HCallStub* result = new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1); result->set_transcendental_type(TranscendentalCache::SIN); Drop(1); return ast_context()->ReturnInstruction(result, call->id()); } void HGraphBuilder::GenerateMathCos(CallRuntime* call) { ASSERT_EQ(1, call->arguments()->length()); CHECK_ALIVE(VisitArgumentList(call->arguments())); HValue* context = environment()->LookupContext(); HCallStub* result = new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1); result->set_transcendental_type(TranscendentalCache::COS); Drop(1); return ast_context()->ReturnInstruction(result, call->id()); } void HGraphBuilder::GenerateMathTan(CallRuntime* call) { ASSERT_EQ(1, call->arguments()->length()); CHECK_ALIVE(VisitArgumentList(call->arguments())); HValue* context = environment()->LookupContext(); HCallStub* result = new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1); result->set_transcendental_type(TranscendentalCache::TAN); Drop(1); return ast_context()->ReturnInstruction(result, call->id()); } void HGraphBuilder::GenerateMathLog(CallRuntime* call) { ASSERT_EQ(1, call->arguments()->length()); CHECK_ALIVE(VisitArgumentList(call->arguments())); HValue* context = environment()->LookupContext(); HCallStub* result = new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1); result->set_transcendental_type(TranscendentalCache::LOG); Drop(1); return ast_context()->ReturnInstruction(result, call->id()); } void HGraphBuilder::GenerateMathSqrt(CallRuntime* call) { return Bailout("inlined runtime function: MathSqrt"); } // Check whether two RegExps are equivalent void HGraphBuilder::GenerateIsRegExpEquivalent(CallRuntime* call) { return Bailout("inlined runtime function: IsRegExpEquivalent"); } void HGraphBuilder::GenerateGetCachedArrayIndex(CallRuntime* call) { ASSERT(call->arguments()->length() == 1); CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); HValue* value = Pop(); HGetCachedArrayIndex* result = new(zone()) HGetCachedArrayIndex(value); return ast_context()->ReturnInstruction(result, call->id()); } void HGraphBuilder::GenerateFastAsciiArrayJoin(CallRuntime* call) { return Bailout("inlined runtime function: FastAsciiArrayJoin"); } #undef CHECK_BAILOUT #undef CHECK_ALIVE HEnvironment::HEnvironment(HEnvironment* outer, Scope* scope, Handle closure) : closure_(closure), values_(0), assigned_variables_(4), frame_type_(JS_FUNCTION), parameter_count_(0), specials_count_(1), local_count_(0), outer_(outer), pop_count_(0), push_count_(0), ast_id_(AstNode::kNoNumber) { Initialize(scope->num_parameters() + 1, scope->num_stack_slots(), 0); } HEnvironment::HEnvironment(const HEnvironment* other) : values_(0), assigned_variables_(0), frame_type_(JS_FUNCTION), parameter_count_(0), specials_count_(1), local_count_(0), outer_(NULL), pop_count_(0), push_count_(0), ast_id_(other->ast_id()) { Initialize(other); } HEnvironment::HEnvironment(HEnvironment* outer, Handle closure, FrameType frame_type, int arguments) : closure_(closure), values_(arguments), assigned_variables_(0), frame_type_(frame_type), parameter_count_(arguments), local_count_(0), outer_(outer), pop_count_(0), push_count_(0), ast_id_(AstNode::kNoNumber) { } void HEnvironment::Initialize(int parameter_count, int local_count, int stack_height) { parameter_count_ = parameter_count; local_count_ = local_count; // Avoid reallocating the temporaries' backing store on the first Push. int total = parameter_count + specials_count_ + local_count + stack_height; values_.Initialize(total + 4); for (int i = 0; i < total; ++i) values_.Add(NULL); } void HEnvironment::Initialize(const HEnvironment* other) { closure_ = other->closure(); values_.AddAll(other->values_); assigned_variables_.AddAll(other->assigned_variables_); frame_type_ = other->frame_type_; parameter_count_ = other->parameter_count_; local_count_ = other->local_count_; if (other->outer_ != NULL) outer_ = other->outer_->Copy(); // Deep copy. pop_count_ = other->pop_count_; push_count_ = other->push_count_; ast_id_ = other->ast_id_; } void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) { ASSERT(!block->IsLoopHeader()); ASSERT(values_.length() == other->values_.length()); int length = values_.length(); for (int i = 0; i < length; ++i) { HValue* value = values_[i]; if (value != NULL && value->IsPhi() && value->block() == block) { // There is already a phi for the i'th value. HPhi* phi = HPhi::cast(value); // Assert index is correct and that we haven't missed an incoming edge. ASSERT(phi->merged_index() == i); ASSERT(phi->OperandCount() == block->predecessors()->length()); phi->AddInput(other->values_[i]); } else if (values_[i] != other->values_[i]) { // There is a fresh value on the incoming edge, a phi is needed. ASSERT(values_[i] != NULL && other->values_[i] != NULL); HPhi* phi = new(block->zone()) HPhi(i); HValue* old_value = values_[i]; for (int j = 0; j < block->predecessors()->length(); j++) { phi->AddInput(old_value); } phi->AddInput(other->values_[i]); this->values_[i] = phi; block->AddPhi(phi); } } } void HEnvironment::Bind(int index, HValue* value) { ASSERT(value != NULL); if (!assigned_variables_.Contains(index)) { assigned_variables_.Add(index); } values_[index] = value; } bool HEnvironment::HasExpressionAt(int index) const { return index >= parameter_count_ + specials_count_ + local_count_; } bool HEnvironment::ExpressionStackIsEmpty() const { ASSERT(length() >= first_expression_index()); return length() == first_expression_index(); } void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) { int count = index_from_top + 1; int index = values_.length() - count; ASSERT(HasExpressionAt(index)); // The push count must include at least the element in question or else // the new value will not be included in this environment's history. if (push_count_ < count) { // This is the same effect as popping then re-pushing 'count' elements. pop_count_ += (count - push_count_); push_count_ = count; } values_[index] = value; } void HEnvironment::Drop(int count) { for (int i = 0; i < count; ++i) { Pop(); } } HEnvironment* HEnvironment::Copy() const { return new(closure()->GetIsolate()->zone()) HEnvironment(this); } HEnvironment* HEnvironment::CopyWithoutHistory() const { HEnvironment* result = Copy(); result->ClearHistory(); return result; } HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const { HEnvironment* new_env = Copy(); for (int i = 0; i < values_.length(); ++i) { HPhi* phi = new(loop_header->zone()) HPhi(i); phi->AddInput(values_[i]); new_env->values_[i] = phi; loop_header->AddPhi(phi); } new_env->ClearHistory(); return new_env; } HEnvironment* HEnvironment::CreateStubEnvironment(HEnvironment* outer, Handle target, FrameType frame_type, int arguments) const { HEnvironment* new_env = new(closure()->GetIsolate()->zone()) HEnvironment(outer, target, frame_type, arguments + 1); for (int i = 0; i <= arguments; ++i) { // Include receiver. new_env->Push(ExpressionStackAt(arguments - i)); } new_env->ClearHistory(); return new_env; } HEnvironment* HEnvironment::CopyForInlining( Handle target, int arguments, FunctionLiteral* function, HConstant* undefined, CallKind call_kind, bool is_construct) const { ASSERT(frame_type() == JS_FUNCTION); Zone* zone = closure()->GetIsolate()->zone(); // Outer environment is a copy of this one without the arguments. int arity = function->scope()->num_parameters(); HEnvironment* outer = Copy(); outer->Drop(arguments + 1); // Including receiver. outer->ClearHistory(); if (is_construct) { // Create artificial constructor stub environment. The receiver should // actually be the constructor function, but we pass the newly allocated // object instead, DoComputeConstructStubFrame() relies on that. outer = CreateStubEnvironment(outer, target, JS_CONSTRUCT, arguments); } if (arity != arguments) { // Create artificial arguments adaptation environment. outer = CreateStubEnvironment(outer, target, ARGUMENTS_ADAPTOR, arguments); } HEnvironment* inner = new(zone) HEnvironment(outer, function->scope(), target); // Get the argument values from the original environment. for (int i = 0; i <= arity; ++i) { // Include receiver. HValue* push = (i <= arguments) ? ExpressionStackAt(arguments - i) : undefined; inner->SetValueAt(i, push); } // If the function we are inlining is a strict mode function or a // builtin function, pass undefined as the receiver for function // calls (instead of the global receiver). if ((target->shared()->native() || !function->is_classic_mode()) && call_kind == CALL_AS_FUNCTION && !is_construct) { inner->SetValueAt(0, undefined); } inner->SetValueAt(arity + 1, LookupContext()); for (int i = arity + 2; i < inner->length(); ++i) { inner->SetValueAt(i, undefined); } inner->set_ast_id(AstNode::kFunctionEntryId); return inner; } void HEnvironment::PrintTo(StringStream* stream) { for (int i = 0; i < length(); i++) { if (i == 0) stream->Add("parameters\n"); if (i == parameter_count()) stream->Add("specials\n"); if (i == parameter_count() + specials_count()) stream->Add("locals\n"); if (i == parameter_count() + specials_count() + local_count()) { stream->Add("expressions\n"); } HValue* val = values_.at(i); stream->Add("%d: ", i); if (val != NULL) { val->PrintNameTo(stream); } else { stream->Add("NULL"); } stream->Add("\n"); } PrintF("\n"); } void HEnvironment::PrintToStd() { HeapStringAllocator string_allocator; StringStream trace(&string_allocator); PrintTo(&trace); PrintF("%s", *trace.ToCString()); } void HTracer::TraceCompilation(FunctionLiteral* function) { Tag tag(this, "compilation"); Handle name = function->debug_name(); PrintStringProperty("name", *name->ToCString()); PrintStringProperty("method", *name->ToCString()); PrintLongProperty("date", static_cast(OS::TimeCurrentMillis())); } void HTracer::TraceLithium(const char* name, LChunk* chunk) { Trace(name, chunk->graph(), chunk); } void HTracer::TraceHydrogen(const char* name, HGraph* graph) { Trace(name, graph, NULL); } void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) { Tag tag(this, "cfg"); PrintStringProperty("name", name); const ZoneList* blocks = graph->blocks(); for (int i = 0; i < blocks->length(); i++) { HBasicBlock* current = blocks->at(i); Tag block_tag(this, "block"); PrintBlockProperty("name", current->block_id()); PrintIntProperty("from_bci", -1); PrintIntProperty("to_bci", -1); if (!current->predecessors()->is_empty()) { PrintIndent(); trace_.Add("predecessors"); for (int j = 0; j < current->predecessors()->length(); ++j) { trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id()); } trace_.Add("\n"); } else { PrintEmptyProperty("predecessors"); } if (current->end()->SuccessorCount() == 0) { PrintEmptyProperty("successors"); } else { PrintIndent(); trace_.Add("successors"); for (HSuccessorIterator it(current->end()); !it.Done(); it.Advance()) { trace_.Add(" \"B%d\"", it.Current()->block_id()); } trace_.Add("\n"); } PrintEmptyProperty("xhandlers"); const char* flags = current->IsLoopSuccessorDominator() ? "dom-loop-succ" : ""; PrintStringProperty("flags", flags); if (current->dominator() != NULL) { PrintBlockProperty("dominator", current->dominator()->block_id()); } PrintIntProperty("loop_depth", current->LoopNestingDepth()); if (chunk != NULL) { int first_index = current->first_instruction_index(); int last_index = current->last_instruction_index(); PrintIntProperty( "first_lir_id", LifetimePosition::FromInstructionIndex(first_index).Value()); PrintIntProperty( "last_lir_id", LifetimePosition::FromInstructionIndex(last_index).Value()); } { Tag states_tag(this, "states"); Tag locals_tag(this, "locals"); int total = current->phis()->length(); PrintIntProperty("size", current->phis()->length()); PrintStringProperty("method", "None"); for (int j = 0; j < total; ++j) { HPhi* phi = current->phis()->at(j); PrintIndent(); trace_.Add("%d ", phi->merged_index()); phi->PrintNameTo(&trace_); trace_.Add(" "); phi->PrintTo(&trace_); trace_.Add("\n"); } } { Tag HIR_tag(this, "HIR"); HInstruction* instruction = current->first(); while (instruction != NULL) { int bci = 0; int uses = instruction->UseCount(); PrintIndent(); trace_.Add("%d %d ", bci, uses); instruction->PrintNameTo(&trace_); trace_.Add(" "); instruction->PrintTo(&trace_); trace_.Add(" <|@\n"); instruction = instruction->next(); } } if (chunk != NULL) { Tag LIR_tag(this, "LIR"); int first_index = current->first_instruction_index(); int last_index = current->last_instruction_index(); if (first_index != -1 && last_index != -1) { const ZoneList* instructions = chunk->instructions(); for (int i = first_index; i <= last_index; ++i) { LInstruction* linstr = instructions->at(i); if (linstr != NULL) { PrintIndent(); trace_.Add("%d ", LifetimePosition::FromInstructionIndex(i).Value()); linstr->PrintTo(&trace_); trace_.Add(" <|@\n"); } } } } } } void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) { Tag tag(this, "intervals"); PrintStringProperty("name", name); const Vector* fixed_d = allocator->fixed_double_live_ranges(); for (int i = 0; i < fixed_d->length(); ++i) { TraceLiveRange(fixed_d->at(i), "fixed"); } const Vector* fixed = allocator->fixed_live_ranges(); for (int i = 0; i < fixed->length(); ++i) { TraceLiveRange(fixed->at(i), "fixed"); } const ZoneList* live_ranges = allocator->live_ranges(); for (int i = 0; i < live_ranges->length(); ++i) { TraceLiveRange(live_ranges->at(i), "object"); } } void HTracer::TraceLiveRange(LiveRange* range, const char* type) { if (range != NULL && !range->IsEmpty()) { PrintIndent(); trace_.Add("%d %s", range->id(), type); if (range->HasRegisterAssigned()) { LOperand* op = range->CreateAssignedOperand(ZONE); int assigned_reg = op->index(); if (op->IsDoubleRegister()) { trace_.Add(" \"%s\"", DoubleRegister::AllocationIndexToString(assigned_reg)); } else { ASSERT(op->IsRegister()); trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg)); } } else if (range->IsSpilled()) { LOperand* op = range->TopLevel()->GetSpillOperand(); if (op->IsDoubleStackSlot()) { trace_.Add(" \"double_stack:%d\"", op->index()); } else { ASSERT(op->IsStackSlot()); trace_.Add(" \"stack:%d\"", op->index()); } } int parent_index = -1; if (range->IsChild()) { parent_index = range->parent()->id(); } else { parent_index = range->id(); } LOperand* op = range->FirstHint(); int hint_index = -1; if (op != NULL && op->IsUnallocated()) { hint_index = LUnallocated::cast(op)->virtual_register(); } trace_.Add(" %d %d", parent_index, hint_index); UseInterval* cur_interval = range->first_interval(); while (cur_interval != NULL && range->Covers(cur_interval->start())) { trace_.Add(" [%d, %d[", cur_interval->start().Value(), cur_interval->end().Value()); cur_interval = cur_interval->next(); } UsePosition* current_pos = range->first_pos(); while (current_pos != NULL) { if (current_pos->RegisterIsBeneficial() || FLAG_trace_all_uses) { trace_.Add(" %d M", current_pos->pos().Value()); } current_pos = current_pos->next(); } trace_.Add(" \"\"\n"); } } void HTracer::FlushToFile() { AppendChars(filename_, *trace_.ToCString(), trace_.length(), false); trace_.Reset(); } void HStatistics::Initialize(CompilationInfo* info) { source_size_ += info->shared_info()->SourceSize(); } void HStatistics::Print() { PrintF("Timing results:\n"); int64_t sum = 0; for (int i = 0; i < timing_.length(); ++i) { sum += timing_[i]; } for (int i = 0; i < names_.length(); ++i) { PrintF("%30s", names_[i]); double ms = static_cast(timing_[i]) / 1000; double percent = static_cast(timing_[i]) * 100 / sum; PrintF(" - %7.3f ms / %4.1f %% ", ms, percent); unsigned size = sizes_[i]; double size_percent = static_cast(size) * 100 / total_size_; PrintF(" %8u bytes / %4.1f %%\n", size, size_percent); } double source_size_in_kb = static_cast(source_size_) / 1024; double normalized_time = source_size_in_kb > 0 ? (static_cast(sum) / 1000) / source_size_in_kb : 0; double normalized_bytes = source_size_in_kb > 0 ? total_size_ / source_size_in_kb : 0; PrintF("%30s - %7.3f ms %7.3f bytes\n", "Sum", normalized_time, normalized_bytes); PrintF("---------------------------------------------------------------\n"); PrintF("%30s - %7.3f ms (%.1f times slower than full code gen)\n", "Total", static_cast(total_) / 1000, static_cast(total_) / full_code_gen_); } void HStatistics::SaveTiming(const char* name, int64_t ticks, unsigned size) { if (name == HPhase::kFullCodeGen) { full_code_gen_ += ticks; } else if (name == HPhase::kTotal) { total_ += ticks; } else { total_size_ += size; for (int i = 0; i < names_.length(); ++i) { if (names_[i] == name) { timing_[i] += ticks; sizes_[i] += size; return; } } names_.Add(name); timing_.Add(ticks); sizes_.Add(size); } } const char* const HPhase::kFullCodeGen = "Full code generator"; const char* const HPhase::kTotal = "Total"; void HPhase::Begin(const char* name, HGraph* graph, LChunk* chunk, LAllocator* allocator) { name_ = name; graph_ = graph; chunk_ = chunk; allocator_ = allocator; if (allocator != NULL && chunk_ == NULL) { chunk_ = allocator->chunk(); } if (FLAG_hydrogen_stats) start_ = OS::Ticks(); start_allocation_size_ = Zone::allocation_size_; } void HPhase::End() const { if (FLAG_hydrogen_stats) { int64_t end = OS::Ticks(); unsigned size = Zone::allocation_size_ - start_allocation_size_; HStatistics::Instance()->SaveTiming(name_, end - start_, size); } // Produce trace output if flag is set so that the first letter of the // phase name matches the command line parameter FLAG_trace_phase. if (FLAG_trace_hydrogen && OS::StrChr(const_cast(FLAG_trace_phase), name_[0]) != NULL) { if (graph_ != NULL) HTracer::Instance()->TraceHydrogen(name_, graph_); if (chunk_ != NULL) HTracer::Instance()->TraceLithium(name_, chunk_); if (allocator_ != NULL) { HTracer::Instance()->TraceLiveRanges(name_, allocator_); } } #ifdef DEBUG if (graph_ != NULL) graph_->Verify(false); // No full verify. if (allocator_ != NULL) allocator_->Verify(); #endif } } } // namespace v8::internal